Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus
Abstract
:1. Introduction
2. Results
2.1. Mesosulfuron-methyl Dose–Response in the Absence and Presence of Malathion
2.2. ALS Gene Sequencing
2.3. Mesosulfuron-methyl Absorption and Metabolism in B. japonicus Plants
2.4. Transcriptome Sequencing, Assembly, and Functional Annotation
2.5. Identification and Functional Analysis of DEGs
2.6. Selection of Candidate Metabolic-Resistance Genes and Their Relative Expressions
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Effect of Malathion on Mesosulfuron-methyl Resistance
4.3. ALS Gene Sequencing
4.4. UPLC-MS/MS Analysis of Mesosulfuron-methyl Residue in B. japonicus Plants
4.5. Whole-Transcriptome Sequencing
4.6. Identification and Analysis of Differentially Expressed Genes (DEGs)
4.7. Selection and Validation of Candidate Metabolic Resistance Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2005, 144, 31–43. [Google Scholar] [CrossRef]
- Powles, S. Global herbicide resistance challenge. Pest Manag. Sci. 2014, 70, 1305. [Google Scholar] [CrossRef]
- Délye, C.; Jasieniuk, M.; Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Preston, C. Herbicide resistance in weeds endowed by enhanced detoxification: Complications for management. Weed Sci. 2004, 52, 448–453. [Google Scholar] [CrossRef]
- Yuan, J.S.; Tranel, P.J.; Stewart, C.N., Jr. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007, 12, 6–13. [Google Scholar] [CrossRef]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S.B. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 2014, 70, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.K.; Hamouzova, K.; Mikulka, J.; Bharati, R.; Kosnarova, P.; Hamouz, P.; Roy, A.; Soukup, J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis. Pest Manag. Sci. 2021, 77, 2122–2128. [Google Scholar] [CrossRef]
- Petit, C.; Duhieu, B.; Boucansaud, K.; Délye, C. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetylcoenzyme a carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci. 2010, 178, 501–509. [Google Scholar] [CrossRef]
- Dasgupta, K.; Ganesan, S.; Manivasagam, S.; Ayre, B.G. A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling. BMC Plant Biol. 2011, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol. 2005, 167, 787–796. [Google Scholar] [CrossRef]
- Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. [Google Scholar] [CrossRef]
- Unver, T.; Bakar, M.; Shearman, R.C.; Budak, H. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol. Genet. Genom. 2010, 283, 397–413. [Google Scholar] [CrossRef]
- An, J.; Shen, X.; Ma, Q.; Yang, C.; Liu, S.; Chen, Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS ONE 2014, 9, e99940. [Google Scholar] [CrossRef]
- Metzker, M.L. Sequencing technologies-the next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef]
- Gaines, T.A.; Lorentz, L.; Figge, A.; Herrmann, J.; Maiwald, F.; Ott, M.C.; Han, H.; Busi, R.; Yu, Q.; Powles, S.B. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014, 78, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Türktaş, M.; Kurtoğlu, K.Y.; Dorado, G.; Zhang, B.; Hernandez, P.; Ünver, T. Sequencing of plant genomes? A review. Turk. J. Agric. For. 2015, 39, 361–376. [Google Scholar] [CrossRef]
- Duhoux, A.; Carrere, S.; Gouzy, J.; Bonin, L.; Délye, C. RNASeq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol. Biol. 2015, 87, 473–487. [Google Scholar] [CrossRef]
