Quantitative and Qualitative Production of Species Cucumis metuliferus and the Potential for Adaptation in the Context of Current Climate Change
Abstract
:1. Introduction
2. Results and Discussions
2.1. Morphological Features of Fruit
2.2. Degree of Pulp Firmness
2.3. Nutritional Quality of Fruits
3. Materials and Methods
3.1. Plant Material
3.2. Climate Conditions
Month | Temperature (°C) | The Relative Humidity of the Air (%) | Rainfall (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Medium | ||||||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
May | 10.1 | 5.6 | 30.0 | 27.5 | 19.3 | 16.1 | 67 | 73 | 57.0 | 34.0 |
June | 10.0 | 12.6 | 32.4 | 32.2 | 21.6 | 22.3 | 71 | 75 | 134.0 | 140 |
July | 12.6 | 9.8 | 31.6 | 35.6 | 22.3 | 22.9 | 73 | 66 | 148.0 | 64 |
August | 14.8 | 12.8 | 33.0 | 35.5 | 24.2 | 25.3 | 63 | 51 | 16.0 | 8.1 |
September | 1.9 | 6.7 | 32.6 | 32.7 | 19.2 | 20.2 | 61 | 49 | 17.0 | 3.0 |
October | 2.9 | 3.3 | 25.7 | 28.6 | 14.3 | 14.3 | 63 | 71 | 5.0 | 30 |
3.3. Determinations Regarding the Main Production Characters and Fruit Firmness
3.4. Determination of Bioactive Compounds
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hegedüs, A.; Pfeiffer, P.; Papp, N.; Abrankó, L.; Blázovics, A.; Pedryc, A.; Stefanovits-Bányai, E. Accumulation of Antioxidants in Apricot Fruit through Ripening: Characterization of a Genotype with Enhanced Functional Properties. Biol. Res. 2011, 44, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Jayaprakasha, G.K.; Crosbya, K.; Yoo, K.S.; Leskovar, D.I.; Jifon, J.; Bhimanagouda, S.P. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. J. Food Compos. Anal. 2014, 33, 195–202. [Google Scholar] [CrossRef]
- Wang, H.; Chen, G.; Guo, X.; Abbasi, A.M.; Liu, R.H. Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Chachiensis. LWT-Food Sci. Technol. 2016, 69, 67–75. [Google Scholar] [CrossRef]
- Khalid, E.; Abd El-Hamed, I. Climate Change Impact on Vegetable Crops and Potential for Adaptation: A Review. Hortsci. J. Suez Canal Univ. 2021, 10, 13–30. [Google Scholar]
- Vieira, E.F.; Grosso, C.; Rodrigues, F.; Moreira, M.M.; Fernandes, V.C.; Delerue-Matos, C. Bioactive Compounds of Horned Melon (Cucumis metuliferus E. Meyer ex Naudin). In Bioactive Compounds in Underutilized Vegetables and Legumes; Reference Series in Phytochemistry; Murthy, H.N., Paek, K.Y., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Usman, J.G.; Sodipo, O.A.; Kwaghe, A.V.; Sandabe, U.K. Uses of Cucumis metuliferus: A Review. Cancer Biol. 2015, 5, 24–34. [Google Scholar]
- Lim, T.K. Cucumis Metuliferus. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 2, pp. 235–238. [Google Scholar]
- Rani, B.; Lakha, U.S.; Ram Lakha, R.S.; Maheshwari, R.K. Incredible Benefits of Exotic Kiwano (Horned Melon) for Wellness, Vigour and Vitality. IJBI 2019, 1, 56–59. [Google Scholar] [CrossRef]
- Bester, S.P.; Condy, G. Cucumis metuliferus E. Mey. Ex Naudin. Fl. Pl. Afr. 2013, 63, 56–64. [Google Scholar]
- Maluleke, M.K.; Moja, S.J.; Nyathi, M.; Modise, D.M. Nutrient Concentration of African Horned Cucumber (Cucumis metuliferus L) Fruit under different soil types, environments, and varying irrigation water levels. Horticulturae 2021, 7, 76. [Google Scholar] [CrossRef]
- Manjunathagowda, D.C.; Pitchaimuthu, M.; Hiremata, V.; Sathisha, G.C.; Soni, G.C.; Dhananjaya, M.V.; Reddy, D.C.L. Horny gourd (Cucumis metuliferus L.): A hidden vegetable boon for human nutrition. Genet Resour Crop Evol. 2023, 70, 1903–1911. [Google Scholar] [CrossRef]
- Aliero, A.A.; Gumi, A.M. Studies on the germination, chemical composition and antimicrobial properties of Cucumis metuliferus. Ann. Biol. Res. 2012, 3, 4059–4064. [Google Scholar]
