Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae
Abstract
:1. Introduction
2. Results
2.1. Early Response to Inoculation with Pss in Sweet Cherry Plants
2.2. Effect of Inoculations Treatments on Leaf Growth Parameters
2.3. Effect of Spring Inoculations with Pss on the Plant Transpiration under Two Irrigation Regimes during Summer
2.4. Physiological Responses to Inoculation Treatments and Water Regimes of Plants during Summer
2.5. Salicylic and Abscisic Acids Content in Leaves
2.6. Leaf Area and Plant Biomass at Harvest
3. Discussion
Limitations of the Study and Future Work
4. Materials and Methods
4.1. Plant Material
4.2. Bacterial Strain and Plant Inoculation
4.3. Evaluation of Plant Response to Pss and Experimental Design in the Field
4.4. Irrigation Regimes
4.5. Leaf Growth Parameters
4.6. Physiological Variables
Plant Water Status and Whole Plant Hydraulic Conductance
4.7. Leaf Gas Exchange
4.8. Morphoanatomical Measurements
4.9. Determination of ABA and SA
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magnusson, M.; Fischhoff, I.R.; Ecke, F.; Hörnfeldt, B.; Ostfeld, R.S. Effect of Spatial Scale and Latitude on Diversity–Disease Relationships. Ecology 2020, 101, e02955. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant Pathogen Infection Risk Tracks Global Crop Yields under Climate Change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Pechan, P.M.; Bohle, H.; Obster, F. Reducing Vulnerability of Fruit Orchards to Climate Change. Agric. Syst. 2023, 210, 103713. [Google Scholar] [CrossRef]
- Wenden, B.; Campoy, J.A.; Lecourt, J.; López Ortega, G.; Blanke, M.; Radievi, S.; Schüller, E.; Spornberger, A.; Christen, D.; Magein, H.; et al. A Collection of European Sweet Cherry Phenology Data for Assessing Climate Change. Sci. Data 2016, 3, 160108. [Google Scholar] [CrossRef]
- Dondini, L.; Lugli, S.; Sansavini, S. Cherry Breeding: Sweet Cherry (Prunus avium L.) and Sour Cherry (Prunus Cerasus L.). In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 3, pp. 31–88. ISBN 9783319919447. [Google Scholar]
- Rojas, G.; Fernandez, E.; Whitney, C.; Luedeling, E.; Cuneo, I.F. Adapting Sweet Cherry Orchards to Extreme Weather Events—Decision Analysis in Support of Farmers’ Investments in Central Chile. Agric. Syst. 2021, 187, 103031. [Google Scholar] [CrossRef]
- Kennelly, M.M.; Cazorla, F.M.; de Vicente, A.; Ramos, C.; Sundin, G.W. Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Dis. 2007, 91, 4–17. [Google Scholar] [CrossRef]
- Blaya-Ros, P.J.; Blanco, V.; Torres-Sánchez, R.; Domingo, R. Drought-Adaptive Mechanisms of Young Sweet Cherry Trees in Response to Withholding and Resuming Irrigation Cycles. Agronomy 2021, 11, 1812. [Google Scholar] [CrossRef]
- Toro, G.; Pastenes, C.; Salvatierra, A.; Pimientel, P. Trade-off between Hydraulic Sensitivity, Root Hydraulic Conductivity and Water Use Efficiency in Grafted Prunus under Water Deficit. Agric. Water Manag. 2023, 282, 108284. [Google Scholar] [CrossRef]
- Omrani, M.; Roth, M.; Roch, G.; Blanc, A.; Morris, C.E.; Audergon, J.M. Genome-Wide Association Multi-Locus and Multi-Variate Linear Mixed Models Reveal Two Linked Loci with Major Effects on Partial Resistance of Apricot to Bacterial Canker. BMC Plant Biol. 2019, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Hulin, M.T.; Vadillo Dieguez, A.; Cossu, F.; Lynn, S.; Russell, K.; Neale, H.C.; Jackson, R.W.; Arnold, D.L.; Mansfield, J.W.; Harrison, R.J. Identifying Resistance in Wild and Ornamental Cherry towards Bacterial Canker Caused by Pseudomonas syringae. Plant Pathol. 2022, 71, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Sundin, G.W.; Jones, A.L.; Olson, B.D. Overwintering and Population Dynamics of Pseudomonas syringae pv. Syringae and P.s. pv. morsprunorum on Sweet and Sour Cherry Trees. Can. J. Plant Pathol. 1988, 10, 281–288. [Google Scholar] [CrossRef]
