Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi
Abstract
:1. Introduction
2. Olive Culture and Climate Change Challenges
2.1. Olive Culture
2.2. Effects of the Most Important Abiotic Stress on Olive Culture
3. Belowground-Associated Microbial Communities
3.1. Olive Rhizosphere and Root Endosphere Microbiota and Their Beneficial Effects
Country | Cultivar | Bacteria | Fungi | Reference |
---|---|---|---|---|
Portugal | - | Phyla: Proteobacteria, Actinobacteria, Fermicutes, and Bacteroidetes | Phyla: Ascomycota, Mucoromycota, and Basidiomycota | [63] |
Genera: Pseudomonas, Janthinobacterium, Serratia, Rahnella, Pantoea, Micrococcus, Flavobacterium, Erwinia, Burkholderiales, Burkholderiaceae, Bacillus, Achromobacter, and Rhodococcus | Genera: Penicillium, Mortierellaceae, Pseudogymnoascus, Solicoccozyma, Umbelopsis, Thrichoderma, Tremellomyces, Purpureocillium, Papiliotrema, Oidiodendro, Niessliaceae, Naganishia, Fusarium, Filobasidium, Didymella, Cystofilobasidium, Clonostachys, Cladosporium, Botrytis, Boeremia, and Aureobasidium | |||
Spain | Phyla: Actinobacteria, Acidobacteria, Fermicutes, Proteobacteria, Gemmatimonadota, Bacteroidetes, Verrucomicrobia, Chloroflexi, and Nitrospira | Phyla: Ascomycota, Glomeromycota, Basidiomycota, Mortierellomycota, and Cytridiomycota | [66] | |
Picual | Genera: Actinophytocola, Streptomyces, GP4, GP6, GP7, GP16, Ohtaekwangia, Sphingomones, Kibdelosporangium, Promicromonospora, Lentzea, Pseudomonas, Mycobacterium, Actinomadura, Neorhizobium, Actinoplanes, Rhodomicrobium, Bradyrhizobium, Nocardioides, Nonomuraea, Steroidobacter, Phytohabitans, Gematimonas, Blastococcus, Stenotrophobacter, Agromyces, Arenimicrobium, Gemmatirosa, Flavitalea, Solirubrobacter, Gaiella, Opitutus, Pseudoarthrobacter, Rudobacter, Longimicrobium, and Pseudonocardia | Genera: Diaporthe, Campanella, Mycenella, Panaeolus, Helminthosporium, Solicoccozyma, Mortierella, Lophotrichus, Cladophialophora, Hemycena, Panaeolus, Mycena, Scutellinia, Rhizophagus, Fusarium, Alternaria, Dominika, Aureobasidium, Preussia, Fusidium, Phaeomoniella, Hydropus, Dactylonectria, Corticum, Coniosporium, Paratricharina, Septoglomus, Botryotrichum, Kamienskia, Agaricus, Chrysosporium, Wallemia, Montagnula, Entoloma, Cephaliophora, Glomus, and Tricharina | ||
Greece | Koroneiki and Chondrolia Chalkidikis | Phyla: Nitrososphaerota, Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Myxococcota, Verrucomicrobia, Gemmatimonadetes, and Firmicutes | Phyla: Ascomycota, Basidiomycota and Glomeromycota | [65] |
Genera: Nitrososphaera | Family: Glomeraceae, Diversisporaceae, Paraglomeraceae and Gigasporaceae | |||
Tunisia | Chemlali | Phyla: Proteobacteria, Planctomycetota, and Actinobacteria Class: Acidobacteriia, Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidea, Blastocatellia, Chororoflexia, Deltaproteobacteria, Gammaproteobacteria, Gemmatimonadetes, Phycisphaerae, Rubrobacteria, Saccharimonadia, Thermoleophilia, and Verrucomicrobiae | [69] | |
Italy | Leccino | Phyla: Proteobacteria, Actinobacteria, Bacteroidota, Acidobacteria, Myxococcota, and Verrucomicrobia | Phyla: Ascomycota, Basidiomycota and Glomeromycota | [59] |
Genera: Glomus, Dominikia, and Rhizophagus | ||||
Italy | Frantoio | Phyla: Glomeromycota Family: Glomeraceae | [72] | |
Genera: Glomus | ||||
