Intercropping Systems to Modify Bioactive Compounds and Nutrient Profiles in Plants: Do We Have Enough Information to Take This as a Strategy to Improve Food Quality? A Review
Abstract
:1. Introduction
2. Food Security and Intercropping Systems
2.1. Food Security and the Importance of Sustainable Production
2.2. Food Quality and Human Nutrition Related to Food Production Systems
3. Modifying the Nutritional Profile in Intercropping Systems
3.1. Intercropping Systems with Cereals and Legumes
Species Involved | Methodology | Bioactive Compounds | Macronutrients | Country or Climatic Zone | Author/Year |
---|---|---|---|---|---|
Maize and peanut Maize and soybean | Six treatments with two intercropping systems, maize–pea and maize–soybean, with and without the application of fertilizer and their respective monocultures; each treatment was replicated three times. Plot area: 33 m2 (6 m × 5.5 m); the field experiment had a total of 18 plots. | Maize intercropping (peanut and soybean) increased the lysine content of maize grains when no fertilizer was applied. When fertilizer was applied in both intercropping systems, the content of lysine increased. | Maize intercropping (peanut and soybean) significantly increased the protein and oil content of maize grains when no fertilizer was applied. When fertilizer was applied in both intercropping systems, the content of starch increased. | China | [70] |
Barley and alfalfa | Intercropping pot experiment with AMF and PGPR. Three inoculation treatments (for both monocropped and intercropped plants) and the control were used: (1) AMF-inoculated plants; (2) PGPR-inoculated plants; (3) AMF + PGPR co-inoculated plants | Intercropping and co-inoculation of AMF + PGRPR increased the total phenolic 132%, and flavonoid 343% content of barley grains. | Intercropping and co-inoculation of AMF + PGRPR increased protein in 99%. | Marrakesh, Morocco | [71] |
Wheat and faba bean | Intercropped wheat and faba bean with (N) fertilization: N0, no N fertilizer applied to both wheat and faba bean. N1, 90 and 45 kg N ha−1 applied to wheat and faba bean. N2, 180 and 90 kg N ha−1 applied to wheat and faba bean. N3, 270 and 135 kg N ha−1 applied to wheat and faba bean. Control group: Wheat and faba bean monoculture. | -------------------- | Wheat grain protein content increased by 9% with N3 level, NEAAs content was 31% higher under the N1 level and, grain EAAs was increased by 39% at the N1 level relative to monoculture wheat. | China | [69] |
Spring wheat and different legumes | Comparison of two systems—mixture and row-by-row cropping—in 3 different locations. | ------------------------- | The row-by-row cropping system resulted in higher crude protein content (14.02%) than the mixture (13.79%). Zvhad (Zv) had the highest crude protein content (15.14%). | Czech Republic; Prague (PR), Uhříněves (UH) and Zvíkov (Zv). | [72] |
Wheat and clover | 2 types of trials: “Broadcast” with three treatments:
| -------------------------- | Wheat grain protein content was 16% and 24% higher in Pcw and Pcwbc, respectively, than in Ctrlpr, and 15% and 28% compared to Ctrl. | Region around Pisa, Italy (sites: Valtriano and Santa Luce | [73] |
Milpa (colored corn, climbing bean, and squash, tobacco) with potato, 3 classes of peppers—namely poblano, jalapeno and bell—, beetroot, carrot and kale. | All vegetables were first grown in greenhouse, except potato tubers, which were directly planted in the garden plots. Forty-five-day-old seedlings were transplanted at Probstfield Organic Community Garden. No chemical fertilizers were used for this study. | Kale had the highest total soluble phenolic (TSP) content with 1.02 mg/g FW. It also had the highest phenolic acid content, detecting dihydroxybenzoic acid, ferulic acid, and cinnamic acid. Two of the three classes of peppers had higher concentrations of phenolic acids: jalapeno (gallic acid and p-coumaric acid) and poblano (benzoic acid, dihydroxybenzoic acid, and catechin). | ------------------------ | Northern plains USA | [74] |