- Maki, L.R.; Galyan, E.L.; Chang-Chien, M.-M.; Caldwell, D.R. Ice Nucleation Induced by Pseudomonas syringae. Appl. Microbiol. 1974, 28, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Latorre, B.A.; Gonza, J.A.; Cox, J.E.; Vial, F. Isolation of Pseudomonas syringae pv. syringae from Cankers and Effect of Free Moisture on Its Epiphytic Populations on Sweet Cherry Trees. Plant Dis. 1985, 69, 409–412. [Google Scholar]
- Kvitko, B.H.; Collmer, A. Discovery of the Hrp Type III Secretion System in Phytopathogenic Bacteria: How Investigation of Hypersensitive Cell Death in Plants Led to a Novel Protein Injector System and a World of Inter-Organismal Molecular Interactions Within Plant Cells. Phytopathology 2023, 113, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Jin, L.; Shimada, M.; Kim, M.G.; Mackey, D. The Phytotoxin Coronatine Is a Multifunctional Component of the Virulence Armament of Pseudomonas syringae. Planta 2014, 240, 1149. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef]
- Ngou, B.P.M.; Ahn, H.K.; Ding, P.; Jones, J.D.G. Mutual Potentiation of Plant Immunity by Cell-Surface and Intracellular Receptors. Nature 2021, 592, 110–115. [Google Scholar] [CrossRef]
- Balint-Kurti, P. The Plant Hypersensitive Response: Concepts, Control and Consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef]
- Dalio, R.J.D.; Paschoal, D.; Arena, G.D.; Magalhães, D.M.; Oliveira, T.S.; Merfa, M.V.; Maximo, H.J.; Machado, M.A. Hypersensitive Response: From NLR Pathogen Recognition to Cell Death Response. Ann. Appl. Biol. 2021, 178, 268–280. [Google Scholar] [CrossRef]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Chen, Y.; Wenig, M.; Nayem, S. Systemic Propagation of Immunity in Plants. New Phytol. 2021, 229, 1234–1250. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Beckers, G.J.M.; Langenbach, C.J.G.; Jaskiewicz, M.R. Priming for Enhanced Defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.; Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense Priming: An Adaptive Part of Induced Resistance. Annu. Rev. Plant Biol. 2017, 68, 485–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wei, L.; Liu, T.; Ma, J.; Huang, K.; Guo, H.; Huang, Y.; Zhang, L.; Zhao, J.; Tsuda, K.; et al. Suppression of ETI by PTI Priming to Balance Plant Growth and Defense through an MPK3/MPK6-WRKYs-PP2Cs Module. Mol. Plant 2023, 16, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Van Butselaar, T.; Van Den Ackerveken, G. Salicylic Acid Steers the Growth-Immunity Tradeoff. Trends Plant Sci. 2020, 25, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Crisp, P.A.; Ganguly, D.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering Plant Memory: Intersections between Stress Recovery, RNA Turnover, and Epigenetics. Sci. Adv. 2016, 2, 1340. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of Regulated Deficit Irrigation and Environmental Conditions on Reproductive Response of Sweet Cherry Trees. Plants 2020, 9, 94. [Google Scholar] [CrossRef]
- Vosnjak, M.; Mrzlic, D.; Hudina, M.; Usenik, V. The Effect of Water Supply on Sweet Cherry Phytochemicals in Bud, Leaf and Fruit. Plants 2021, 10, 1131. [Google Scholar] [CrossRef]
- Opazo, I.; Toro, G.; Salvatierra, A.; Pastenes, C.; Pimentel, P. Rootstocks Modulate the Physiology and Growth Responses to Water Deficit and Long-Term Recovery in Grafted Stone Fruit Trees. Agric. Water Manag. 2020, 228, 105897. [Google Scholar] [CrossRef]
