On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees
Abstract
:1. Introduction
2. Results
2.1. Dry Matter Yield
2.2. Nutrient Concentration in Plant Tissues
2.3. Soil Properties
2.4. Leaf Gas Exchange and Leaf Mass per Area
3. Discussion
3.1. Cultivars Showed Differences in Precocity, Nutrient Concentrations, LMA and Physiological Performance
3.2. Schist and Granite Soils Showed Different Nutrient Bioavailability and Photosynthetic Activity
3.3. LMg Treatment Drastically Reduced Plant Growth by Preventing B Uptake
4. Materials and Methods
4.1. Experimental Design and Characterization of Factors and Treatments
4.2. Pot Management
4.3. Leaf Gas Exchange and Leaf Mass per Area
4.4. Cutting of Plants and Sample Preparation
4.5. Soil and Tissue Analyses
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kochian, L.V.; Hoekenga, O.A.; Pineros, M.P. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef] [PubMed]
- Sumner, M.E.; Noble, A.D. Soil acidification: The world story. In Handbook of Soil Acidity; Rengel, Z., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 1–28. [Google Scholar]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Thomas, G.W.; Hargrove, W.L. The chemistry of soil acidity. In Soil Acidity and Liming, 2nd ed.; Adams, F., Ed.; Agronomy Monographs: Madison WI, USA; American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison WI, USA, 1984; pp. 3–56. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef]
- Kidd, P.S.; Proctor, J. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J. Exp. Bot. 2001, 52, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Upjohn, B.; Fenton, G.; Conyers, M. Soil Acidity and Liming, 3rd ed.; Agfact AC.19; Department of Primary Industries: Wellington, NSW, Australia, 2005. [Google Scholar]
- Caires, E.F.; Pereira Filho, P.R.S.; Zardo Filho, R.; Feldhaus, I.C. Soil acidity and aluminium toxicity as affected by surface liming and cover oat residues under a no-till system. Soil Use Manag. 2008, 24, 302–309. [Google Scholar] [CrossRef]
- Arrobas, M.; Conceição, N.; Pereira, E.; Martins, S.; Raimundo, S.; Brito, C.; Correia, C.M.; Rodrigues, M.Â. Dolomitic limestone was more effective than calcitic limestone in increasing soil pH in an untilled olive orchard. Soil Use Manag. 2023, 39, 1437–1452. [Google Scholar] [CrossRef]
- Agroconsultores, E.C. Carta dos Solos, Carta de Utilização Actual da Terra e Carta de Aptidão da Terra do Nordeste de Portugal; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 1991. [Google Scholar]
- Arrobas, M.; Afonso, S.; Rodrigues, M.A. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Lopes, J.I.; Arrobas, M.; Brito, C.; Gonçalves, A.; Silva, E.; Martins, S.; Raimundo, S.; Rodrigues, M.A.; Correia, C.M. Mycorrhizal fungi were more effective than zeolites in increasing the growth of non-irrigated young olive trees planted in an acidic soil. Sustainability 2020, 12, 10630. [Google Scholar] [CrossRef]
- IPMA. Normais Climatológicas; Instituto Nacional do Mar e da Atmosfera: 2023. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 18 November 2023).