Spain | 36 1 | Phyla: Actinobacteria, Acidobacteria, Proteobacteria (classes Alphaproteobacteria, Gammaproteobacteria and Deltaproteobacteria), Gemmatimonadota, Fermicutes, and Bacteroidetes | Phyla: Ascomycota, and Basidiomycota Class: Sordariomycetes, Eurotiomycetes, Agaricomycetes, Dothideomycetes, Orbiliomycetes, Pezizomycetes, and Leotiomycetes | [62] |
Genera: Actinophytocola, Streptomyces, Pseudonocardia, Pseudomonas, Gp6, Gp4, Gp7, Rhizobium, Sphingomonas, Gemmatimonas, Bacillus, Bradyrhizobium, Ensifer, Rubrobacter, Steroidobacter, Saccharothrix, Ohtaekwangia, Mycobacterium, and Nonomuraea | Genera: Canalisporium, Macrophomina, Malassezia, Minimelanolocus, and Aspergillus | |||
Italy | Maiatica | Phyla: Proteobacteria, Actinobacteria, Cyanobacteria, Nitrospirota, and Nitrososphaerota | [71] | |
Genera: Roseomonas, Microcoleus, Pseudomonas, Mesorhizobium, Bradyrhizobium, Sinorhizobium, Denitrobacter, Acidisphaera, Phaeospirillum, Azospirillum, Frankia, Nostoc, Acaryochloris, Nitrospira, Nitrosovibrio, and Nitrososphaera | ||||
Italy | Maiatica | Phyla: Actinobacteria, Proteobacteria, Fermicutes, Nitrospira, Acidobacteria, Chloroflexi, Bacteroidetes, and Verrucomicrobia | [57] | |
Genera: Rhodanobacter, Ramlibacter, Pigmentiphaga, Roseomonas, Rubellimicrobium, Ancylobacter, Rhodoplanes, Sporosarcina, Caldilinea, Adhaeribacter, Flavisolibacter, Solirubrobacter, Conexibacter, Rubrobacter, Microlunatus, Mycobacterium, Arthrobacter, and Cellulomonas | ||||
Spain | Lechín, Manzanillo, Nevadillo, and Picual | Phyla: Proteobacteria and Nitrospirota Species: Nitrosospira tenuis and Nitrospira sp. | [70] | |
Portugal | Cobrançosa | Phyla: Ascomycota Species: Fusarium oxysporum, Phomopsis columnaris, Macrophomina phaseolina, Trichoderma spp.1, Trichoderma gamsii, Lophiostoma corticola, Paecilomyces verrucosus, and Penicillium restrictum | [58] | |
Spain | - | Phyla: Glomeromycota Genera: Glomus, Archaeospora, Diversispora, Claroideoglomus, and Paraglomus | [73] | |
Spain | Wild olives | Phyla: Fermicutes, Proteobacteria, Bacteroides, and Actinobacteria Genera: Pseudomonas, Bacillus, Paenibacillus, Actinobacter, Rahnella, Erwinia, Rhodococcus, and Chryseobacterium | [64] | |
PGPB | Benefits | References |
Classes Actinobacteria, Thermoleophilia and Bacilli | Adaptation to environmental stresses, e.g., arid and dry conditions | [69] |
Phyla Acidobacteria (classes Acidimicrobiia, Blastocatellia and Rubrobacteria), Planctomycetota (class Phycisphaerae), Verrucomicrobia (class Verrucomicrobiae), Proteobacteria (class Gammaproteobacteria) and Gemmatimonadetes | Protection against biotic and abiotic stresses | [69] |
Genera Pseudomonas, Bacillus and Streptomyces | Biological control agents | [57,62,64] |
Phyla Actinobacteria and Proteobacteria (Curtobacterium flaccumfaciens and Methylobacterium mesophilicu | Biological control agents | [57] |
Phylum Actinobacteria (e.g., Streptomyces spp.) | Production of secondary metabolites that help in pathogen defense | [66,67] |
Phylum Firmicutes | Antagonists and biological control agents | [57] |
PGPF | Benefits | References |
Genus Aureobasidium | Suppress anthracnose | [65,66] |
Genus Cladophialophora | Biological control agents | [66] |
Genera Preussia and Diaporthe | Produce secondary metabolites that help to control the development of some plant pathogens | [20,66] |
3.2. Influence of Biotic and Abiotic Factors on Microbiota Communities
