Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses
Abstract
:1. Introduction
2. Biotic Stress
2.1. The Enhancement of Herbicide Tolerance
2.2. Enhancing Disease Tolerance in Sugarcane
2.3. The Reinforcement of Insect and Pest Resistance
3. The Enhancement of Tolerance to Abiotic Stress
4. Production of New Compounds and Renewable Energy Sources
5. Status and Concerns about GM Sugarcane
6. Genome Editing for Sugarcane Improvement
7. Future Perspectives and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aslam, U.; Tabassum, B.; Nasir, I.A.; Khan, A.; Husnain, T. A Virus-Derived Short Hairpin RNA Confers Resistance against Sugarcane Mosaic Virus in Transgenic Sugarcane. Transgenic Res. 2018, 27, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Wu, W.; Yan, Y.; Bhuiyan, S.A. Overexpression of TERF1 in Sugarcane Improves Tolerance to Drought Stress. Crop Pasture Sci. 2021, 72, 268–279. [Google Scholar] [CrossRef]
- Grandis, A.; Fortirer, J.S.; Navarro, B.V.; de Oliveira, L.P.; Buckeridge, M.S. Biotechnologies to Improve Sugarcane Productivity in a Climate Change Scenario. BioEnergy Res. 2023, 17, 1–26. [Google Scholar] [CrossRef]
- Piperidis, N.; D’Hont, A. Sugarcane Genome Architecture Decrypted with Chromosome-Specific Oligo Probes. Plant J. 2020, 103, 2039–2051. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.L.C.; Almeida, C.B.; Oliveira, C.A.; Tacuatiá, L.O.; Munhoz, C.F.; Cauz-Santos, L.A.; Pinto, L.R.; Monteiro-Vitorello, C.B.; Xavier, M.A.; Forni-Martins, E.R. Revisiting Meiosis in Sugarcane: Chromosomal Irregularities and the Prevalence of Bivalent Configurations. Front. Genet. 2018, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J.; et al. Allele-Defined Genome of the Autopolyploid Sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Garsmeur, O.; Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; et al. A Mosaic Monoploid Reference Sequence for the Highly Complex Genome of Sugarcane. Nat. Commun. 2018, 9, 2638. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.M.; Van Sluys, M.-A.; Lembke, C.G.; Lee, H.; Margarido, G.R.A.; Hotta, C.T.; Gaiarsa, J.W.; Diniz, A.L.; Oliveira, M.d.M.; Ferreira, S.d.S.; et al. Assembly of the 373k Gene Space of the Polyploid Sugarcane Genome Reveals Reservoirs of Functional Diversity in the World’s Leading Biomass Crop. Gigascience 2019, 8, giz129. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, Y.; Pan, H.; Tang, H.; Wang, G.; Hua, X.; Wang, Y.; Lin, L.; Li, Z.; Li, Y.; et al. Genomic Insights into the Recent Chromosome Reduction of Autopolyploid Sugarcane Saccharum spontaneum. Nat. Genet. 2022, 54, 885–896. [Google Scholar] [CrossRef]
- Wang, T.; Wang, B.; Hua, X.; Tang, H.; Zhang, Z.; Gao, R.; Qi, Y.; Zhang, Q.; Wang, G.; Yu, Z.; et al. A Complete Gap-Free Diploid Genome in Saccharum Complex and the Genomic Footprints of Evolution in the Highly Polyploid Saccharum Genus. Nat. Plants 2023, 9, 554–571. [Google Scholar] [CrossRef]