- Ferreira, I.Q.; Rodrigues, M.A.; Arrobas, M. Soil and foliar applied boron in olive: Tree crop growth and yield, and boron remobilization within plant tissue. Span. J. Agric. Res. 2019, 17, e0901. [Google Scholar] [CrossRef]
- Portela, E.; Ferreira-Cardoso, J.V.; Louzada, J.L. Boron application on a chestnut orchard: Effect on yield and quality of nuts. J. Plant Nutr. 2011, 34, 1245–1253. [Google Scholar] [CrossRef]
- Portela, E.; Ferreira-Cardoso, J.; Louzada, J.; Gomes-Laranjo, J. Assessment of boron application in chestnuts: Nut yield and quality. J. Plant Nutr. 2015, 38, 973–987. [Google Scholar] [CrossRef]
- Freeman, M.; Carlson, R.M. Mineral nutrient availability. In Olive Production Manual, 2nd ed.; Sibbett, G.S., Ferguson, L., Eds.; University of California Publication: Oakland, CA, USA, 2005; pp. 75–82. [Google Scholar]
- Parra, M.A. Suelo. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi Prensa: Madrid, Spain, 2017; pp. 250–287. [Google Scholar]
- Barranco, D. Variedades e Patrones. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi Prensa: Madrid, Spain, 2017; pp. 65–95. [Google Scholar]
- Navarro, C.; Hidalgo, J.; Gomez del Campo, M. Sistemas de plantación. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi Prensa: Madrid, Spain, 2017; pp. 289–334. [Google Scholar]
- Engels, C.; Kirkby, E.; White, P. Mineral nutrition, yield and source-sink relationships. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 85–133. [Google Scholar]
- Bussotti, F.; Borghini, F.; Celesti, C.; Leonzio, C.; Bruschi, P. Leaf morphology and macronutrients in broadleaved trees. Trees 2000, 14, 361–368. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- de la Riva, E.G.; Villar, R.; Pérez-Ramos, I.M.; Quero, J.L.; Matías, L.; Poorter, L.; Marañon, T. Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees 2018, 42, 497–510. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Correia, C.M.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Torres-Pereira, J.M. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol. 2004, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.I.; Correia, C.M.; Gonçalves, A.; Silva, E.; Martins, S.; Arrobas, M.; Rodrigues, M.A. Arbuscular mycorrhizal fungi inoculation reduced the growth of pre-rooted olive cuttings in a greenhouse. Soil Syst. 2021, 5, 30. [Google Scholar] [CrossRef]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of plants to adverse chemical soil conditions. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 409–437. [Google Scholar]
- Santos, J.Q. Fertilização, Fundamentos Agroambientais da Utilização dos Adubos e Corretivos; Publindústria: Porto, Portugal, 2015. [Google Scholar]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant 2016, 38, 145. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Chattha, M.U.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The critical role of zinc in plants facing the drought stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar]