4. The Role of Microorganisms in Alleviating Abiotic Stress’s Negative Effects on Olive Trees
4.1. Plant Growth-Promoting Fungi
4.2. Plant Growth-Promoting Bacteria
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Wisser, D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Dias, M.C.; Araújo, M.; Silva, S.; Santos, C. Sustainable Olive Culture under Climate Change: The Potential of Biostimulants. Horticulturae 2022, 8, 1048. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 25 May 2024).
- Boix-Fayos, C.; Vente, J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Heyl, K.; Ekardt, F.; Roos, P.; Garske, B. Achieving the nutrient reduction objective of the Farm to Fork Strategy. An assessment of CAP subsidies for precision fertilization and sustainable agricultural practices in Germany. Front. Sustain. Food Syst. 2023, 7, 1088640. [Google Scholar] [CrossRef]
- Nadarajah, K.; Abdul Rahman, N.S.N. The Microbial Connection to Sustainable Agriculture. Plants 2023, 12, 2307. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil Microbiome: Diversity, Benefits and Interactions with Plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Tripathi, Y.C.; Varshney, V.K. Prinsepia utilis Royle: A review on its traditional uses, phytochemistry, and biological activities. Phytochem. Lett. 2023, 55, 44–55. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J. Fungi 2023, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef] [PubMed]
- Basiru, S.; Ait Si Mhand, K.; Hijri, M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza 2023, 33, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Fasusi, O.A.; Babalola, O.O.; Adejumo, T.O. Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agric. Biosci. 2023, 4, 26. [Google Scholar] [CrossRef]
- Silva, M.M.A.; Jones, D.L.; Chadwick, D.R.; Qi, X.; Cotta, S.R.; Araújo, L.V.P.V.; Matteoli, F.P.; Lacerda-Júnior, G.V.; Pereira, A.P.A.; Fernandes-Júnior, P.I.; et al. Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress? Microbiol. Res. 2023, 271, 127350. [Google Scholar] [CrossRef]
- Bizos, G.; Papatheodorou, E.M.; Chatzistathis, T.; Ntalli, N.; Aschonitis, V.G.; Monokrousos, N. The Role of Microbial Inoculants on Plant Protection, Growth Stimulation, and Crop Productivity of the Olive Tree (Olea europea L.). Plants 2020, 129, 743. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil. Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- Sobreiro, J.; Patanita, M.I.; Patanita, M.; Tomaz, A. Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches. Water 2023, 15, 2486. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the southern hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef] [PubMed]
- Cardoni, M.; Mercado-Blanco, J. Confronting stresses affecting olive cultivation from the holobiont perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef] [PubMed]
- Langgut, D.; Cheddadi, R.; Carrión, J.S.; Cavanagh, M.; Colombaroli, D.; Eastwood, W.J.; Greenberg, R.; Litt, T.; Mercuri, A.M.; Miebach, A.; et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 2019, 29, 902–922. [Google Scholar] [CrossRef]
- International Olive Council. Available online: https://www.internationaloliveoil.org/olive-world/olive-tree/ (accessed on 17 January 2024).
- FAOFAST. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 17 January 2024).