Fenugreek seeds with buckwheat | Two-year experiment with four treatments: Sole fenugreek (control) with three intercropping ratios with buckwheat; F:B = 2:1, 1:1, and 1:2 each with three types of fertilizer (chemical fertilizer, integrated fertilizer, and broiler litter. Researchers studied trigonelline content, antioxidant activity measured with DPPH and FRAP, total phenolic and flavonoid content, and specific flavonoid contents of fenugreek seeds. | Results in intercropped fenugreek seeds: -Antioxidant activity: Higher DPPH levels, on average, by 12.3% (2014) and 12.5% (2015) compared to Sole F, thus increased antioxidant activity. The highest antioxidant activity was measured in the F:B = 2:1 plots with 4.25 (2014) and 4.90 (2015) mg TE/g DW. -Total phenolic content: Average 8.00% (2014) and 3.33% (2015) higher compared to the Sole F. Total flavonoid contents: On average, 32.4% (2014) and 23.8% (2015) higher than in seeds harvested from Sole F. -Flavonoid compound content Vitexin content was higher on average by 40.2% (2014) and 17.5% (2015) than for seeds from Sole F. Isovitexin content was on average 14.9% (2014) and 9.88% (2015) higher than in Sole F. Orientin content was higher on average by 23.1% (2014) and 15.5% (2015) compared to Sole F. -Flavonoid compound content Vitexin content was higher on average by 40.2% (2014) and 17.5% (2015) than for seeds from Sole F. Isovitexin content was on average 14.9% (2014) and 9.88% (2015) higher than in Sole F. Orientin content was higher on average by 23.1% (2014) and 15.5% (2015) compared to Sole F. | ------------------------ | Iran | [71] |
Tomato and basil, cabbage plants | Two systems compared with commercial control (cv. Rio Grande): LI: a system involving application of cow manure and manual weed control. LIMI; the same system, integrated (LI) with mulching and intercropping (basil and cabbage plants). Both systems were used to cultivate tomato line 392 harboring the hp-2 gene, which increases the pigments of plant and fruit; and tomato line 446 with the atv and Aft genes, which influence the content of polyphenols. | The LI system showed a higher content of polyphenols (+37.9%) and anthocyanins (+116.7%) in the peel and a higher content of vitamin C (+44.0%) and polyphenols (+11.1) in the pulp. | ------------------------ | Italy | [37] |
Salicornia europaea and tomato | The experimental design forecasted three different kinds of plots, namely Salicornia in monoculture (S) (double rows of twenty-five plants each), Salicornia consociated with tomato plants (S-T) (two rows of thirteen tomato plants each, with twenty-five Salicornia plants planted at each side of the two tomato rows, and tomato in monoculture. | The cultivation method (intercropping–monoculture) had no effect on the concentration of fatty acids, chlorophylls, carotenoids, glycine betaine, total phenols, or tannins, except for flavonoids, which did decrease in concentration (−26%) in intercropped plants. | ------------------------ | Italy | [24] |
3.2. Intercropping Cereals with Herbaceous Plants
3.3. Intercropping without Legumes and Cereals
4. Another Approach for Improving Nutritional Profile in Intercropping Systems
5. Materials and Methods
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Save and Grow—A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; FAO: Rome, Italy, 2011; pp. 1–15. [Google Scholar]
- Priya; Verma, R.K.; Lakhawat, S.; Yadav, V.K.; Gacem, A.; Abbas, M.; Yadav, K.K.; Park, H.K.; Jeon, B.K.; Mishra, S. Millets: Sustainable treasure house of bioactive components. Int. J. Food Prop. 2023, 26, 1822–1840. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, P.; Mahendran, R.; Huang, W.; Gao, Y.; Yang, Z.; Ye, T.; Wen, B.; Wu, Y.; Li, S.; et al. Global climate change and human health: Pathways and possible solutions. Eco-Environ. Health 2022, 1, 53–62. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping systems in agriculture and their impact on soil health—A review. Glob. Ecol. Conserv. 2020, 23, e01118. [Google Scholar] [CrossRef]
- de Souza Oliveira Filho, J.; dos Santos, O.A.Q.; Tavares, O.C.H.; de Souza Fagundes, H.; Diniz, Y.V.D.F.G.; Pinto, L.A.D.S.R.; da Silva Neto, E.C.; Pereira, M.G. Changes in soil phosphorus pools induced by drainage in tropical peatlands: Evidence in monoculture and intercropping long-term systems. Soil Tillage Res. 2021, 211, 105056. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Chaudhary, A.; Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Chang. 2016, 38, 195–204. [Google Scholar] [CrossRef]