- Lanfranco, L.; Bonfante, P.; Genre, A. The mutualistic interaction between plants and arbuscular mycorrhizal fungi. Microbiol. Spectr. 2016, 4, 4–6. [Google Scholar] [CrossRef]
- Klugh-Steward, K.; Cumming, J.R. Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil. Biol. Biochem. 2009, 41, 367–373. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B., Jr.; Barker, A.V. Plant Analysis Handbook III. A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014; 571p. [Google Scholar]
- Gupta, U.C. Boron. In Handbook of Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 241–277. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar]
- Freeman, M.; Uriu, K.; Hartmann, H.T. Diagnosing and correcting nutrient problems. In Olive Production Manual, 2nd ed.; Sibbett, G.S., Ferguson, L., Eds.; University of California Publication: Oakland, CA, USA, 2005; pp. 83–100. [Google Scholar]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Ferreira, H.F.; Correia, C.M. Changes in growth, gas exchange, xylem hydrualic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot. 2007, 60, 183–192. [Google Scholar] [CrossRef]
- Han, S.; Chen, L.-S.; Jiang, H.-X.; Smith, B.R.; Yang, L.T.; Xie, C.-Y. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 2008, 165, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.Y.; Park, H.I.; Ju, J.H.; Yoon, Y.-H. Boron availability alters its distribution in plant parts of tomato. Hortic. Environ. Biotechnol. 2015, 56, 145–151. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Zhang, Z.; Zhan, W.; Zhou, J.; Xu, F.; Liu, X. Effect of boron deficiency on anatomical structure and chemical composition of petioles and photosynthesis of leaves in cotton (Gossypium hirsutum L.). Sci. Rep. 2017, 7, 4420. [Google Scholar] [CrossRef]
- Wei, R.; Huang, M.; Huang, D.; Zhou, J.; Pan, X.; Zhang, W. Growth, gas exchange, and boron distribution characteristics in two grape species plants under boron deficiency condition. Horticulturae 2022, 8, 374. [Google Scholar] [CrossRef]
- Lopes, J.I.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Raimundo, S.; Arrobas, M.; Rodrigues, M.A.; Correia, C.M. Inorganic fertilization at high N rate increased olive yield of a rainfed orchard but reduced soil organic matter in comparison to three organic amendments. Agronomy 2021, 11, 2172. [Google Scholar] [CrossRef]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Hortic. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Wikström, F. A theoretical explanation of the Piper-Steenbjerg effect. Plant Cell Environ. 1994, 17, 1053–1060. [Google Scholar] [CrossRef]