- Duhoux, A.; Carrère, S.; Duhoux, A.; Délye, C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 2017, 257, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Gardin, J.A.; Gouzy, J.; Carrere, S.; Délye, C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genom. 2015, 16, 590. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Gao, H.; Xia, W.; Zhang, T.; Dong, L. Establishing an herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J. Exp. Bot. 2016, 67, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Deng, W.; Li, X.; Yu, Q.; Bai, L.; Zheng, M. Target-site and non-target-site based resistance to the herbicide tribenuronmethyl in flixweed (Descurainia sophia L.). BMC Genom. 2016, 17, 551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Li, W.; Bai, S.; Guo, W.L.; Yuan, G.H.; Wang, F.; Liu, W.T.; Wang, J.X. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis. Front. Plant Sci. 2017, 8, 1391. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Liu, W.T.; Wang, H.; Zhao, N.; Jia, S.; Zou, N.; Guo, W.L.; Wang, J.X. Enhanced Herbicide Metabolism and Metabolic Resistance Genes Identified in Tribenuron-Methyl Resistant Myosoton aquaticum. J. Agric. Food Chem. 2018, 66, 9850–9857. [Google Scholar] [CrossRef]
- Chao, Q.; Gao, Z.F.; Zhang, D.; Zhao, B.G.; Dong, F.Q.; Fu, C.X.; Liu, L.J.; Wang, B.C. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol. J. 2019, 17, 206–219. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Bei, F.; Wu, C.; Zhang, L.; Jia, S.; Wang, J.; Liu, W. Investigating the Mechanism of Metabolic Resistance to Tribenuron-Methyl in Capsella bursa-pastoris (L.) Medik. by Full-Length Transcriptome Assembly Combined with RNA-Seq. J. Agric. Food Chem. 2021, 69, 3692–3701. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tan, J.N.; Li, W.; Yuan, G.H.; Du, L.; Ma, S.; Wang, J.X. Effects of environmental factors on seed germination and emergence of Japanese brome (Bromus japonicus). Weed Sci. 2015, 63, 641–646. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Ecology of germination and flowering in the weedy winter annual grass Bromus japonicus. J. Range Manag. 1981, 34, 369–372. [Google Scholar] [CrossRef]
- Li, Q.; Du, L.; Yuan, G.H.; Guo, W.L.; Li, W.; Wang, J.X. Density effect and economic threshold of Japanese brome (Bromus japonicus Houtt.) in wheat. Chil. J. Agric. Res. 2016, 76, 441–447. [Google Scholar] [CrossRef]
- Li, Q.; Yu, J.; Du, L.; Bai, P.; Zhang, W.; Liu, Y. Genetic diversity and phylogeography of Japanese brome (Bromus japonicus Thunb. ex Murr.) populations in China. Biotechnol. Biotechnol. Equip. 2024, 38, 2326810. [Google Scholar] [CrossRef]
- Li, Q.; Yu, J.; Guo, W.; Du, L.; Bai, P.; Liu, Y. Target-site basis for resistance to flucarbazone-sodium in Japanese brome (Bromus japonicus Houtt.) in China. Chil. J. Agric. Res. 2022, 82, 493–501. [Google Scholar] [CrossRef]
- Liu, L.; Wu, L.; Li, Z.; Fang, Y.; Ju, B.; Zhang, S.; Bai, L.; Pan, L. The Pro-197-Thr mutation in the ALS gene confers novel resistance patterns to ALS-inhibiting herbicides in Bromus japonicus in China. Front. Plant Sci. 2024, 15, 1348815. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.F.; Sui, B.F.; Zhang, C.X.; Huang, H.J.; Wei, S.H. The basis of resistance mechanism to mesosulfuron-methyl in Tausch’s goatgrass (Aegilops tauschii Coss.). Pestic. Biochem. Physiol. 2019, 155, 126–131. [Google Scholar] [CrossRef]
- Kuk, Y.I.; Bugos, N.R. Cross-resistance profile of mesosulfuron-methyl-resistant Italian ryegrass in the southern United States. Pest Manag. Sci. 2007, 63, 349–357. [Google Scholar] [CrossRef]
- Bi, Y.L.; Liu, W.T.; Li, L.X.; Yuan, G.H.; Jin, T.; Wang, J.X. Molecular basis of resistance to mesosulfuron-methyl in Japanese foxtail, Alopecurus japonicus. J. Pestic. Sci. 2013, 38, 74–77. [Google Scholar] [CrossRef]