- Ferrara, L. A fruit to discover: Cucumis metuliferus E. Mey Ex Naudin (Kiwano). Clin. Nutr. Metab. 2018, 1, 1–2. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Šaponjac, V.T.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel During Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Halmagean, L.; Mester, M.; Balint, M.M.; Diaconescu, D.; Zdremtan, M. Contribution to improve the technology of the melon crop with hornes (Cucumis metuliferus)—Food and therapeutic species. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 18–24 June 2015; Book 6. Volume 1, pp. 375–380. [Google Scholar]
- Busuioc, A.C.; Botezatu, A.-V.D.; Furdui, B.; Vînătoru, C.; Maggi, F.; Caprioli, G.; Dinica, R.M. Comparative Study of the Chemical Compositions and Antioxidant Activities of Fresh Juices from Romanian Cucurbitaceae Varieties. Molecules 2020, 25, 5468. [Google Scholar] [CrossRef] [PubMed]
- Maluleke, M.K. Investigating the Performance and Quality of the Cucumis metuliferus E. Mey. Ex Naudin (African Horned Cucumber) under Different Growing Environments for Potential Commercialization. Ph.D. Thesis, University of South Africa, College of Agriculture and Environmental Sciences, Department of Agriculture, Pretoria, South Africa, 2021. [Google Scholar]
- Owino, M.H. Agro-Morphological and Nutritional Characterization of Horned Melon Accessions from Selected Agro-Ecological Zones in Kenya. Ph.D. Thesis, Department of Agricultural Resource Management, University of Embu, Embu, Kenya, 2020. [Google Scholar]
- Antunes, G.A.; Ferreira, A.P.; Puiatti, M.; Cecon, P.R.; Silva, G.A. Produtivida de e qualidade de frutos de pepino africano em resposta à adubação nitrogenada. Rev. Ceres 2014, 61, 141–146. [Google Scholar] [CrossRef]
- Štefanić, E.; Lukačević, M.; Rašić, S.; Lucić, P. Kiwano (Cucumis metuliferus E. Meyer Ex. Naudin) response to weed management practice and planting time in Eastern Slavon. J. Cent. Eur. Agric. 2022, 23, 624–631. [Google Scholar] [CrossRef]
- Jha, S.N.; Jaiswal, P.; Narsaiah, K.; Kaur, P.P.; Singh, A.K.; Kumar, R. Textural properties of mango cultivars during ripening. J. Food Sci. Technol. 2013, 50, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Soare, R. The influence of cultivar on the quality of fruit the species Cucumis melo L. Ann. Univ. Craiova-Agric. Mont. Cadastre Ser. 2016, XLVI, 105–110. [Google Scholar]
- Souza, A.D.; Pinto, P.M.; Borkoski, A.C.; Mezzacapa, F.L.; D’Andrea, F.; Sacchetto Júnior, L.P.M.; Biato, M. Caracterização de frutos de Cucumis metuliferus na Serra da Cantareira, São Paulo. Thesis 2006, 5, 147–160. [Google Scholar]
- Trajche, D.; Andreevska, D.; Dobre, A.; Gjorgovska, N.; Levkov, V. Some Quality Properties of Tropical Cucurbits Chayote (Sechium edule (Jacq.) Sw.), Bitter Melon (Momordica charantia L.) and Kiwano (Cucumis metuliferus E. Mey) Produced in the Temperate Climate Conditionsof North Macedonia. J. Mt. Agric. Balk. 2020, 23, 234–246. [Google Scholar]
- Benzioni, A.; Mendlinger, S.; Ventura, M.; Huyskens, S. Germination, Fruit Development, Yield, and Postharvest Characteristics of Cucumis metuliferus. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993; pp. 553–557. [Google Scholar]
- Okoth, E.M.; Sila, D.N.; Onyango, C.A.; Owino, W.O.; Musyimi, S.M.; Mathooko, F.M. Evaluation of chemical and nutritional quality attributes of selected mango varieties at three stages of ripeness, grown in lower Eastern province of Kenya—Part 2. J. Anim. Plant. Sci. 2013, 17, 2619–2630. [Google Scholar]