- Vlamis, J.; Ulrich, A. Boron nutrition in the growth and sugar content of sugarbeets. Amer. Soc. Sugar Beet. Technol. J. 1970, 16, 428–439. [Google Scholar] [CrossRef]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Delgado, A.; Benlloch, M.; Fernández-Escobar, R. Mobilization of boron in olive trees during flowering and fruit development. HortScience 1994, 29, 616–618. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper 9; ISRIC (International Soil Reference Information Center): Wageningen, The Netherlands; FAO (Food and Agriculture Organization of the United Nations): Wageningen, The Netherlands, 2002; ISBN 90-6672-044-1. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Available Micronutrients (Cu, Fe, Mn, Zn) and Heavy Metals (Ni, Pb, Cd); DTPA Extraction Method: Rome, Italy, 2022. [Google Scholar]
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Kluwer Academic Publishers: London, UK, 2004. [Google Scholar] [CrossRef]
Nitrogen | Phosphorus | Potassium | Calcium | Magnesium | Boron | Iron | Manganese | Zinc | Copper | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||
Cultivar (C) | Cob | 15.80 b | 1.44 b | 8.90 a | 5.55 a | 0.89 b | 18.5 a | 206.1 b | 70.7 a | 15.3 a | 4.5 b | |
Arb | 17.03 a | 1.80 a | 9.33 a | 4.99 a | 1.05 a | 19.0 a | 549.5 a | 54.1 b | 16.5 a | 5.5 a | ||
Soil (S) | Sch | 18.01 a | 1.46 b | 9.09 a | 5.12 a | 1.11 a | 17.4 b | 378.2 a | 80.3 a | 18.9 a | 4.9 a | |
Gra | 14.83 b | 1.78 a | 9.14 a | 5.42 a | 0.82 b | 20.2 a | 377.4 a | 44.5 b | 12.9 b | 5.1 a | ||
Treatment (T) | Con- | 11.74 c | 1.72 a | 9.28 a | 4.42 c | 0.88 a | 17.2 b | 419.1 a | 62.2 b | 12.7 c | 5.5 b | |
+B | 16.15 b | 1.43 a | 9.68 a | 4.37 c | 1.03 a | 25.0 a | 473.3 a | 81.9 a | 19.1 a | 4.6 c | ||
+P | 18.48 a | 1.76 a | 9.62 a | 4.10 c | 0.95 a | 12.6 c | 420.9 a | 80.7 a | 17.2 a | 7.3 a | ||
LMg | 18.87 a | 1.52 a | 8.56 a | 7.56 a | 1.06 a | 15.0 c | 315.6 b | 42.0 c | 13.7 bc | 4.4 c | ||
Con+ | 16.85 ab | 1.68 a | 8.43 a | 5.90 b | 0.93 a | 23.6 a | 260.0 b | 45.1 c | 16.9 ab | 3.1 d | ||
P (C) | 0.0112 | <0.0001 | 0.2004 | 0.2677 | 0.0005 | 0.9568 | <0.0001 | <0.0001 | 0.1025 | <0.0001 | ||
P (S) | <0.0001 | 0.0006 | 0.8714 | 0.3846 | <0.0001 | <0.0001 | 0.9518 | <0.0001 | <0.0001 | 0.2676 | ||
P (T) | <0.0001 | 0.2150 | 0.0545 | <0.0001 | 0.0535 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
P (C × S) | 0.1042 | 0.0466 | 0.8617 | 0.4501 | 0.5327 | 0.0024 | <0.0001 | <0.0001 | <0.0001 | 0.0180 | ||
P (C × T) | <0.0001 | 0.2150 | 0.0189 | 0.0137 | 0.2308 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0012 | ||
P (S × T) | 0.0013 | 0.9114 | 0.0033 | 0.3159 | 0.3103 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
P (C × S x T) | 0.0178 | 0.7980 | 0.0104 | 0.3113 | 0.3356 | <0.0001 | <0.0001 | 0.0004 | <0.0001 | 0.7936 |
Nitrogen | Phosphorus | Potassium | Calcium | Magnesium | Boron | Iron | Manganese | Zinc | Copper | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | |||||||||||
Cultivar (C) | Cob | 8.71 a | 1.26 b | 7.00 a | 5.30 a | 0.63 b | 15.8 b | 284.3 b | 40.6 a | 16.3 b | 3.7 b | |
Arb | 8.23 b | 1.36 a | 6.59 a | 4.74 b | 0.72 a | 19.2 a | 948.8 a | 41.7 a | 26.1 a | 8.7 a | ||
Soil (S) | Sch | 9.03 a | 1.26 b | 6.96 a | 5.56 a | 0.73 a | 16.5 b | 576.5 b | 48.0 a | 19.7 b | 4.8 b | |