- Wang, J.Z.; Cao, W.F.; Guo, Q.S.; Yang, Y.; Bai, L.Y.; Pan, L. Resistance to mesosulfuron-methyl in Beckmannia syzigachne may involve ROS burst and non-target-site resistance mechanisms. Ecotoxicol. Environ. Saf. 2022, 229, 113072. [Google Scholar] [CrossRef]
- Giacomini, D.A.; Gaines, T.; Beffa, R.; Tranel, P.J. Optimizing RNA-seq studies to investigate herbicide resistance. Pest Manag. Sci. 2018, 74, 2260–2264. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, J.J.; Jiang, M.H.; Liao, M.; Cao, H.Q. Identification of essential genes involved in metabolism-based resistance mechanism to fenoxaprop-P-ethyl in Polypogon fugax. Pest Manag. Sci. 2022, 78, 1164–1175. [Google Scholar] [CrossRef]
- Steijger, T.; Abril, J.F.; Abril, J.F.; Engström, P.G.; Kokocinski, F.; Hubbard, T.J.; Guigó, R.; Harrow, J.; Bertone, P. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 2013, 10, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, S.E.; Hamilton, M.; Jacobi, J.L.; Ngam, P.; Devitt, N.; Schilkey, F.; Ben-Hur, A.; Reddy, A.S.N. A survey of the sorghum transcriptome using single- molecule long reads. Nat. Commun. 2016, 7, 11706. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tseng, E.; Regulski, M.; Clark, T.A.; Hon, T.; Jiao, Y.; Lu, Z.; Olson, A.; Stein, J.C.; Ware, D. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun. 2016, 7, 11708. [Google Scholar] [CrossRef] [PubMed]
- Hrycay, E.G.; Bandiera, S.M. Monooxygenase, Peroxidase and Peroxygenase Properties and Reaction Mechanisms of Cytochrome P450 Enzymes; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2015; Volume 851, pp. 1–61. [Google Scholar]
- Dimaano, N.G.; Iwakami, S. Cytochrome P450-mediated herbicide metabolism in plants: Current understanding and prospects. Pest Manag. Sci. 2021, 77, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Siminszky, B.; Corbin, F.T.R.; Ward, E.; Fleischmann, T.J.; Dewey, R.E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. USA 1999, 96, 1750–1755. [Google Scholar] [CrossRef]
- Thyssen, G.N.; Naoumkina, M.; McCarty, J.C.; Jenkins, J.N.; Florane, C.; Li, P.; Fang, D.D. The P450 gene CYP749A16 is required for tolerance to the sulfonylurea herbicide trifloxysulfuron sodium in cotton (Gossypium hirsutum L.). BMC Plant Biol. 2018, 18, 186. [Google Scholar] [CrossRef]
- Xiang, W.; Wang, X.; Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pestic. Biochem. Physiol. 2006, 85, 1–6. [Google Scholar] [CrossRef]
- Hofer, R.; Boachon, B.; Renault, H.; Gavira, C.; Miesch, L.; Iglesias, J.; Ginglinger, J.F.; Allouche, L.; Miesch, M.; Grec, S.; et al. Dual function of the CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol. 2014, 166, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Nakka, S.; Godar, A.S.; Thompson, C.R.; Peterson, D.E.; Jugulam, M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri). Pest Manag. Sci. 2017, 73, 2236–2243. [Google Scholar] [CrossRef]
- Sylvestre-Gonon, E.; Law, S.R.; Schwartz, M.; Robe, K.; Keech, O.; Didierjean, C.; Dubos, C.; Rouhier, N.; Hecker, A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front. Plant Sci. 2019, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Labrou, N.E.; Papageorgiou, A.C.; Pavli, O.; Flemetakis, E. Plant GSTome: Structure and functional role in xenome network and plant stress response. Curr. Opin. Biotechnol. 2015, 32, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Rahantaniaina, M.S.; Li, S.; Chatel-Innocenti, G.; Tuzet, A.; Issakidis-Bourguet, E.; Mhamdi, A.; Noctor, G. Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway. Plant Physiol. 2017, 174, 956–971. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, D.; Ioli, G.; Nasini, L.; Proietti, P. A comparative study on the interference of two herbicides in wheat and italian ryegrass and on their antioxidant activities and detoxification rates. J. Agric. Food Chem. 2011, 59, 12109–12115. [Google Scholar] [CrossRef] [PubMed]