- Soare, R.; Dinu, M.; Băbeanu, C.; Soare, M. The influence of alternative technological sequences on the quality of melon production. Sci. Pap. Ser. B Hortic. 2018, LXII, 477–482. [Google Scholar]
- Trong, L.V.; Phuong, H.T.; Thinh, B.B. Changes in the physiological and biochemical parameters of cucumber (Cucumis sativus L.) during fruit development. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2023, 16, 143–154. [Google Scholar] [CrossRef]
- Achikanu Cosmas, E.; Nnenna, A.O.; Kenechukwu, O.K. Proximate, Phytochemical and Vitamin Compositions of Cucumis metuliferus (Horned Melon) Rind. J. Complement. Med. Res. 2020, 9, 40–50. [Google Scholar]
- Sadou, H.; Seini Sabo, H.; Malam Alma, M.; Mahamane, S.; Leger, C.L. Chemical content of the seeds and physico-chemical characteristic of the seed oils from Citrullus colocynthis, Coccinia grandis, Cucumis metuliferus and Cucumis prophetarum. Bull. Chem. Soc. Ethiop. 2007, 21, 323–330. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K. Effect of storage technology on the chemical composition of apples of the cultivar ‘Auksis. Zemdirbyste 2017, 104, 359–368. [Google Scholar] [CrossRef]
- Sheeba, M.M.; Shalini, T. Determination and Comparison of Ascorbic Acid in Vegetables. JETIR J. 2021, 8, 202–207. [Google Scholar]
- Sambou, A.; Samb, N.W.; Ayessou, N. Nutritional values of green and white cucumber (Cucumis sativus L.) and African horned cucumber (Cucumis metuliferus E.). J. Hortic. Postharvest. Res. 2023, 6, 221–234. [Google Scholar]
- Mester, A.; Condrat, C.; Zdremtan, M.; Diaconescu, F. Phenolic profile and antioxidant activity of some species of the Cucurbitaceae Family. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM, Vienna, Austria, 9–11 December 2019; Book 6.1.. pp. 845–852. [Google Scholar]
- Arrieta, M.P.; Garrido, L.; Faba, S.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Cucumis metuliferus fruit extract loaded acetate cellulose coatings for antioxidant active packaging. Polymers 2020, 12, 1248. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Aragonès, G.; Arola-Arnal, A.; Muguerza, B. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food. Chem. 2019, 299, 125092. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Achim, G.; Botu, M.; Baciu, A.; Gruia, M. Phenolics of Green Husk in Mature Walnut Fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 53–56. [Google Scholar]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crop Prod. J. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Supriya, A.; Kumar, A.; Kudachikar, V.B. A Comparison Investigation on Antioxidant Activities, Constitutive Antifungal Phenolic Lipids and Phenolics Contents of Anthracnose Resistant and Susceptible Mango Fruit Cultivars. Int. J. Fruit Sci. 2020, 20, 692–704. [Google Scholar] [CrossRef]
- Ouamnina, A.; Alahyane, A.; Elateri, I.; Boutasknit, A.; Abderrazik, M. Relationship between Phenolic Compounds and Antioxidant Activity of Some Moroccan Date Palm Fruit Varieties (Phoenix dactylifera L.): A Two-Year Study. Plants 2024, 13, 1119. [Google Scholar] [CrossRef] [PubMed]
- Hălmăgean, L.; Meşter, M.; Zdremţan, M.; Balint, M.; Diaconescu, D.; Ciutina, V. The yellow watermelon with horns (Cucumis metuliferus)—Food and therapeutic species with adaptation possibilities in Arad agroecological area. Sci. Bull. Escorena 2014, 10, 23. [Google Scholar]
- Barcanu, E.; Agapie, O.L.; Gherase, I.; Tănase, B.; Dobre, G.; Vînătoru, C. Consumer preferences for kiwano fruit, a newly introduced crop in Romania. Sci. Pap. Ser. B Hortic. 2022, 66, 409–412. [Google Scholar]
- Available online: https://www.agrownet.com/contents/en-us/d340742_Cucumis-metuliferus_Climate_requirements.html (accessed on 21 May 2024).