- Singh, R.K.; Joshi, P.K.; Prasad Sinha, V.S.; Kumar, M. Indicator based assessment of food security in SAARC nations under the influence of climate change scenarios. Future Foods 2022, 5, 100122. [Google Scholar] [CrossRef]
- Cunha-Chiamolera, T.P.L.; Cecílio Filho, A.B.; Santos, D.M.M.; Chiamolera, F.M.; Guevara-González, R.G.; Nicola, S.; Urrestarazu, M. Lettuce in Monoculture or in Intercropping with Tomato Changes the Antioxidant Enzyme Activities, Nutrients and Growth of Lettuce. Horticulturae 2023, 9, 783. [Google Scholar] [CrossRef]
- Varela, R.P.; Balanay, R.M.; Halog, A. Changing the Way We Produce Food: An Overview of the Current Agricultural Food Production Industry and Worldwide Trends for Sustainable Production. In Climate Change and Resilient Food Systems; Hebsale Mallappa, V.K., Shirur, M., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Souho, T.; Bomboma, D.; Compaoré, E.W.R.; Essowèréou, A.A.; Ouadja, B.; Kabassina, M.; Pilo, M.; Assa Epse Yao, R.R.; Amouzou, K.S. Grains production in high climate change impacted regions and its potential for the supply of critical nutrients for humans nutritional well being. Food Prod. Process. Nutr. 2023, 5, 31. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef]
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; WHO: Rome, Italy, 2019. Available online: https://www.fao.org/3/ca6640en/ca6640en.pdf (accessed on 29 October 2023).
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Bharati Palai, J.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomía 2021, 11, 343. [Google Scholar] [CrossRef]
- Jodha, N.S. Intercropping in traditional farming systems. J. Dev. Stud. 1980, 16, 427–442. [Google Scholar] [CrossRef]
- Sridhar, S.M.; Subramanian, E.; Gurusamy, A.; Kannan, P.; Sathishkumar, A. Study on root architecture of aerobic rice under intercropping system in different land configuration. Pharma Innov. J. 2021, 10, 1329–1333. [Google Scholar]
- Blessing, D.J.; Gu, Y.C.; Manjun, C.Y.; Wang, X.; Asante-Badu, B. Overview of the advantages and limitations of maize-soybean intercropping in sustainable agriculture and future prospects: A review. Chil. J. Agric. Res. 2022, 82, 177–188. [Google Scholar] [CrossRef]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.P.; Navas, M.L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.P. Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Arch. Agron. Soil Sci. 2016, 62, 1236–1249. [Google Scholar] [CrossRef]
- Xie, J.; Wang, L.; Li, L.; Anwar, S.; Luo, Z.; Zechariah, E.; Kwami Fudjoe, S. Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau. Agriculture 2021, 11, 1100. [Google Scholar] [CrossRef]
- Zhanbota, A.; Noor, R.S.; Khan, A.I.; Wang, G.; Waqas, M.M.; Shah, A.N.; Ullah, S.A. Two-Year Study on Yield and Yield Components of Maize-White Bean Intercropping Systems under Different Sowing Techniques. Agronomy 2022, 12, 240. [Google Scholar] [CrossRef]
- Swamila, M.; Philip, D.; Akyoo, A.M.; Manda, J.; Mwinuka, L.; Smethurst, P.J.; Sieber, S.; Kimaro, A.A. Profitability of Gliricidia-Maize System in Selected Dryland Areas of Dodoma Region, Tanzania. Sustainability 2022, 14, 53. [Google Scholar] [CrossRef]
- Méndez-Espinoza, C.; Vallejo Reyna, M.A. Mecanismos de respuesta al estrés abiótico: Hacia una perspectiva de las especies forestales. Rev. Mex. Cienc. For. 2019, 10, 33–64. [Google Scholar] [CrossRef]
- Castagna, A.; Mariottini, G.; Gabriele, M.; Longo, V.; Souid, A.; Dauvergne, X.; Magné, C.; Foggi, G.; Conte, G.; Santin, M.; et al. Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae 2022, 8, 828. [Google Scholar] [CrossRef]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Gachene, C.K.K.; Karanja, N.N.; Schulte-Geldermann, E. Increasing potato equivalent yield increases returns to investment under potato-legume intercropping systems. Open Agric. 2019, 4, 623–629. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2021. Available online: http://www.fao.org/publications/sofi/2021/en/ (accessed on 29 October 2023).