- Manabe, Y.; Tinker, N.; Colville, A.; Miki, B. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana. Plant Cell Physiol. 2007, 48, 1340–1358. [Google Scholar] [CrossRef]
- Bai, S.; Zhao, Y.; Zhou, Y.; Wang, M.; Li, Y.; Luo, X.; Li, L. Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne. Pest Manag. Sci. 2020, 76, 2619–2626. [Google Scholar] [CrossRef]
- Brazier, M.; Cole, D.J.; Edwards, R. O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 2002, 59, 149–156. [Google Scholar] [CrossRef]
- Rea, P.A. Plant ATP-binding cassette transporters. Annu. Rev. Plant Biol. 2007, 58, 347–375. [Google Scholar] [CrossRef]
- Cagnac, O.; Bourbouloux, A.; Chakrabarty, D.; Zhang, M.Y.; Delrot, S. AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol. 2004, 135, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yu, Q.; Wang, J.; Han, H.; Mao, L.; Nyporko, A.; Maguza, A.; Fan, L.J.; Bai, L.Y.; Powles, S.B. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2100136118. [Google Scholar] [CrossRef]
- He, S.; Liu, M.; Chen, W.; Bai, D.; Liao, Y.; Bai, L.; Pan, L. Eleusine indica Cytochrome P450 and Glutathione S-Transferase Are Linked to High-Level Resistance to Glufosinate. J. Agric. Food Chem. 2023, 71, 14243–14250. [Google Scholar] [CrossRef]
- Petit, C.; Pernin, F.; Heydel, J.M.; Délye, C. Validation of a set of reference genes to study response to herbicide stress in grasses. BMC Res. Notes 2012, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Bai, S.; Zhao, N.; Jia, S.; Li, W.; Zhang, L.; Wang, J. Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biol. 2018, 18, 225. [Google Scholar] [CrossRef] [PubMed]
Herbicide | GR50 ± SE (g a.i. ha−1) 1 | RI 2 | |
---|---|---|---|
S | MR | ||
Mesosulfuron-methyl | 0.90 ± 0.17 a 3 | 46.64 ± 3.63 a | 51.8 |
Mesosulfuron-methyl + Malathion | 0.59 ± 0.21 a | 7.83 ± 1.40 b | 13.3 |
Population | The Amino Acid Position, Relative Nucleotide, and Amino Acid | |||||||
---|---|---|---|---|---|---|---|---|
122 | 197 | 205 | 376 | 377 | 574 | 653 | 654 | |
TJ01 | GCA | CCT | GCG | GAT | CGT | TGG | AGT | GGT |
Ala | Pro | Ala | Asp | Arg | Trp | Ser | Gly | |
TJ07 | GCA | CCT | GCG | GAT | CGT | TGG | AGT | GGT |
Ala | Pro | Ala | Asp | Arg | Trp | Ser | Gly |
Public Database | Number of Transcripts | Percentage (%) |
---|---|---|
Annotated in NR | 33,076 | 99.56 |
Annotated in Swiss-Prot | 22,712 | 68.37 |
Annotated in KEGG | 14,199 | 42.74 |
Annotated in KOG | 19,476 | 58.63 |
Annotated in eggNOG | 31,856 | 95.89 |
Annotated in PFAM | 24,835 | 74.76 |
Annotated in GO | 27,312 | 82.21 |
Annotated in COG | 13,728 | 41.32 |
KEGG Pathway Term | Map ID | Gene Count 1 | Genes in Background 2 | p-Value | |
---|---|---|---|---|---|
Up | Down | ||||
Starch and sucrose metabolism | map00500 | 81 | 75 | 358 | 2.85 × 10−3 |
Phenylpropanoid biosynthesis | map00940 | 51 | 53 | 203 | 1.00 × 10−5 |
Cyanoamino acid metabolism | map00460 | 35 | 43 | 133 | 1.37 × 10−7 |
Glutathione metabolism | map00480 | 34 | 65 | 209 | 7.09 × 10−4 |
Cysteine and methionine metabolism | map00270 | 34 | 56 | 205 | 1.62 × 10−2 |
Ribosome biogenesis in eukaryotes | map03008 | 31 | 59 | 194 | 2.65 × 10−3 |
Fatty acid degradation | map00071 | 28 | 20 | 100 | 1.16 × 10−2 |