- Roxas, A.A.; Orozco, J.; Guzmán-Delgado, P.; Zwieniecki, M.A. Spring Phenology Is Affected by Fall Non-Structural Carbohydrate Concentration and Winter Sugar Redistribution in Three Mediterranean Nut Tree Species. Tree Physiol. 2021, 41, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Long, S.P.; Bernacchi, C.J. Gas Exchange Measurements, What Can They Tell Us about the Underlying Limitations to Photosynthesis? Procedures and Sources of Error. J. Exp. Bot. 2003, 54, 2393–2401. [Google Scholar] [CrossRef]
- Buckley, T.N.; Diaz-Espejo, A. Partitioning Changes in Photosynthetic Rate into Contributions from Different Variables. Plant Cell Env. 2015, 38, 1200–1211. [Google Scholar] [CrossRef]
- McAdam, S.A.M.; Brodribb, T.J. Separating Active and Passive Influences on Stomatal Control of Transpiration. Plant Physiol. 2014, 164, 1578–1586. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T.; Parent, B. Modelling the Coordination of the Controls of Stomatal Aperture, Transpiration, Leaf Growth, and Abscisic Acid: Update and Extension of the Tardieu-Davies Model. J. Exp. Bot. 2015, 66, 2227–2237. [Google Scholar] [CrossRef]
- Yasuda, M.; Ishikawa, A.; Jikumaru, Y.; Seki, M.; Umezawa, T.; Asami, T.; Maruyama-Nakashita, A.; Kudo, T.; Shinozaki, K.; Yoshida, S.; et al. Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid–Mediated Abiotic Stress Response in Arabidopsis. Plant Cell 2008, 20, 1678–1692. [Google Scholar] [CrossRef]
- Xu, J.; Audenaert, K.; Hofte, M.; de Vleesschauwer, D. Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas Oryzae Pv Oryzae by Suppressing Salicylic Acid-Mediated Defenses. PLoS ONE 2013, 8, e67413. [Google Scholar] [CrossRef] [PubMed]
- Kusajima, M.; Okumura, Y.; Fujita, M.; Nakashita, H. Abscisic Acid Modulates Salicylic Acid Biosynthesis for Systemic Acquired Resistance in Tomato. Biosci. Biotechnol. Biochem. 2017, 81, 1850–1853. [Google Scholar] [CrossRef] [PubMed]
- Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A.; Krüler, V.; Winkelmüller, T.M.; Wang, Y.; Mine, A.; et al. Balancing Trade-Offs between Biotic and Abiotic Stress Responses through Leaf Age-Dependent Variation in Stress Hormone Cross-Talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Rivero, R.M.; Martínez, V.; Gómez-Cadenas, A.; Arbona, V. Tolerance of Citrus Plants to the Combination of High Temperatures and Drought Is Associated to the Increase in Transpiration Modulated by a Reduction in Abscisic Acid Levels. BMC Plant Biol. 2016, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh Najafabadi, M.; Ehsanzadeh, P. Photosynthetic and Antioxidative Upregulation in Drought-Stressed Sesame (Sesamum indicum L.) Subjected to Foliar-Applied Salicylic Acid. Photosynthetica 2017, 55, 611–622. [Google Scholar] [CrossRef]
- Khalvandi, M.; Siosemardeh, A.; Roohi, E.; Keramati, S. Salicylic Acid Alleviated the Effect of Drought Stress on Photosynthetic Characteristics and Leaf Protein Pattern in Winter Wheat. Heliyon 2021, 7, e05908. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, C.B.; Ren, R.M.; Jiang, J.H. Salicylic Acid Had the Potential to Enhance Tolerance in Horticultural Crops against Abiotic Stress. Front. Plant Sci. 2023, 14, 1141918. [Google Scholar] [CrossRef] [PubMed]
- Spotts, R.A.; Wallis, K.M. Bacterial Canker of Sweet Cherry in Oregon-Infection of Horticultural and Natural Wounds, and Resistance of Cultivar and Rootstock Combinations. Plant Dis. 2010, 94, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Mgbechi-Ezeri, J.; Porter, L.; Johnson, K.B.; Oraguzie, N. Assessment of Sweet Cherry (Prunus avium L.) Genotypes for Response to Bacterial Canker Disease. Euphytica 2017, 213, 1–12. [Google Scholar] [CrossRef]