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. Viewpoint: The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, M. Assessing vulnerability of agriculture system to climate change in the SAARC region. Environ. Chall. 2021, 5, 100398. [Google Scholar] [CrossRef]
- Napoli, M.; Muro, P.P.; De Mazziotta, P.M. Towards a Food Insecurity Multidimensional Index. In Master in Human Development and Food Security; Universita Degli Studi: Rome, Italy, 2011; pp. 1–72. Available online: https://www.fao.org/fileadmin/templates/ERP/uni/FIMI.pdf (accessed on 29 October 2023).
- Food and Agriculture Organization of the United Nations (FAO). Introduction to the Basic Concepts of Food Security; FAO: Rome, Italy, 2008; pp. 1–3. [Google Scholar]
- Teklu, D.; Gashu, D.; Joy, E.J.M.; Amede, T.; Broadley, M.R. Effectiveness of Agronomic Biofortification Strategy in Fighting against Hidden Hunger. Agronomy 2023, 13, 2173. [Google Scholar] [CrossRef]
- HLPE. Food Security and Nutrition: Building a Global Narrative Towards 2030; Report 15; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/3/ca9731en/ca9731en.pdf (accessed on 29 October 2023).
- Plucknett, D.L.; Smith, N.J.H. Historical perspectives on multiple cropping. In Multiple Cropping Systems; Francis, C.A., Ed.; MacMillan Publishing Company: New York, NY, USA, 1986. [Google Scholar]
- Zhao, C.; Fan, Z.; Coulter, J.A.; Yin, W.; Hu, F.; Yu, A. High Maize Density Alleviates the Inhibitory Effect of Soil Nitrogen on Intercropped Pea. Agronomy 2020, 10, 248. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Jafari, T. Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2020, 68, 103912. [Google Scholar] [CrossRef]
- Santangelo, E.; Bergonzoli, S.; Papetti, P.; Mazzucato, A.; Del Giudice, A.; Scarfone, A.; Beni, C. The Profile of Bioactive Compounds in Two Tomato Lines (hp-2 and Atv_aft) When Grown under Low-Input Farming Conditions with or without Mulching and Intercropping. Agriculture 2023, 13, 280. [Google Scholar] [CrossRef]
- Coelho, M.S.; Fernandes, S.S.; de las Mercedes Salas-Mellado, M. Association Between Diet, Health, and the Presence of Bioactive Compounds in Foods. Bioact. Compd. 2019, 159–183. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Méndez-Flores, O.G.; Ochoa-Díaz López, H.; Castro-Quezada, I.; Olivo-Vidal, Z.E.; García-Miranda, R.; Rodríguez-Robles, U.; Irecta-Nájera, C.A.; López-Ramírez, G.; Sánchez-Chino, X.M. The Milpa as A Supplier of Bioactive Compounds: A Review. Food Rev. Int. 2023, 39, 1359–1376. [Google Scholar] [CrossRef]
- Rivera, J.A.; Barquera, S.; González-Cossío, T.; Olaiz, G.; Sepúlveda, J. Nutrition Transition in Mexico and in Other Latin American Countries. Nutr. Rev. 2004, 62, 149–157. [Google Scholar] [CrossRef]
- Moreno-Altamirano, L.; Hernández-Montoya, D.; Martín Silberman, M.; Capraro, S.; García-García, J.J.; Guadalupe Soto-Estrada, G.; Sandoval-Bosh, E. La transición alimentaria y la doble carga de malnutrición: Cambios en los patrones alimentarios de 1961 a 2009 en el contexto socioeconómico mexicano. Arch. Latinoam. Nutr. 2014, 64, 231–240. [Google Scholar]
- Montilva de Mendoza, M. Desafíos de la nutrición comunitaria en Latinoamérica. Rev. Esp. Nutr. Comunitaria 2010, 16, 41–44. [Google Scholar] [CrossRef]
- Vasileva, L.V.; Marchev, A.S.; Georgiev, M.I. Causes and solutions to “globesity”: The new FA(S)T alarming global epidemic. Food Chem. Toxicol. 2018, 121, 173–193. [Google Scholar] [CrossRef]
- Ahluwalia, M.K. Chrononutrition—When We Eat Is of the Essence in Tackling obesity. Nutrients 2022, 14, 5080. [Google Scholar] [CrossRef]
- Markovikj, G.; Knights, V.; Gajdoš Kljusurić, J. Body Weight Loss Efficiency in Overweight and Obese Adults in the Ketogenic Reduction Diet Program—Case Study. Appl. Sci. 2023, 13, 10704. [Google Scholar] [CrossRef]
- World Health Organization. Mineral Nutrition Information System. 2023. Available online: https://www.who.int/teams/nutrition-and-food-safety/databases/vitamin-and-mineral-nutrition-information-system (accessed on 28 October 2023).