- Kui, L.; Majeed, A.; Wang, X.; Yang, Z.; Chen, J.; He, L.; Di, Y.; Li, X.; Qian, Z.; Jiao, Y.; et al. A Chromosome-Level Genome Assembly for Erianthus fulvus Provides Insights into Its Biofuel Potential and Facilitates Breeding for Improvement of Sugarcane. Plant Commun. 2023, 4, 100562. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, Q.; Huang, J.; Zhang, S.; Yao, W.; Yu, Z.; Deng, Z.; Yu, J.; Kong, W.; Yu, X.; et al. A Chromosomal-Scale Genome Assembly of Modern Cultivated Hybrid Sugarcane Provides Insights into Origination and Evolution. Nat. Commun. 2024, 15, 3041. [Google Scholar] [CrossRef]
- Healey, A.L.; Garsmeur, O.; Lovell, J.T.; Shengquiang, S.; Sreedasyam, A.; Jenkins, J.; Plott, C.B.; Piperidis, N.; Pompidor, N.; Llaca, V.; et al. The Complex Polyploid Genome Architecture of Sugarcane. Nature 2024, 628, 804–810. [Google Scholar] [CrossRef]
- Bower, R.; Birch, R.G. Transgenic Sugarcane Plants via Microprojectile Bombardment. Plant J. 1992, 2, 409–416. [Google Scholar] [CrossRef]
- Arencibia, A.D.; Carmona, E.R.; Tellez, P.; Chan, M.-T.; Yu, S.-M.; Trujillo, L.E.; Oramas, P. An Efficient Protocol for Sugarcane (Saccharum spp. L.) Transformation Mediated by Agrobacterium tumefaciens. Transgenic Res. 1998, 7, 213–222. [Google Scholar] [CrossRef]
- Budeguer, F.; Enrique, R.; Perera, M.F.; Racedo, J.; Castagnaro, A.P.; Noguera, A.S.; Welin, B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. Front. Plant Sci. 2021, 12, 768609. [Google Scholar] [CrossRef]
- Li, A.-M.; Chen, Z.-L.; Liao, F.; Zhao, Y.; Qin, C.-X.; Wang, M.; Pan, Y.-Q.; Wei, S.-L.; Huang, D.-L. Sugarcane Borers: Species, Distribution, Damage and Management Options. J. Pest. Sci. 2024, 1–31. [Google Scholar] [CrossRef]
- Budeguer, F.; Racedo, J.; Enrique, R.; Perera, M.F.; Ostengo, S.; Noguera, A.S. Transgenic Sugarcane for the Sustainable Management of the Sugarcane Borer Diatraea saccharalis. Sugar Ind. 2024, 149, 133–138. [Google Scholar] [CrossRef]
- Mulwa, R.M.S.; Mwanza, L.M. Review-Biotechnology Approaches to Developing Herbicide Tolerance/Selectivity in Crops. Afr. J. Biotechnol. 2006, 5, 396–404. [Google Scholar]
- Falco, M.C.; Tulmann Neto, A.; Ulian, E.C. Transformation and Expression of a Gene for Herbicide Resistance in a Brazilian Sugarcane. Plant Cell Rep. 2000, 19, 1188–1194. [Google Scholar] [CrossRef]
- Wang, W.Z.; Yang, B.P.; Feng, X.Y.; Cao, Z.Y.; Feng, C.L.; Wang, J.G.; Xiong, G.R.; Shen, L.B.; Zeng, J.; Zhao, T.T.; et al. Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance. Front. Plant Sci. 2017, 8, 1535. [Google Scholar] [CrossRef]
- Nasir, I.; Tabassum, B.; Qamar, Z.; Javed, M.; Tariq, M.; Farooq, A.; Butt, S.; Qayyum, A.; Husnain, T. Herbicide-Tolerant Sugarcane (Saccharum officinarum L.) Plants: An Unconventional Method of Weed Removal. Turk. J. Biol. 2014, 38, 439–449. [Google Scholar] [CrossRef]
- Racedo, J.; Noguera, A.S.; Castagnaro, A.P.; Perera, M.F. Biotechnological Strategies Adopted for Sugarcane Disease Management in Tucumán, Argentina. Plants 2023, 12, 3994. [Google Scholar] [CrossRef]