- Reyes-Martín, M.P.; Fernández-Ondoño, E.; Ortiz-Bernad, I.; Abreu, M.M. Influence of Intensive and Super-Intensive Olive Grove Management on Soil Quality-Nutrients Content and Enzyme Activities. Plants 2023, 26, 2779. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://worldpopulationreview.com/country-rankings/olive-oil-production-by-country (accessed on 17 January 2024).
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
- Nteve, G.-M.; Kostas, S.; Polidoros, A.N.; Madesis, P.; Nianiou-Obeidat, I. Adaptation Mechanisms of Olive Tree under Drought Stress: The Potential of Modern Omics Approaches. Agriculture 2024, 14, 579. [Google Scholar] [CrossRef]
- Ramos, T.; Darouich, H.; Oliveira, A.; Farzamian, M.; Gonçalves, M. Soil salinization risks under current climate and irrigation management in orchards of southern Portugal. In Proceedings of the 25th EGU General Assembly, Vienna, Austria, 23–28 April 2023. EGU23-7560. [Google Scholar] [CrossRef]
- Karamatlou, I.; Navabpour, S.; Nezhad, K.Z.; Mariotti, R.; Mousavi, S.; Hosseini-Mazinani, M. Cold stress resilience of Iranian olive genetic resources: Evidence from autochthonous genotypes diversity. Front. Plant Sci. 2023, 14, 1140270. [Google Scholar] [CrossRef]
- Dadras, A.; Azimi, M.; Taheri, M.; Abdollahi, A. Identification of Cold-Tolerant Olive Genotypes Based on Physiological and Biochemical Traits Using Genotype-By-Trait Biplot Analysis. J. Plant Growth Reg. 2023, 43, 716–726. [Google Scholar] [CrossRef]
- Boussadia, O.; Zgallai, H.; Mzid, N.; Zaabar, R.; Braham, M.; Doupis, G.; Koubouris, G. Physiological Responses of Two Olive Cultivars to Salt Stress. Plants 2023, 12, 1926. [Google Scholar] [CrossRef]
- Piccini, C.; Cai, G.; Dias, M.C.; Araújo, M.; Parri, S.; Romi, M.; Faleri, C.; Cantini, C. Olive Varieties under UV-B Stress Show Distinct Responses in Terms of Antioxidant Machinery and Isoform/Activity of RubisCO. Int. J. Mol. Sci. 2021, 1, 11214. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, O.; Avraham, M.; Sorek, Y.; Zemach, H.; Dag, A.; Hochberg, U. Productivity versus drought adaptation in olive leaves: Comparison of water relations in a modern versus a traditional cultivar. Physiol. Plant. 2021, 173, 2298–2306. [Google Scholar] [CrossRef] [PubMed]
- Baccari, S.; Elloumi, O.; Chaari-Rkhis, A.; Fenollosa, E.; Morales, M.; Drira, N.; Ben Abdallah, F.; Fki, L.; Munné-Bosch, S. Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. Front. Plant Sci. 2020, 11, 614144. [Google Scholar] [CrossRef] [PubMed]
- Rico, S.I.; Marchal, P.C.; Gila, D.M.; García, J.G. Multiple instance regression for the estimation of leaf nutrient content in olive trees using multispectral data taken with UAVs. Biosyst. Eng. 2024, 242, 91–99. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Ferreira, H.; Moutinho-Pereira, J.; Correia, C.M. Foliar pre-treatment with abscisic acid enhances olive tree drought adaptability. Plants 2020, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Tsamir-Rimon, M.; Ben-Dor, S.; Feldmesser, E.; Oppenhimer-Shaanan, Y.; David-Schwartz, R.; Samach, A.; Klein, T. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 2021, 229, 1398–1414. [Google Scholar] [CrossRef] [PubMed]
- Nikoleta-Kleio, D.; Theodoros, D.; Roussos, P.A. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. 2020, 259, 108812. [Google Scholar] [CrossRef]
- Martinelli, F.; Remorini, D.; Saia, S.; Massai, R.; Tonutti, P. Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci. Hortic. 2013, 159, 52–58. [Google Scholar] [CrossRef]
- Martinelli, F.; Basile, B.; Morelli, G.; d’Andria, R.; Tonutti, P. Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci. Hortic. 2012, 144, 201–207. [Google Scholar] [CrossRef]
- Haworth, M.; Heath, J.; McElwain, J.C. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Ann. Bot. 2010, 105, 411–418. [Google Scholar] [CrossRef]