- World Health Organization. Micronutrients. 2021. Available online: https://www.who.int/health-topics/micronutrients (accessed on 17 November 2022).
- Dhiman, K.; Sharma, D.; Kumari, R.; Tomar, P. Biofortification of crops using microbes—A promising sustainable agriculture strategy. J. Plant Nutr. 2023, 46, 2912–2935. [Google Scholar] [CrossRef]
- Zúñiga-Venegas, L.; Saracini, C.; Pancetti, F.; Muñoz-Quezada, M.T.; Lucero, B.; Foerster, C.; Cortés, S. Exposición a plaguicidas en Chile y salud poblacional: Urgencia para la toma de decisiones. Gac. Sanit. 2021, 35, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Kesavachandran, C. (Eds.) Health Effects of Pesticides; CRC Press: London, UK, 2019; p. 182. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. An Introduction to Agroforestry: Four Decades of Scientific Developments; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Duffy, C.; Toth, G.G.; Hagan, R.P.O.; McKeown, P.C.; Rahman, S.A.; Widyaningsuh, Y.; Sunderland, T.C.H.; Spillane, C. Agroforestry contributions to smallholder farmer food security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Mattsson, E.; Ostwald, M.; Nissanka, S.P. What is good about Sri Lankan homegardens with regards to food security? A synthesis of the current scientific knowledge of a multifunctional land-use system. Agrofor. Syst. 2018, 92, 1469–1484. [Google Scholar] [CrossRef]
- Mkhize, X.; Mthembu, B.E.; Napier, C. Transforming a local food system to address food and nutrition insecurity in an urban informal settlement area: A study in Umlazi Township in Durban, South Africa. J. Agric. Food Res. 2023, 12, 100565. [Google Scholar] [CrossRef]
- Damude, H.G.; Kinney, A.J. Enhancing Plant Seed Oils for Human Nutrition. Plant Physiol. 2008, 147, 962–968. [Google Scholar] [CrossRef]
- Rojas, J.; Buitrago, A. Antioxidant Activity of Phenolic Compounds Biosynthesized by Plants and Its Relationship with Prevention of Neurodegenerative Diseases. Bioact. Compd. 2019, 3–31. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Maqsummiya, Z.U.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacother. 2022, 153, 113384. [Google Scholar] [CrossRef]
- Johnston, J.L.; Fanzo, J.C.; Cogill, B. Understanding sustainable diets: A descriptive analysis of the determinants and processes that influence diets and their impact on health, food security, and environmental sustainability. Adv. Nutr. 2014, 5, 418–429. [Google Scholar] [CrossRef]
- Meyerding, S.G.; Trajer, N.; Lehberger, M. What is local food? The case of consumer preferences for local food labeling of tomatoes in Germany. J. Clean. Prod. 2019, 207, 30–43. [Google Scholar] [CrossRef]
- da Costa Marques, S.C.; Carrijo-Mauad, J.R.; de Faria Domingues, C.H.; Rossi Borges, J.A.; Rosa da Silva, J. The importance of local food products attributes in Brazil consumer’s preferences. Future Foods 2022, 5, 100125. [Google Scholar] [CrossRef]
- Sura, S.; Kodikara, C.; Acharya, S.; Sabra, A.; Wijekoon, C. Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek. Appl. Biosci. 2023, 2, 477–492. [Google Scholar] [CrossRef]
- Polleau, A.; Biermann, G. Eat local to save the planet? Contrasting scientific evidence and consumers’ perceptions of healthy and environmentally friendly diets. Curr. Res. Environ. Sustain. 2021, 3, 100054. [Google Scholar] [CrossRef]
- Tosti, G.; Guiducci, M. Durum wheat-faba bean temporary intercropping: Effects on nitrogen supply and wheat quality. Eur. J. Agron. 2010, 33, 157–165. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, B.; Xie, Y.; Li, J.; Yang, Z.; Zhang, G. Legume-cereal intercropping improves forage yield, quality and degradability. PLoS ONE 2015, 10, e0144813. [Google Scholar] [CrossRef]