- Ngou, B.P.M.; Ding, P.; Jones, J.D.G. Thirty Years of Resistance: Zig-Zag through the Plant Immune System. Plant Cell 2022, 34, 1447–1478. [Google Scholar] [CrossRef] [PubMed]
- De Torres Zabala, M.; Bennett, M.H.; Truman, W.H.; Grant, M.R. Antagonism between Salicylic and Abscisic Acid Reflects Early Host–Pathogen Conflict and Moulds Plant Defence Responses. Plant J. 2009, 59, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Osorio, V.; Otárola, J.; Correa, F.; Lemus, G. Situación Del Cáncer Bacterial En La Región de O’Higgins. In Boletín INIA; Lemus, G., Ed.; Instituto de Investigaciones Agropecuarias; Centro Regional de Investigación Rayentué: Rengo, Chile, 2020; Volume 420. [Google Scholar]
- Young, J.M. Pathogenicity and Identification of the Lilac Pathogen, Pseudomonas syringae pv. syringae van Hall 1902. Ann. Appl. Biol. 1991, 118, 283–298. [Google Scholar] [CrossRef]
- Hulin, M.T.; Mansfield, J.W.; Brain, P.; Xu, X.; Jackson, R.W.; Harrison, R.J. Characterization of the Pathogenicity of Strains of Pseudomonas syringae towards Cherry and Plum. Plant Pathol. 2018, 67, 1177–1193. [Google Scholar] [CrossRef]
- Ruinelli, M.; Blom, J.; Smits, T.H.M.; Pothier, J.F. Comparative Genomics and Pathogenicity Potential of Members of the Pseudomonas syringae Species Complex on Prunus spp. BMC Genom. 2019, 20, 1–16. [Google Scholar] [CrossRef]
- Cui, W.; Fiore, N.; Figueroa, F.; Rubilar, C.; Pizarro, L.; Pinto, M.; Pérez, S.; Beltrán, M.F.; Carreras, C.; Pimentel, P.; et al. Transcriptome Analysis of Sweet Cherry (Prunus avium L.) Cultivar ‘Lapins’ upon Infection of Pseudomonas syringae pv. syringae. Plants 2023, 12, 3718. [Google Scholar] [CrossRef]
- Maekawa, T.; Kashkar, H.; Coll, N.S. Dying in Self-Defence: A Comparative Overview of Immunogenic Cell Death Signalling in Animals and Plants. Cell Death Differ. 2023, 30, 258–268. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhang, X.; Ji, W.; Kang, Z. A Necessary Considering Factor for Breeding: Growth-Defense Tradeoff in Plants. Stress. Biol. 2023, 3, 6. [Google Scholar] [CrossRef]
- Brown, J.K.M. Yield Penalties of Disease Resistance in Crops. Curr. Opin. Plant Biol. 2002, 5, 339–344. [Google Scholar] [CrossRef]
- Walters, D.R.; Paterson, L.; Walsh, D.J.; Havis, N.D. Priming for Plant Defense in Barley Provides Benefits Only under High Disease Pressure. Physiol. Mol. Plant Pathol. 2008, 73, 95–100. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T.; Muller, B. The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef]
- Deans, R.M.; Brodribb, T.J.; Busch, F.A.; Farquhar, G.D. Optimization Can Provide the Fundamental Link between Leaf Photosynthesis, Gas Exchange and Water Relations. Nat. Plants 2020, 6, 1116–1125. [Google Scholar] [CrossRef]
- Joshi, J.; Stocker, B.D.; Hofhansl, F.; Zhou, S.; Dieckmann, U.; Prentice, I.C. Towards a Unified Theory of Plant Photosynthesis and Hydraulics. Nat. Plants 2022, 8, 1304–1316. [Google Scholar] [CrossRef]
- Strobel, N.E.; Ji, C.; Gopalan, S.; Kuc, J.A.; He, S.V. Induction of Systemic Acquired Resistance in Cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss Protein. Plant J. 1996, 9, 431–439. [Google Scholar] [CrossRef]
- Kruse, C.; Jost, R.; Lipschis, M.; Kopp, B.; Hartmann, M.; Hell, R. Sulfur-Enhanced Defence: Effects of Sulfur Metabolism, Nitrogen Supply, and Pathogen Lifestyle. Plant Biol. 2007, 9, 608–619. [Google Scholar] [CrossRef]