- Dias, M.C.; Santos, C.; Silva, S.; Pinto, D.C.G.A.; Silva, A.M.S. Physiological and Metabolite Reconfiguration of Olea europaea to Cope and Recover from a Heat or High UV-B Shock. J. Agric. Food Chem. 2020, 68, 11339–11349. [Google Scholar] [CrossRef] [PubMed]
- Nissim, Y.; Shlosberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. A High Temperature Environment Regulates the Olive Oil Biosynthesis Network. Plants 2020, 9, 1135. [Google Scholar] [CrossRef] [PubMed]
- Nissim, Y.; Shloberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. High temperature environment reduces olive oil yield and quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Valente, S.; Machado, B.; Pinto, C.G.A.D.; Santos, C.; Silva, M.S.A.; Dias, M.C. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 2020, 329, 127191. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulou, A.; Panopoulos, P.; Chasapis, C.T.; Coletta, C.; Zhou, Z.; Cirino, G.; Giannis, A.; Szabo, C.; Spyroulias, G.A.; Papapetropoulos, A. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br. J. Pharmacol. 2013, 169, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Poury, N.; Seifi, E.; Alizadeh, M. Effects of Salinity and Proline On Growth and Physiological Characteristics of Three Olive Cultivars. Gesunde Pflanz. 2023, 75, 1169–1180. [Google Scholar] [CrossRef]
- Regni, L.; Del Pino, A.M.; Mousavi, S.; Palmerini, C.A.; Baldoni, L.; Mariotti, R.; Mairech, H.; Gardi, T.; D’Amato, R.; Proietti, P. Behavior of Four Olive Cultivars During Salt Stress. Front. Plant Sci. 2019, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Chartzoulakis, K.S. Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 2005, 78, 108–121. [Google Scholar] [CrossRef]
- Trabelsi, L.; Gargouri, K.; Hassena, A.B.; Mbadra, C.; Ghrab, M.; Ncube, B.; Van Staden, J.; Gargouri, R. Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric. Water Manag. 2019, 213, 749–759. [Google Scholar] [CrossRef]
- Rizaludin, M.S.; Stopnisek, N.; Raaijmakers, J.M.; Garbeva, P. The chemistry of stress: Understanding the ‘cry for help’ of plant roots. Metabolites 2021, 11, 357. [Google Scholar] [CrossRef]
- Fausto, C.; Mininni, A.N.; Sofo, A.; Crecchio, C.; Scagliola, M.; Dichio, B.; Xiloyannis, C. Olive orchard microbiome: Characterisation of bacterial communities in soil-plant compartments and their comparison between sustainable and conventional soil management systems. Plant Ecol. Div. 2018, 11, 597–610. [Google Scholar] [CrossRef]
- Martins, F.; Pereira, J.A.; Bota, P.; Bento, A.; Baptista, P. Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol. 2016, 20, 193–201. [Google Scholar] [CrossRef]
- Chialva, M.; De Rose, S.; Novero, M.; Lanfranco, L.; Bonfante, P. Plant genotype and seasonality drive fine changes in olive root microbiota. Curr. Plant Biol. 2021, 28, 100219. [Google Scholar] [CrossRef]
- Montes-Osuna, N.; Mercado-Blanco, J. Verticillium wilt of olive and its control: What did we learn during the last decade. Plants 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Zipori, I.; Fishman, A.; Zelas, Z.B.-B.; Subbotin, Y.; Dag, A. Effect of postharvest treatments of mechanically harvested ‘Manzanilla’ table olives on product quality. Postharvest Biol. Technol. 2021, 174, 111462. [Google Scholar] [CrossRef]
- Fernández-González, A.J.; Villadas, P.J.; Gómez-Lama Cabanás, C.; Valverde-Corredor, A.; Belaj, A.; Mercado-Blanco, J.; Fernández-López, M. Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Sci. Rep. 2019, 9, 20423. [Google Scholar] [CrossRef]
- Kacem, I. Effect of Soil Management on Rhizosphere Microbial Structure and Function in Olive Grove. Ph.D. Thesis, Instituto Politécnico de Bragança, Bragança, Portugal, 2023. Available online: http://hdl.handle.net/10198/28657 (accessed on 2 April 2024).