- Kızıl Aydemir, S.; Kızılşimşek, M. Assessing yield and feed quality of intercropped sorghum and soybean in different planting patterns and in different ecologies. Int. J. Environ. Sci. Technol. 2019, 16, 5141–5146. [Google Scholar] [CrossRef]
- Zhu, Y.-A.; He, J.; Yu, Z.; Zhou, D.; Li, H.; Wu, X.; Dong, Y.; Tang, L.; Zheng, Y.; Xiao, J. Wheat and Faba Bean Intercropping Together with Nitrogen Modulation Is a Good Option for Balancing the Trade-Off Relationship between Grain Yield and Quality in the Southwest of China. Agronomy 2022, 12, 2984. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Bian, X.; Zhao, Q. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils. Acta Ecol. Sin. 2012, 32, 7082–7090. [Google Scholar] [CrossRef]
- Slimani, A.; Oufdou, K.; Meddich, A. Intercropping with alfalfa and co-inoculation of AMF and PGPR improve growth, yield, grain bioactive quality, and soil fertility of barley. Arch. Agron. Soil Sci. 2023, 69, 2469–2483. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Hlásná Čepková, P.; Capouchová, I.; Konvalina, P.; Vavera, R.; Janovská, D. Yields and quality of spring wheat grain in intercropping system with different legume species. Agriculture 2022, 68, 176–190. [Google Scholar] [CrossRef]
- Pellegrini, F.; Carlesi, S.; Nardi, G.; Bàrberi, P. Wheat–clover temporary intercropping under Mediterranean conditions affects wheat biomass, plant nitrogen dynamics and grain quality. Eur. J. Agron. 2021, 130, 126347. [Google Scholar] [CrossRef]
- Mishra, L.K.; Walker-Swaney, J.; Sarkar, D.; Shetty, K. Bioactive vegetables integrated into ethnic “Three Sisters Crops” garden targeting foods for type 2 diabetes-associated health disparities of American Indian communities. J. Ethn. Foods 2017, 4, 163–171. [Google Scholar] [CrossRef]
- Ebel, R.; Pozas Cárdenas, J.G.; Soria Miranda, F.; Cruz González, J. Manejo orgánico de la milpa: Rendimientos de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoam. 2017, 35, 149–160. [Google Scholar] [CrossRef]
- Falkowski, T.B.; Chankin, A.; Diemont, S.A.W.; Pedian, R.W. More than just corn and calories: A comprehensive assessment of the yield and nutritional content of a traditional Lacandon Maya milpa. Food Sec. 2019, 11, 389–404. [Google Scholar] [CrossRef]
- Mt. Pleasant, J. Food yields and nutrient analyses of the three sisters: A Haudenosaunee cropping system. Ethnobiol. Lett. 2016, 7, 87–98. [Google Scholar] [CrossRef]
- Lopez-Ridaura, S.; Barba-Escoto, L.; Reyna, C.; Hellin, J.; Gerard, B.; van Wijk, M. Food security and agriculture in the Western Highlands of Guatemala. Food Sec. 2019, 11, 817–833. [Google Scholar] [CrossRef]
- Lopez-Ridaura, S.; Barba-Escoto, L.; Reyna-Ramirez, C.A.; Sum, C.; Palacios-Rojas, N.; Gerard, B. Maize intercropping in the milpa system. Diversity, extent and importance for nutritional security in the Western Highlands of Guatemala. Sci. Rep. 2021, 11, 3696. [Google Scholar] [CrossRef]
- Syed, Q.A.; Akram, M.; Shukat, R. Nutritional and therapeutic importance of the pumpkin seeds. Biomed. J. Sci. Tech. Res. 2019, 21, 15798–15803. [Google Scholar] [CrossRef]
- Rodríguez-Salinas, P.A.; Zavala-García, F.; Urías-Orona, V.; Muy-Rangel, D.; Heredia, J.B.; Niño-Medina, G. Chromatic, nutritional and Nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the northeast of Mexico. Arab. J. Sci. Eng. 2020, 45, 95–112. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Luna-Vital, D.A.; Morales-Hernandez, N.; Contreras, J.; Villaseñor-Tapia, E.C.; Fragoso-Medina, J.A.; Mojica, L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front. Nutr. 2023, 10, 1169675. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas-Bojórquez, L.A.; Valdez-Baro, O.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Microbial Production of Bioactive Compounds. In Microbial Products for Future Industrialization; Sarkar, A., Ahmed, I.A., Eds.; Interdisciplinary Biotechnological Advances; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Salehi, A.; Fallah, S.; Zitterl-Eglseer, K.; Kaul, H.-P.; Abbasi Surki, A.; Mehdi, B. Effect of Organic Fertilizers on Antioxidant Activity and Bioactive Compounds of Fenugreek Seeds in Intercropped Systems with Buckwheat. Agronomy 2019, 9, 367. [Google Scholar] [CrossRef]