- Qamar, Z.; Nasir, I.A.; Abouhaidar, M.G.; Hefferon, K.L.; Rao, A.Q.; Latif, A.; Ali, Q.; Anwar, S.; Rashid, B.; Shahid, A.A. Novel Approaches to Circumvent the Devastating Effects of Pests on Sugarcane. Sci. Rep. 2021, 11, 12428. [Google Scholar] [CrossRef] [PubMed]
- Zan, F.; Wu, Z.; Wang, W.; Hu, X.; Feng, L.; Liu, X.; Liu, J.; Zhao, L.; Wu, C.; Zhang, S.; et al. Strigolactones in Sugarcane Growth and Development. Agronomy 2023, 13, 1086. [Google Scholar] [CrossRef]
- Wang, W.; Javed, T.; Shen, L.; Sun, T.; Yang, B.; Zhang, S. Establishment of an Efficient Sugarcane Transformation System via Herbicide-Resistant CP4-EPSPS Gene Selection. Plants 2024, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Noguera, A.; Enrique, R.; Ostengo, S.; Perera, M.F.; Racedo, J.; Costilla, D.; Zossi, S.; Cuenya, M.I.; Paula, M.; Welin, B.; et al. Development of the Transgenic Sugarcane Event TUC 87-3RG Resistant to Glyphosate. Proc. Int. Soc. Sugar Cane Technol. 2019, 30, 493–501. [Google Scholar]
- Leibbrandt, N.B.; Snyman, S.J. Stability of Gene Expression and Agronomic Performance of a Transgenic Herbicide-Resistant Sugarcane Line in South Africa. Crop Sci. 2003, 43, 671–677. [Google Scholar] [CrossRef]
- Enríquez-Obregón, G.A.; Vázquez-Padrón, R.I.; Prieto-Samsonov, D.L.; De la Riva, G.A.; Selman-Housein, G. Herbicide-Resistant Sugarcane (Saccharum officinarum L.) Plants by Agrobacterium-Mediated Transformation. Planta 1998, 206, 20–27. [Google Scholar] [CrossRef]
- Manickavasagam, M.; Ganapathi, A.; Anbazhagan, V.R.; Sudhakar, B.; Selvaraj, N.; Vasudevan, A.; Kasthurirengan, S. Agrobacterium-Mediated Genetic Transformation and Development of Herbicide-Resistant Sugarcane (Saccharum Species Hybrids) Using Axillary Buds. Plant Cell Rep. 2004, 23, 134–143. [Google Scholar] [CrossRef]
- Wang, W.Z.; Yang, B.P.; Feng, C.L.; Wang, J.G.; Xiong, G.R.; Zhao, T.T.; Zhang, S.Z. Efficient Sugarcane Transformation via Bar Gene Selection. Trop. Plant Biol. 2017, 10, 77–85. [Google Scholar] [CrossRef]
- Ostengo, S.; Serino, G.; Perera, M.F.; Racedo, J.; Mamaní González, S.Y.; Yáñez Cornejo, F.; Cuenya, M.I. Sugarcane Breeding, Germplasm Development and Supporting Genetic Research in Argentina. Sugar Tech 2022, 24, 166–180. [Google Scholar] [CrossRef]
- Oz, M.T.; Altpeter, A.; Karan, R.; Merotto, A.; Altpeter, F. CRISPR/Cas9-mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Front. Genome Ed. 2021, 3, 673566. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.P.; Dias, R.O.; Silva-Filho, M.C. Defense-Related Proteins Involved in Sugarcane Responses to Biotic Stress. Genet. Mol. Biol. 2017, 40, 360–372. [Google Scholar] [CrossRef]
- Chu, N.; Zhou, J.-R.; Rott, P.C.; Li, J.; Fu, H.-Y.; Huang, M.-T.; Zhang, H.-L.; Gao, S.-J. ScPR1 Plays a Positive Role in the Regulation of Resistance to Diverse Stresses in Sugarcane (Saccharum spp.) and Arabidopsis thaliana. Ind. Crops Prod. 2022, 180, 114736. [Google Scholar] [CrossRef]