- Aranda, S.; Montes-Borrego, M.; Jiménez-Díaz, R.M.; Landa, B.B. Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 2011, 343, 329–345. [Google Scholar] [CrossRef]
- Kakagianni, M.; Tsiknia, M.; Feka, M.; Vasileiadis, S.; Leontidou, K.; Kavroulakis, N.; Karamanoli, K.; Karpouzas, D.G.; Ehaliotis, K.; Papadopoulou, K.K. Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties. FEMS Microbes 2023, 4, 1–13. [Google Scholar] [CrossRef]
- Wentzien, N.M.; Fernández-González, A.J.; Villadas, P.J.; Valverde-Corredor, A.; Mercado-Blanco, J.; Fernández-López, M. Thriving beneath olive trees: The influence of organic farming on microbial communities. Comput. Struct. Biotechnol. J. 2023, 21, 3575–3589. [Google Scholar] [CrossRef]
- Dede, A.; Güven, K.; Şahi, N.N. Isolation, plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of actinomycetes from olive rhizosphere. Microb. Pathog. 2020, 143, 104134. [Google Scholar] [CrossRef] [PubMed]
- Fernaández-González, A.J.; Ramírez-Tejero, J.A.; Nevado-Berzosa, M.P.; Luque, F.; Fernández-López, M.; Mercado-Blanco, J. Coupling the endophytic microbiome with the host transcriptome in olive roots. Comput. Struct. Biotechnol. J. 2021, 19, 4777–4789. [Google Scholar] [CrossRef]
- Marasco, R.; Fusi, M.; Rolli, E.; Ettoumu, B.; Tambone, F.; Borin, S.; Ouzari, H.I.; Boudabous, A.; Sorlini, C.; Cherif, A.; et al. Aridity modulates belowground bacterial community dynamics in olive tree. Environ. Microl. 2021, 23, 6275–6629. [Google Scholar] [CrossRef]
- Caliz, J.; Montes-Borrego, M.; Triadó-Margarit, X.; Metsis, M.; Landa, B.B.; Casamayor, E.O. Influence of Edaphic, Climatic, and Agronomic Factors on the Composition and Abundance of Nitrifying Microorganisms in the Rhizosphere of Commercial Olive Crops. PLoS ONE 2015, 10, e0125787. [Google Scholar] [CrossRef] [PubMed]
- Sofo, A.; Ciarfaglia, A.; Scopa, A.; Camele, I.; Curci, M.; Crecchio, C.; Xiloyannis, C.; Palese, A.M. Soil microbial diversity and activity in a Mediterranean olive orchard using sustainable agricultural practices. Soil. Use Manag. 2014, 30, 160–167. [Google Scholar] [CrossRef]
- Palla, P.; Turrini, A.; Cristani, C.; Caruso, G.; Avio, L.; Giovannetti, M.; Agnolucci, M. Native mycorrhizal communities of olive tree roots as affected by protective green cover and soil tillage. Appl. Soil Ecol. 2020, 149, 103520. [Google Scholar] [CrossRef]
- Montes-Borrego, M.; Metsis, M.; Landa, B.B. Arbuscular mycorhizal fungi associated with the olive crop across the Andalusian landscape: Factors driving community differentiation. PLoS ONE 2014, 9, e96397. [Google Scholar] [CrossRef] [PubMed]
- Desirò, A.; Salvioli, A.; Bonfante, P. Investigating the Endobacteria Which Thrive in Arbuscular Mycorrhizal Fungi. In Microbial Environmental Genomics (MEG); Martin, F., Uroz, S., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1399. [Google Scholar] [CrossRef]
- Nicoletti, R.; Di Vaio, C.; Cirillo, C. Endophytic fungi of olive tree. Microorganisms 2020, 8, 1321. [Google Scholar] [CrossRef]