- Baldwin, I.T.; Gorham, D.; Schmelz, E.A.; Lewandowski, C.A.; Lynds, G.Y. Allocation of Nitrogen to an Inducible Defense and Seed Production in Nicotiana attenuata. Oecologia 1998, 115, 541–552. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Chen, Q.; Chen, G.; Huang, Y.; Yang, Z. Costs and Trade-Offs of Grazer-Induced Defenses in Scenedesmus under Deficient Resource. Sci. Rep. 2016, 6, 22594. [Google Scholar] [CrossRef]
- Király, L.; Künstler, A.; Höller, K.; Fattinger, M.; Juhász, C.; Müller, M.; Gullner, G.; Zechmann, B. Sulfate Supply Influences Compartment Specific Glutathione Metabolism and Confers Enhanced Resistance to Tobacco Mosaic Virus during a Hypersensitive Response. Plant Physiol. Biochem. 2012, 59, 44–54. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Z.; Zhang, X.; Wang, M.; Zhang, L.; Zheng, K.; Liu, J.; Hu, X.; Di, C.; Qian, Q.; et al. Inducible Overexpression of Ideal Plant Architecture1 Improves Both Yield and Disease Resistance in Rice. Nat. Plants 2019, 5, 389–400. [Google Scholar] [CrossRef]
- Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al. Genome-Edited Powdery Mildew Resistance in Wheat without Growth Penalties. Nature 2022, 602, 455–460. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Li, Q.; Ai, Y.; Huang, Z.; Sun, X.; Zhou, J.; Zhou, Y.; Liang, Y. Tomato Receptor-like Cytosolic Kinase RIPK Confers Broad-Spectrum Disease Resistance without Yield Penalties. Hortic. Res. 2022, 9, 207. [Google Scholar] [CrossRef]
- Vyska, M.; Cunniffe, N.; Gilligan, C. Trade-off between Disease Resistance and Crop Yield: A Landscape-Scale Mathematical Modelling Perspective. J. R. Soc. Interface 2016, 13, 451. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.S.; Love, D.M. What Plant Hydraulics Can Tell Us about Responses to Climate-Change Droughts. New Phytol. 2015, 207, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Dominguez, C.M.; Buckley, T.N.; Egea, G.; de Cires, A.; Hernandez-Santana, V.; Martorell, S.; Diaz-Espejo, A. Most Stomatal Closure in Woody Species under Moderate Drought Can Be Explained by Stomatal Responses to Leaf Turgor. Plant Cell Environ. 2016, 39, 2014–2026. [Google Scholar] [CrossRef]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can Improvement in Photosynthesis Increase Crop Yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Guajardo, V.; Muñoz, C.; Hinrichsen, P.; Guajardo, V.; Muñoz, C.; Hinrichsen, P. Molecular Profiling of Sweet Cherry Cultivars Present in Chile Using Polymorphic Microsatellite Markers. Chil. J. Agric. Res. 2021, 81, 326–337. [Google Scholar] [CrossRef]
- Kim, C.Y.; Song, H.; Lee, Y.H. Ambivalent Response in Pathogen Defense: A Double-Edged Sword? Plant Commun. 2022, 3, 100415. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Ludlow, M.M. Influence of Soil Water Supply on the Plant Water Balance of Four Tropical Grain Legumes. Funct. Plant Biol. 1986, 13, 329–341. [Google Scholar] [CrossRef]
- Streck, N.A.; Tibola, T.; Lago, I.; Buriol, G.A.; Heldwein, A.B.; Schneider, F.M.; Zago, V. Estimating the Plastochron in Muskmelon (Cucumis melo L.) Grown inside Plastic Greenhouse at Different Planting Dates. Ciênc. Rural. 2005, 35, 1275–1280. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-642-07768-5. [Google Scholar]
- Durgbanshi, A.; Arbona, V.; Pozo, O.; Miersch, O.; Sancho, J.V.; Gómez-Cadenas, A. Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. J. Agric. Food Chem. 2005, 53, 8437–8442. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 9780387989570. [Google Scholar]
- Lenth, R.V.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.10.0. 2024. Available online: http://cran.r-project.org/package=emmeans (accessed on 18 June 2024).