- Zhou, J.-R.; Sun, H.-D.; Ali, A.; Rott, P.C.; Javed, T.; Fu, H.-Y.; Gao, S.-J. Quantitative Proteomic Analysis of the Sugarcane Defense Responses Incited by Acidovorax avenae subsp. avenae Causing Red Stripe. Ind. Crops Prod. 2021, 162, 113275. [Google Scholar] [CrossRef]
- Javed, T.; Gao, S.-J. WRKY Transcription Factors in Plant Defense. Trends Genet. 2023, 39, 787–801. [Google Scholar] [CrossRef] [PubMed]
- Javed, T.; Shabbir, R.; Ali, A.; Afzal, I.; Zaheer, U.; Gao, S.-J. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. Plants 2020, 9, 491. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Wang, R.; Hou, Y.; Fu, H.; Xie, Y.; Gao, S.; Wang, J. Unveiling Sugarcane Defense Response to Mythimna separata Herbivory by a Combination of Transcriptome and Metabolic Analyses. Pest. Manag. Sci. 2021, 77, 4799–4809. [Google Scholar] [CrossRef]
- Hu, Z.-T.; Ntambo, M.S.; Zhao, J.-Y.; Javed, T.; Shi, Y.; Fu, H.-Y.; Huang, M.-T.; Gao, S.-J. Genetic Divergence and Population Structure of Xanthomonas albilineans Strains Infecting Saccharum spp. Hybrid and Saccharum officinarum. Plants 2023, 12, 1937. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Budeguer, F.; Nikpay, A.; Enrique, R.; Singh, M.; Zhang, B.-Q.; Wu, J.-M.; Li, Y.-R. Genetic Engineering: An Efficient Approach to Mitigating Biotic and Abiotic Stresses in Sugarcane Cultivation. Plant Signal. Behav. 2022, 17, 2108253. [Google Scholar] [CrossRef]
- Cursi, D.E.; Castillo, R.O.; Tarumoto, Y.; Umeda, M.; Tippayawat, A.; Ponragdee, W.; Racedo, J.; Perera, M.F.; Hoffmann, H.P.; Carneiro, M.S. Origin, Genetic Diversity, Conservation, and Traditional and Molecular Breeding Approaches in Sugarcane. In Cash Crops: Genetic Diversity, Erosion, Conservation and Utilization; Priyadarshan, P.M., Jain, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 83–116. ISBN 978-3-030-74926-2. [Google Scholar]
- Ingelbrecht, I.L.; Irvine, J.E.; Mirkov, T.E. Posttranscriptional Gene Silencing in Transgenic Sugarcane. Dissection of Homology-Dependent Virus Resistance in a Monocot That Has a Complex Polyploid Genome. Plant Physiol. 1999, 119, 1187–1198. [Google Scholar] [CrossRef]
- McQualter, R.B.; Dale, J.L.; Harding, R.M.; McMahon, J.A.; Smith, G.R. Production and Evaluation of Transgenic Sugarcane Containing a Fiji Disease Virus (FDV) Genome Segment S9-Derived Synthetic Resistance Gene. Aust. J. Agric. Res. 2004, 55, 139–145. [Google Scholar] [CrossRef]
- Zhu, Y.J.; McCafferty, H.; Osterman, G.; Lim, S.; Agbayani, R.; Lehrer, A.; Schenck, S.; Komor, E. Genetic Transformation with Untranslatable Coat Protein Gene of Sugarcane Yellow Leaf Virus Reduces Virus Titers in Sugarcane. Transgenic Res. 2011, 20, 503–512. [Google Scholar] [CrossRef]
- Apriasti, R.; Widyaningrum, S.; Hidayati, W.N.; Sawitri, W.D.; Darsono, N.; Hase, T.; Sugiharto, B. Full Sequence of the Coat Protein Gene Is Required for the Induction of Pathogen-Derived Resistance against Sugarcane Mosaic Virus in Transgenic Sugarcane. Mol. Biol. Rep. 2018, 45, 2749–2758. [Google Scholar] [CrossRef]