- Melloni, R.; Cardoso, E.J.B.N. Microbiome Associated with Olive Cultivation: A Review. Plants 2023, 12, 897. [Google Scholar] [CrossRef]
- Calvo-Polanco, M.; Sánchez-Castro, I.; Cantos, M.; García, J.L.; Azcón, R.; Ruiz-Lozano, J.M.; Beuzón, C.R.; Aroca, R. Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions. Plant Cell Environ. 2016, 9, 2498–2514. [Google Scholar] [CrossRef] [PubMed]
- Aganchich, B.; Wahbi, S.; Yaakoubi, A.; El-Aououad, H.; Bota, J. Effect of arbuscular mycorrhizal fungi inoculation on growth and physiology performance of olive trees under regulated deficit irrigation and partial rootzone drying. S. Afr. J. Bot. 2022, 148, 1–10. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Attia, F.; Hammami, M.; Chehab, H. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant Physiol. Biochem. 2020, 156, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.M.; Gomes, S.; Oliveira, J.; Oliveira, M. The Role of Open Innovation, and the Performance of European Union Regions. J. Open Innov. Technol. Mark. Complex. 2021, 7, 120. [Google Scholar] [CrossRef]
- Graziani, G.; Cirillo, A.; Giannini, P.; Conti, S.; El-Nakhel, C.; Rouphael, Y.; Ritieni, A.; Di Vaio, C. Biostimulants Improve Plant Growth and Bioactive Compounds of Young Olive Trees under Abiotic Stress Conditions. Agriculture 2022, 12, 227. [Google Scholar] [CrossRef]
- Ouledali, S.; Ennajeh, M.; Zrig, A.; Gianinazzi, S.; Khemira, H. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol. Plant 2018, 40, 81. [Google Scholar] [CrossRef]
- Tekaya, M.; Dabbaghi, O.; Guesmi, A.; Attia, F.; Chehab, H.; Khezami, L.; Algathami, F.K.; Hamadi, N.B.; Hammami, M.; Prinsen, E.; et al. Arbuscular mycorrhizas modulate carbohydrate, phenolic compounds and hormonal metabolism to enhance water deficit tolerance of olive trees (Olea europaea). Agric. Water Manag. 2022, 274, 107947. [Google Scholar] [CrossRef]
- Bompadre, M.J.; Pérgola, M.; Fernández Bidondo, L.; Colombo, R.P.; Silvani, V.A.M.; Pardo, A.G.; Ocampo, J.A.; Godeas, A.M. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions. Sci. World J. 2014, 12, 378950. [Google Scholar] [CrossRef]
- Hassena, A.B.; Zouari, M.; Trabelsi, L.; Decou, R.; Amar, F.B.; Chaari, A.; Soua, N.; Labrousse, P.; Khabou, W.; Zouari, N. Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui). Agric. Water Manag. 2021, 245, 106635. [Google Scholar] [CrossRef]
- Hassena, A.B.; Zouari, M.; Khabou, W.; Zouari, N. Impact of inoculation with single and mixed species of arbuscular mycorrhizal fungi on the soil fertility and the nutrient uptake of young olive plants. J. Oasis Agric. Sustain. Dev. 2022, 4, 48–54. [Google Scholar] [CrossRef]
- Kavroulakis, N.; Tsiknia, M.; Ipsilantis, I.; Kavadia, A.; Stedel, C.; Psarras, G.; Tzerakis, C.; Doupis, G.; Karpouzas, D.G.; Papadopoulou, K.K.; et al. Arbuscular mycorrhizal fungus inocula from coastal sand dunes arrest olive cutting growth under salinity stress. Mycorrhiza 2020, 30, 475–489. [Google Scholar] [CrossRef]