Gra | 7.91 b | 1.36 a | 6.64 a | 4.48 b | 0.62 b | 18.5 a | 656.6 a | 34.2 b | 22.7 a | 7.7 a | ||
Treatment (T) | Con- | 6.62 d | 1.27 a | 6.55 a | 4.37 b | 0.66 a | 15.9 a | 927.7 a | 48.7 a | 24.2 a | 6.4 ab | |
+B | 8.14 c | 1.27 a | 7.11 a | 4.66 b | 0.67 a | 21.1 a | 459.8 b | 55.2 a | 27.0 a | 6.1 ab | ||
+P | 9.79 a | 1.41 a | 7.19 a | 4.89 b | 0.74 a | 13.7 c | 976.6 a | 50.8 a | 23.3 a | 6.9 a | ||
LMg | 9.07 ab | 1.31 a | 6.48 a | 5.88 a | 0.69 a | 17.3 b | 300.8 c | 20.2 c | 13.2 c | 6.3 ab | ||
Con+ | 8.73 bc | 1.29 a | 6.65 a | 4.94 b | 0.61 a | 19.6 a | 417.6 bc | 30.7 b | 18.2 b | 5.4 b | ||
P (C) | 0.0050 | 0.0030 | 0.0470 | 0.0008 | 0.0018 | <0.0001 | <0.0001 | 0.5992 | <0.0001 | <0.0001 | ||
P (S) | <0.0001 | 0.0042 | 0.2197 | <0.0001 | 0.0006 | <0.0001 | 0.0197 | <0.0001 | 0.004 | <0.0001 | ||
P (T) | <0.0001 | 0.0599 | 0.2004 | <0.0001 | 0.0733 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0250 | ||
P (C × S) | 0.0088 | 0.0008 | 0.8658 | 0.0031 | 0.3129 | 0.3987 | <0.0001 | 0.0117 | 0.6237 | <0.0001 | ||
P (C × T) | <0.0001 | 0.1135 | 0.1213 | 0.0026 | 0.1658 | <0.0001 | <0.0001 | 0.0005 | 0.0063 | <0.0001 | ||
P (S × T) | <0.0001 | 0.3016 | 0.6823 | 0.0872 | 0.3159 | 0.0023 | <0.0001 | 0.0139 | 0.064 | <0.0001 | ||
P (C × S × T) | 0.5308 | 0.0388 | 0.0159 | 0.0011 | 0.0688 | <0.0001 | <0.0001 | 0.0014 | <0.0001 | <0.0001 |
Nitrogen | Phosphorus | Potassium | Calcium | Magnesium | Boron | Iron | Manganese | Zinc | Copper | Aluminum | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | ||||||||||||
Cultivar (C) | Cob | 15.66 a | 1.66 a | 6.81 a | 5.57 a | 2.19 a | 17.4 a | 2117.1 b | 236.8 a | 28.5 a | 25.5 b | 2188.4 a | |
Arb | 13.09 b | 1.33 b | 6.38 a | 4.94 b | 1.67 b | 16.7 a | 3071.7 a | 203.5 b | 23.8 b | 29.1 a | 2118.6 a | ||
Soil (S) | Sch | 15.25 a | 1.28 b | 6.68 a | 5.34 a | 1.95 a | 16.8 a | 2505.1 a | 257.2 a | 18.0 b | 19.0 b | 2123.8 a | |
Gra | 13.50 b | 1.71 a | 6.51 a | 5.18 a | 1.92 a | 17.3 a | 2683.7 a | 183.1 b | 34.3 a | 35.6 a | 2183.2 a | ||
Treatment (T) | Con- | 10.81 c | 1.56 a | 7.05 ab | 4.47 c | 1.99 ab | 13.5 d | 3029.9 a | 279.2 a | 41.6 a | 45.3 a | 2428.1 a | |
+B | 13.37 b | 1.41 a | 5.74 b | 4.21 c | 1.76 b | 18.6 b | 2299.5 c | 287.8 a | 26.6 c | 22.5 bc | 2325.8 a | ||
+P | 15.99 a | 1.50 a | 6.59 ab | 4.46 c | 1.74 b | 13.1 d | 2876.3 ab | 243.8 a | 29.8 b | 24.9 b | 2231.7 a | ||
LMg | 17.22 a | 1.60 a | 7.20 a | 7.07 a | 1.97 ab | 16.6 c | 2227.7 c | 111.0 c | 14.5 e | 20.0 c | 1839.1 b | ||
Con+ | 14.49 b | 1.40 a | 6.39 ab | 6.07 b | 2.21 a | 23.5 a | 2538.8 bc | 179.1 b | 18.4 d | 23.9 b | 1942.8 b | ||
P (C) | <0.0001 | <0.0001 | 0.1828 | 0.0014 | <0.0001 | 0.0663 | <0.0001 | 0.003 | <0.0001 | <0.0001 | 0.3559 | ||
P (S) | <0.0001 | <0.0001 | 0.596 | 0.3855 | 0.7194 | 0.6533 | 0.0700 | <0.0001 | <0.0001 | <0.0001 | 0.4309 | ||
P (T) | <0.0001 | 0.1642 | 0.0465 | <0.0001 | 0.0166 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