‘Bing’ | ‘Santina’ | |||
---|---|---|---|---|
Type of Response | Control | Pss | Control | Pss |
no responses | 21 (100%) | 6 (29%) | 21 (100%) | 2 (10%) |
local necrosis < 5 cm + gum | 0 | 13 (62%) | 0 | 5 (24%) |
extended necrosis > 5 cm + apex death | 0 | 2 (10%) | 0 | 14 (67%) |
total plants (each group) | 21 | 21 | 21 | 21 |
Leaf Area | Leaves | Leaf Abscission | Root Biomass | Plant Biomass | |||
---|---|---|---|---|---|---|---|
Irri | Ino | Var | (m2) | (n) | (%) | (g dw) | (g dw) |
WW | control | Bing | 1.01 ± 0.24 a | 162 ± 24 a | 10.9 ± 2.2 b | 138 ± 35 a | 450 ± 66 a |
WW | control | Santina | 1.12 ± 0.14 a | 135 ± 10 b | 13.1 ± 2.7 b | 128 ± 36 ab | 437 ± 72 a |
WW | Pss | Bing | 0.87 ± 0.2 ab | 117 ± 16 bc | 11.7 ± 2.5 b | 106 ± 23 bc | 373 ± 54 ab |
WW | Pss | Santina | 0.63 ± 0.3 b | 65 ± 33 d | 14 ± 3.2 b | 69 ± 23 c | 245 ± 113 bc |
WD | control | Bing | 0.61 ± 0.16 b | 122 ± 13 b | 9.3 ± 2.2 b | 76 ± 18 c | 261 ± 53 c |
WD | control | Santina | 0.54 ± 0.22 b | 78 ± 28 cd | 33.4 ± 4.3 a | 83 ± 37 c | 238 ± 88 c |
WD | Pss | Bing | 0.63 ± 0.17 b | 128 ± 19 b | 10 ± 2.3 b | 65 ± 13 c | 248 ± 39 c |
WD | Pss | Santina | 0.62 ± 0.06 b | 71 ± 37 cd | 35.2 ± 4.5 a | 79 ± 21 c | 274 ± 57 bc |
Effects | p-value | ||||||
Irri | <0.0001 | <0.0001 | 0.0049 | <0.0001 | <0.0001 | ||
Ino | 0.018 | 0.0097 | 0.3881 | 0.0018 | 0.0064 | ||
Var | 0.3251 | 0.0117 | <0.0001 | 0.287 | 0.0857 | ||
Irri × Ino | 0.0013 | 0.0109 | n.s. | 0.0077 | 0.0031 | ||
Ino × Var | 0.7927 | 0.003 | n.s. | 0.0499 | 0.0891 | ||
Irri × Var | 0.1536 | n.s. | 0.0023 | n.s. | 0.4543 | ||
Irri ×Ino ×Var | 0.0659 | n.s. | n.s. | n.s. | 0.0441 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos-González, L.; Carreras, C.; Beltrán, M.F.; Figueroa, F.; Rubilar-Hernández, C.; Opazo, I.; Toro, G.; Salvatierra, A.; Sagredo, B.; Pizarro, L.; et al. Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae. Plants 2024, 13, 1737. https://doi.org/10.3390/plants13131737
Villalobos-González L, Carreras C, Beltrán MF, Figueroa F, Rubilar-Hernández C, Opazo I, Toro G, Salvatierra A, Sagredo B, Pizarro L, et al. Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae. Plants. 2024; 13(13):1737. https://doi.org/10.3390/plants13131737
Chicago/Turabian StyleVillalobos-González, Luis, Claudia Carreras, María Francisca Beltrán, Franco Figueroa, Carlos Rubilar-Hernández, Ismael Opazo, Guillermo Toro, Ariel Salvatierra, Boris Sagredo, Lorena Pizarro, and et al. 2024. "Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae" Plants 13, no. 13: 1737. https://doi.org/10.3390/plants13131737
APA StyleVillalobos-González, L., Carreras, C., Beltrán, M. F., Figueroa, F., Rubilar-Hernández, C., Opazo, I., Toro, G., Salvatierra, A., Sagredo, B., Pizarro, L., Fiore, N., Pinto, M., Arbona, V., Gómez-Cadenas, A., & Pimentel, P. (2024). Sweet Cherry Plants Prioritize Their Response to Cope with Summer Drought, Overshadowing the Defense Response to Pseudomonas syringae pv. syringae. Plants, 13(13), 1737. https://doi.org/10.3390/plants13131737