Aminoacyl-tRNA biosynthesis | map00970 | 27 | 35 | 118 | 2.45 × 10−4 |
Photosynthesis—antenna proteins | map00196 | 24 | 45 | 140 | 1.20 × 10−3 |
alpha-Linolenic acid metabolism | map00592 | 23 | 27 | 102 | 6.12 × 10−3 |
Sulfur metabolism | map00920 | 23 | 28 | 105 | 7.11 × 10−3 |
Ubiquinone and other terpenoid-quinone biosynthesis | map00130 | 21 | 21 | 82 | 4.33 × 10−3 |
beta-Alanine metabolism | map00410 | 17 | 24 | 83 | 1.05 × 10−2 |
Isoquinoline alkaloid biosynthesis | map00950 | 14 | 15 | 56 | 1.35 × 10−2 |
Monoterpenoid biosynthesis | map00902 | 5 | 7 | 15 | 7.35 × 10−4 |
Gene ID | PFAM ID | Function Annotation | RNA-Seq | qRT-PCR (2−ΔCt) | ||
---|---|---|---|---|---|---|
log2 Fold Change (MR_T vs. S_T) | Padj | RNA-Seq Samples (MR_T vs. S_T) | Additional Samples (MR_T vs. S_T) | |||
E_transcript_38404 | PF00067.21 | CytP450, CYP71C4 | 2.18 | 7.30 × 10−15 | 1.01 | 2.28 |
E_transcript_8113 | PF00067.21 | CytP450, CYP71C4 | 2.41 | 1.56 × 10−26 | 2.86 * | 6.60 * |
E_transcript_31473 | PF00067.21 | CytP450, CYP90B1 | 1.29 | 5.11 × 10−6 | 1.03 | 58.42 |
E_transcript_5503 | PF00067.21 | CytP450, CYP71C1 | 2.25 | 1.03 × 10−21 | 0.71 | 43.16 |
E_transcript_6685 | PF00067.21 | CytP450, CYP71C2 | 1.89 | 5.02 × 10−16 | 0.60 * | 20.76 |
E_transcript_13219 | PF00067.21 | CytP450, CYP71C2 | 2.16 | 1.10 × 10−19 | 0.65 * | 3.05 * |
E_transcript_5754 | PF00067.21 | CytP450, CYP90D2 | 1.02 | 1.51 × 10−4 | 1.29 * | 9.37 * |
E_transcript_48605 | PF00067.21 | CytP450, CYP71C | 2.73 | 5.75 × 10−20 | 0.76 * | 8.11 |
E_transcript_71401 | PF00067.21 | CytP450, CYP72A15 | 2.27 | 2.22 × 10−23 | 7.13 * | 14.27 * |
E_transcript_44243 | PF02798.19 | GST, MEE6.28 | 1.25 | 4.63 × 10−7 | 1.71 * | 9.12 * |
E_transcript_14304 | PF13410.5 | GST, GSTZ5 | 8.12 | 1.72 × 10−150 | 3.31 * | 18.27 * |
E_transcript_38926 | PF02798.19 | GST, PUR7 | 1.43 | 5.46 × 10−7 | 1.77 * | 37.08 |
E_transcript_56910 | PF00201.17 | UDP-glucosyl transferase, SGT31 | 2.84 | 2.26 × 10−17 | 5.17 * | 5.50 * |
E_transcript_53473 | PF00005.26 | ABC transporter, ABCC10 | 1.52 | 6.64 × 10−6 | 1.62 * | 20.18 * |
E_transcript_71047 | PF00005.26 | ABC transporter, ABCC2 | 6.89 | 5.78 × 10−118 | 2.72 * | 1.47 * |
E_transcript_5168 | PF03109.15 | ABC1 family, At5g05200 | 1.20 | 2.21 × 10−4 | 1.13 | 3.24 |
E_transcript_15373 | PF01786.16 | Oxidase, MCB17.11 | 1.30 | 2.48 × 10−6 | 2.53 | 2.66 |
E_transcript_48732 | PF00724.19 | Oxidase, OPR11 | 1.73 | 1.31 × 10−11 | 1.21 * | 1.58 * |
E_transcript_65166 | PF12697.6 | Hydrolase | 1.62 | 2.54 × 10−6 | 3.34 | 2.68 |
E_transcript_19506 | PF01738.17 | Hydrolase | 1.20 | 6.84 × 10−3 | 1.26 | 3.42 |
E_transcript_38621 | PF01156.18 | Hydrolase | 1.61 | 2.09 × 10−4 | 2.23 * | 4.83 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, H.; Yu, J.; Zhang, W.; Guo, W.; Liu, Y. Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus. Plants 2024, 13, 1751. https://doi.org/10.3390/plants13131751
Li Q, Wang H, Yu J, Zhang W, Guo W, Liu Y. Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus. Plants. 2024; 13(13):1751. https://doi.org/10.3390/plants13131751
Chicago/Turabian StyleLi, Qi, Hengzhi Wang, Jinping Yu, Wei Zhang, Wenlei Guo, and Yixue Liu. 2024. "Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus" Plants 13, no. 13: 1751. https://doi.org/10.3390/plants13131751
APA StyleLi, Q., Wang, H., Yu, J., Zhang, W., Guo, W., & Liu, Y. (2024). Metabolism-Based Herbicide Resistance to Mesosulfuron-methyl and Identification of Candidate Genes in Bromus japonicus. Plants, 13(13), 1751. https://doi.org/10.3390/plants13131751