P (C × S) | 0.0668 | 0.0024 | 0.4456 | 0.2155 | 0.5750 | 0.1592 | <0.0001 | <0.0001 | <0.0001 | 0.8790 | <0.0001 | ||
P (C × T) | 0.0021 | 0.6632 | 0.0415 | 0.0002 | 0.0211 | 0.0074 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
P (S × T) | 0.0095 | 0.0043 | <0.0001 | 0.3494 | 0.5332 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
P (C × S × T) | 0.0014 | 0.3318 | 0.0026 | <0.0001 | 0.1792 | <0.0001 | 0.0003 | 0.0024 | <0.0001 | 0.1904 | <0.0001 |
Organic C | Extract P | Extract K | Exch Ca2+ | Exch Mg2+ | CEC | Extract B | Extract Mn | Extract Al | |||
---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | pH (H2O) | (mg kg−1, P2O5) | (mg kg−1, K2O) | (cmol+ kg−1) | (mg kg−1) | ||||||
Cultivar (C) | Cob | 5.3 a | 6.5 a | 78.0 a | 84.6 b | 5.4 a | 2.2 a | 8.0 a | 0.8 a | 20.6 a | 35.9 a |
Arb | 5.2 b | 6.5 a | 71.6 b | 90.8 a | 4.5 b | 1.9 b | 7.2 b | 0.7 b | 17.4 b | 36.8 a | |
Soil (S) | Sch | 8.6 a | 6.5 a | 59.2 b | 103.7 a | 5.3 a | 2.2 a | 8.3 a | 0.6 b | 32.9 a | 37.4 a |
Gra | 2.0 b | 6.5 a | 91.0 a | 71.6 b | 4.6 b | 1.9 b | 6.9 b | 0.9 a | 5.2 b | 35.2 a | |
Treatment (T) | Con- | 5.3 a | 5.9 c | 48.5 c | 67.2 d | 4.1 b | 2.3 a | 7.1 bc | 0.6 c | 17.4 b | 39.2 a |
+B | 5.1 a | 5.8 d | 47.2 c | 79.4 c | 3.6 c | 2.2 a | 6.6 c | 0.5 c | 14.7 b | 39.9 a | |
+P | 5.2 a | 5.8 cd | 85.9 b | 84.0 c | 3.6 c | 2.2 a | 6.5 c | 0.5 c | 18.2 ab | 40.3 a | |
LMg | 5.3 a | 7.4 b | 99.2 a | 115.1 a | 6.8 a | 1.7 c | 8.4 ab | 1.1 a | 22.6 a | 30.2 b | |
Con+ | 5.2 a | 7.5 a | 94.8 a | 92.8 b | 6.8 a | 2.0 b | 9.6 a | 0.9 b | 22.1 a | 32.0 b | |
P (C) | 0.0047 | 0.0721 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | 0.0123 | 0.0075 | 0.0034 | 0.5825 | |
P (S) | <0.0001 | 0.3128 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.1515 | |
P (T) | 0.1140 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
P (C × S) | 0.0084 | 0.1538 | 0.1579 | 0.5156 | 0.0008 | <0.0001 | 0.0118 | <0.0001 | 0.0036 | 0.0027 | |
P (C × T) | 0.1521 | 0.9182 | 0.2587 | <0.0001 | <0.0001 | <0.0001 | 0.4200 | 0.0060 | 0.1077 | 0.0007 | |
P (S × T) | 0.1500 | 0.0881 | 0.0009 | <0.0001 | <0.0001 | <0.0001 | 0.0222 | <0.0001 | 0.0134 | <0.0001 | |
P (C × S × T) | 0.1066 | 0.1262 | <0.0001 | 0.0007 | <0.0001 | <0.0001 | 0.0094 | <0.0001 | 0.1020 | 0.0008 |
gs | A | A/gs | Ci/Ca | ||
---|---|---|---|---|---|
mmol m−2 s−1 | μmol m−2 s−1 | µmol mol−1 | |||
Cultivar (C) | Cob | 135.92 a | 10.09 a | 72.87 b | 0.67 a |
Arb | 96.47 b | 8.92 b | 94.14 a | 0.58 b | |
Soil (S) | Sch | 125.78 a | 10.40 a | 85.64 a | 0.62 b |
Gra | 105.96 b | 8.59 b | 81.72 b | 0.64 a | |
Treatment (T) | Con- | 136.27 a | 10.53 b | 79.37 c | 0.64 b |
+B | 135.76 a | 12.14 a | 92.11 b | 0.59 c | |
+P | 117.24 b | 8.91 c | 80.69 c | 0.64 b | |
LMg | 79.69 c | 5.24 d | 65.75 d | 0.71 a | |
Con+ | 110.39 b | 10.65 b | 100.50 a | 0.56 c | |
P (C) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
P (S) | <0.0001 | <0.0001 | 0.0210 | 0.0207 | |
P (T) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