- “Raspisaniye Pogodi” SRL, 2004–2024. Available online: https://rp5.ru/Weather_in_Craiova_(airport) (accessed on 21 May 2024).
- Marcó, A.; Rubio, R.; Compañó, R.; Casals, I. Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Soare, R.; Dinu, M.; Băbeanu, C.; Soare, M. Biochemical changes during the storage of sweet potato roots. Sci. Pap. Ser. B Hortic. 2022, LXVI, 526–532. [Google Scholar]
- González-Peña, A.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. Biochem. Biophys. Rep. 2021, 26, 100989. [Google Scholar] [CrossRef]
Harvesting Time | Average Fruit Weight (g) | No. of Fruits/Plant | Yield/Plant (kg) | Fruit Firmness (kg/cm2) |
---|---|---|---|---|
V1—fruit harvested at immature stage | 204 b | 15.3 a | 3.12 a | 1.55 a |
V2—fruit harvested at intermediate stage | 212 ab | 14.8 ab | 3.07 a | 1.50 a |
V3—fruit harvested at mature stage | 234 a | 13.9 b | 3.02 a | 1.29 b |
Harvesting Time | TSS (%) | Reducing Sugar (%) | Glucose (%) | Acidity (%) | Protein (%) | Carotene (mg/100 g f.w.) |
---|---|---|---|---|---|---|
V1—fruit harvested at immature stage | 4.20 b | 2.80 b | 1.46 b | 0.83 a | 1.63 b | 0.68 b |
V2—fruit harvested at intermediate stage | 4.90 ab | 3.03 ab | 1.62 ab | 0.75 b | 1.82 ab | 0.73 b |
V3—fruit harvested at mature stage | 5.50 a | 3.56 a | 1.94 a | 0.88 a | 1.98 a | 0.92 a |
Harvesting Time | Ascorbic Acid (mg/100 g f.w.) | TPC mg/100 g f.w. | AO DPPH | AO ABTS | ||
---|---|---|---|---|---|---|
μM TE/100 g f.w. | μM AsA/100 g f.w. | μM TE/100 g f.w. | μM AsA/100 g f.w. | |||
V1—fruit harvested at immature stage | 3.1 b | 48.78 a | 140.9 a | 103.00 a | 126.89 a | 17.46 c |
V2—fruit harvested at intermediate stage | 3.7 ab | 37.06 b | 111.3 b | 87.20 b | 98.30 b | 90.80 a |
V3—fruit harvested at mature stage | 4.3 a | 29.62 c | 93.8 c | 71.78 c | 85.59 c | 76.29 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soare, R.; Dinu, M.; Babeanu, C.; Niculescu, M.; Soare, M.; Botu, M. Quantitative and Qualitative Production of Species Cucumis metuliferus and the Potential for Adaptation in the Context of Current Climate Change. Plants 2024, 13, 1854. https://doi.org/10.3390/plants13131854
Soare R, Dinu M, Babeanu C, Niculescu M, Soare M, Botu M. Quantitative and Qualitative Production of Species Cucumis metuliferus and the Potential for Adaptation in the Context of Current Climate Change. Plants. 2024; 13(13):1854. https://doi.org/10.3390/plants13131854
Chicago/Turabian StyleSoare, Rodica, Maria Dinu, Cristina Babeanu, Mariana Niculescu, Marin Soare, and Mihai Botu. 2024. "Quantitative and Qualitative Production of Species Cucumis metuliferus and the Potential for Adaptation in the Context of Current Climate Change" Plants 13, no. 13: 1854. https://doi.org/10.3390/plants13131854
APA StyleSoare, R., Dinu, M., Babeanu, C., Niculescu, M., Soare, M., & Botu, M. (2024). Quantitative and Qualitative Production of Species Cucumis metuliferus and the Potential for Adaptation in the Context of Current Climate Change. Plants, 13(13), 1854. https://doi.org/10.3390/plants13131854