- Oberč, B.P.; Schnell, A.A. Approaches to Sustainable Agriculture. Exploring the Pathways towards the Future of Farming; IUCN European: Brussels, Belgium, 2020. [Google Scholar]
- Duchene, O.; Vian, J.F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Jalal, A.; de Oliveira Junior, J.C.; Santos Ribeiro, J.; Fernandes, G.C.; Guerra Mariano, G.; Dias Rezende Trindade, V.; Rodrigues dos Reis, A. Hormesis in plants: Physiological and biochemical responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Altay, V.; Gönenç, T.M.; Unal, B.T.; Efe, R.; Akçiçek, E.; Bukhari, A. An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy 2021, 11, 295. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G. Crop Allelopathy for Sustainable Weed Management in Agroecosystems: Knowing the Present with a View to the Future. Agronomy 2021, 11, 2104. [Google Scholar] [CrossRef]
- Luo, C.; Wang, R.; Dou, X.; Zheng, C. Soil Moisture, Nutrients, and Plant Growths under Various Irrigation and Fertilization Regimes during the Crop Replacement Period in an Alley Intercropping System on the Loess Plateau of China. Forests 2023, 14, 2153. [Google Scholar] [CrossRef]
- Jin, J.; Bai, J.; Bao, A.; Han, H.; Li, J.; Chang, C.; Bao, J. Cost–Benefit Evaluation of Walnut and Jujube Orchards under Fruit Tree–Crop Intercropping Conditions in Southern Xinjiang. Forests 2023, 14, 2259. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen Distribution and Soil Microbial Community Characteristics in a Legume–Cereal Intercropping System: A Review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Liu, S.; Grierson, D.; Xi, W. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Simmons, M.; Bertelsen, M.; Windhager, S.; Zafian, H. The performance of native and non-native turfgrass monocultures and native turfgrass polycultures: An ecological approach to sustainable lawns. Ecol. Eng. 2011, 37, 1095–1103. [Google Scholar] [CrossRef]
- Zilverberg, C.J.; Teoh, K.; Boe, A.; Carter Johnson, W.; Owens, V. Strategic use of native species on environmental gradients increases diversity and biomass relative to switchgrass monocultures. Agric. Ecosyst. Environ. 2016, 215, 110–121. [Google Scholar] [CrossRef]
- Trușcă, M.; Gâdea, Ș.; Vidican, R.; Stoian, V.; Vâtcă, A.; Balint, C.; Stoian, V.A.; Horvat, M.; Vâtcă, S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture 2023, 13, 734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas-Salazar, A.P.; Schoor, M.; Parra-Pacheco, B.; García-Trejo, J.F.; Torres-Pacheco, I.; Feregrino-Pérez, A.A. Intercropping Systems to Modify Bioactive Compounds and Nutrient Profiles in Plants: Do We Have Enough Information to Take This as a Strategy to Improve Food Quality? A Review. Plants 2024, 13, 194. https://doi.org/10.3390/plants13020194
Arenas-Salazar AP, Schoor M, Parra-Pacheco B, García-Trejo JF, Torres-Pacheco I, Feregrino-Pérez AA. Intercropping Systems to Modify Bioactive Compounds and Nutrient Profiles in Plants: Do We Have Enough Information to Take This as a Strategy to Improve Food Quality? A Review. Plants. 2024; 13(2):194. https://doi.org/10.3390/plants13020194
Chicago/Turabian StyleArenas-Salazar, Ana Patricia, Mark Schoor, Benito Parra-Pacheco, Juan Fernando García-Trejo, Irineo Torres-Pacheco, and Ana Angélica Feregrino-Pérez. 2024. "Intercropping Systems to Modify Bioactive Compounds and Nutrient Profiles in Plants: Do We Have Enough Information to Take This as a Strategy to Improve Food Quality? A Review" Plants 13, no. 2: 194. https://doi.org/10.3390/plants13020194