P (C × S) | 0.0288 | 0.2484 | 0.9912 | 0.9467 | |
P (C × T) | 0.0002 | 0.0043 | 0.0343 | 0.0341 | |
P (S × T) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
P (C × S × T) | 0.0015 | 0.0059 | 0.0005 | 0.0008 |
ILA | LMA | ||
---|---|---|---|
cm2 | g m−2 | ||
Cultivar (C) | Cob | 3.99 a | 192.63 a |
Arb | 3.12 b | 141.31 b | |
Soil (S) | Sch | 3.80 a | 165.28 b |
Gra | 3.30 b | 168.66 a | |
Treatment (T) | Con- | 3.32 b | 171.54 ab |
+B | 3.69 ab | 165.89 b | |
+P | 3.59 ab | 158.27 c | |
LMg | 3.27 b | 173.63 a | |
Con+ | 3.89 a | 165.52 b | |
P (C) | <0.0001 | <0.0001 | |
P (S) | <0.0001 | 0.0162 | |
P (T) | 0.0050 | <0.0001 | |
P (C × S) | 0.2019 | 0.0195 | |
P (C × T) | 0.3615 | <0.0001 | |
P (S × T) | 0.1609 | 0.0019 | |
P (C × S × T) | 0.5400 | <0.0001 |
Soil Properties | Schist | Granite |
---|---|---|
1 Organic carbon (g kg−1) | 7.3 ± 0.93 | 1.8 ± 0.10 |
2 pH (H2O) | 4.5 ± 0.13 | 4.9 ± 0.09 |
3 Extract. phosphorus (mg kg−1 P2O5) | 27.6 ± 6.40 | 21.5 ± 5.12 |
3 Extract. potassium (mg kg−1, K2O) | 148.8 ± 11.63 | 63.6 ± 5.13 |
4 Extract. boron (mg kg−1) | 1.0 ± 0.16 | 1.7 ± 0.13 |
5 Extract. iron (mg kg−1) | 34.0 ± 5.26 | 20.3 ± 2.99 |
5 Extract. manganese (mg kg−1) | 39.6 ± 6.62 | 11.3 ± 1.28 |
5 Extract. zinc (mg kg−1) | 2.0 ± 0.20 | 4.1 ± 0.27 |
5 Extract. copper (mg kg−1) | 0.2 ± 0.03 | 0.6 ± 0.08 |
6 Exchang. calcium (cmolc kg−1) | 2.7 ± 0.27 | 1.9 ± 0.13 |
6 Exchang. magnesium (cmolc kg−1) | 0.9 ± 0.07 | 0.6 ± 0.10 |
6 Exchang. potassium (cmolc kg−1) | 0.3 ± 0.05 | 0.2 ± 0.03 |
6 Exchang. sodium (cmolc kg−1) | 0.3 ± 0.08 | 0.2 ± 0.03 |
7 Exchang. acidity (cmolc kg−1) | 2.3 ± 0.10 | 0.9 ± 0.10 |
7 Exchang. aluminum (cmolc kg−1) | 1.1 ± 0.15 | 0.8 ± 0.10 |
Cation exchange capacity (cmolc kg−1) | 6.4 ± 0.14 | 3.8 ± 0.12 |
8 Clay (g kg−1) | 46.1 ± 6.55 | 24.8 ± 3.04 |
8 Silt (g kg−1) | 156.7 ± 19.23 | 90.9 ± 10.31 |
8 Sand (g kg−1) | 797.1 ± 25.30 | 884.3 ± 8.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrobas, M.; Raimundo, S.; Conceição, N.; Moutinho-Pereira, J.; Correia, C.M.; Rodrigues, M.Â. On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees. Plants 2023, 12, 4161. https://doi.org/10.3390/plants12244161
Arrobas M, Raimundo S, Conceição N, Moutinho-Pereira J, Correia CM, Rodrigues MÂ. On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees. Plants. 2023; 12(24):4161. https://doi.org/10.3390/plants12244161
Chicago/Turabian StyleArrobas, Margarida, Soraia Raimundo, Nuno Conceição, José Moutinho-Pereira, Carlos Manuel Correia, and Manuel Ângelo Rodrigues. 2023. "On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees" Plants 12, no. 24: 4161. https://doi.org/10.3390/plants12244161
APA StyleArrobas, M., Raimundo, S., Conceição, N., Moutinho-Pereira, J., Correia, C. M., & Rodrigues, M. Â. (2023). On Sandy, Boron-Poor Soils, Liming Induced Severe Boron Deficiency and Drastically Reduced the Dry Matter Yield of Young Olive Trees. Plants, 12(24), 4161. https://doi.org/10.3390/plants12244161