- Sallami, A.; Rachidi, F.; Lahsini, A.I.; Khedri, H.E.; Douira, A.; Modafar, C.E.; Medraoui, L.; Filali-Maltouf, A. Plant Growth Promoting (PGP) Performances and Diversity of Bacterial Species Isolated from Olive (Olea europaea L.) Rhizosphere in Arid and Semi-arid Regions of Morocco. J. Pure Appl. Microbiol. 2023, 17, 2165–2178. [Google Scholar] [CrossRef]
- Azri, R.; Lamine, M.; Bensalem-Fnayou, A.; Hamdi, Z.; Mliki, A.; Ruiz-Lozano, J.M.; Aroca, R. Genotype-Dependent Response of Root Microbiota and Leaf Metabolism in Olive Seedlings Subjected to Drought Stress. Plants 2024, 13, 857. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Campos, E.; García-Villaraco, A.; Montero-Palmero, M.B.; Javier Gutiérrez-Mañero, F.; Ramos-Solano, B. Bacillus G7 improves adaptation to salt stress in Olea europaea L. plantlets, enhancing water use efficiency and preventing oxidative stress. Sci. Rep. 2023, 13, 22507. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Araújo, M.; Ma, Y. A bio-based strategy for sustainable olive performance under water deficit conditions. Plant Stress 2024, 11, 100342. [Google Scholar] [CrossRef]
- Galicia-Campos, E.; García-Villaraco Velasco, A.; Montero-Palmero, M.B.; Gutiérrez-Mañero, F.J.; Ramos-Solano, B. Modulation of Photosynthesis and ROS Scavenging Response by Beneficial Bacteria in Olea europaea Plantlets under Salt Stress Conditions. Plants 2022, 11, 2748. [Google Scholar] [CrossRef]
- Maksoud, M.A.; Saleh, M.A.; Fouad, A.A. The Beneficial Effect of Biofertilizers and Antioxidants on Olive Trees under Calcareous Soil Conditions. World J. Agric. Sci. 2009, 5, 350–352. [Google Scholar]
- Maksoud, M.A.; El-Shamma, M.S.; Saleh, M.A.; Zaied, N.S.; Hafez, O.M. Effect of different compost sorts and biofertilizers on chemlali olive trees grown in calcareous soil. Middle East J. Sci. Res. 2012, 12, 1046–1049. [Google Scholar]
- Silva, T.F.; Melloni, R.; Melloni, E.G.P.; Gonçalves, E.D. Non-symbiotic diazotrophic bacteria and the rooting of olive semi-hardwood cuttings (Olea europaea L.). Cienc. Florest. 2017, 27, 61–71. [Google Scholar] [CrossRef]
- El-Shazly, M.M.; Ghieth, W.M. Effect of Some Biofertilizers and Humic Acid Application on Olive Seedlings Growth under Irrigation with Saline Water. Alex. Sci. Exch. J. 2019, 40, 263–279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.C.; Silva, S.; Galhano, C.; Lorenzo, P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. Plants 2024, 13, 1848. https://doi.org/10.3390/plants13131848
Dias MC, Silva S, Galhano C, Lorenzo P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. Plants. 2024; 13(13):1848. https://doi.org/10.3390/plants13131848
Chicago/Turabian StyleDias, Maria Celeste, Sónia Silva, Cristina Galhano, and Paula Lorenzo. 2024. "Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi" Plants 13, no. 13: 1848. https://doi.org/10.3390/plants13131848
APA StyleDias, M. C., Silva, S., Galhano, C., & Lorenzo, P. (2024). Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. Plants, 13(13), 1848. https://doi.org/10.3390/plants13131848