- Guo, J.; Gao, S.; Lin, Q.; Wang, H.; Que, Y.; Xu, L. Transgenic Sugarcane Resistant to Sorghum Mosaic Virus Based on Coat Protein Gene Silencing by RNA Interference. BioMed Res. Int. 2015, 2015, e861907. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Gallo-Meagher, M.; Comstock, J.C.; Miller, J.D.; Jain, M.; Abouzid, A. Agronomic Evaluation of Sugarcane Lines Transformed for Resistance to Sugarcane Mosaic Virus Strain E. Crop Sci. 2005, 45, 2060–2067. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Glynn, N.C.; Comstock, J.C.; Davis, M.J. Agronomic Performance and Genetic Characterization of Sugarcane Transformed for Resistance to Sugarcane Yellow Leaf Virus. Field Crops Res. 2009, 111, 39–46. [Google Scholar] [CrossRef]
- Hidayati, W.N.; Apriasti, R.; Addy, H.S.; Sugiharto, B. Distinguishing Resistances of Transgenic Sugarcane Generated from RNA Interference and Pathogen-derived Resistance Approaches to Combating Sugarcane Mosaic Virus. Indones. J. Biotechnol. 2021, 26, 107–114. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Feng, X.; Shen, L.; Feng, C.; Zhao, T.; Xiao, H.; Li, S.; Zhang, S. Breeding of Virus-Resistant Transgenic Sugarcane by the Integration of the Pac1 Gene. Front. Sustain. Food Syst. 2022, 6, 925839. [Google Scholar] [CrossRef]
- Nayyar, S.; Sharma, B.K.; Kaur, A.; Kalia, A.; Sanghera, G.S.; Thind, K.S.; Yadav, I.S.; Sandhu, J.S. Red Rot Resistant Transgenic Sugarcane Developed through Expression of β-1,3-glucanase Gene. PLoS ONE 2017, 12, e0179723. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Tabassum, B.; Toufiq, N.; Bhatti, M.U.; Riaz, S.; Nasir, I.A.; Husnain, T. Antifungal Activity of Chitinase II against Colletotrichum falcatum Went. Causing Red Rot Disease in Transgenic Sugarcane. Turk. J. Biol. 2018, 42, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Parvaiz, A.; Mustafa, G.; Khan, M.S.; Ali, M.A. Over-Expression of Endogenous SUGARWIN Genes Exalted Tolerance against Colletotrichum Infection in Sugarcane. Plants 2021, 10, 869. [Google Scholar] [CrossRef]
- Maeda, S.; Ackley, W.; Yokotani, N.; Sasaki, K.; Ohtsubo, N.; Oda, K.; Mori, M. Enhanced Resistance to Fungal and Bacterial Diseases due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Int. J. Mol. Sci. 2023, 24, 3644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, J.; Birch, R.G. Engineered Detoxification Confers Resistance against a Pathogenic Bacterium. Nat. Biotechnol. 1999, 17, 1021–1024. [Google Scholar] [CrossRef]
- Babu, K.H.; Devarumath, R.M.; Thorat, A.S.; Nalavade, V.M.; Saindane, M.; Appunu, C.; Suprasanna, P. Sugarcane Transgenics: Developments and Opportunities. In Genetically Modified Crops: Current Status, Prospects and Challenges Volume 1; Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T., Eds.; Springer: Singapore, 2021; pp. 241–265. ISBN 9789811558979. [Google Scholar]
- Sawitri, W.D.; Harmoko, R.; Sugiharto, B. Induction of Resistance against Sugarcane Mosaic Virus by Pathogen-Derived Resistance and RNA Interference Methods in Transgenic Sugarcane. AIP Conf. Proc. 2024, 3080, 020002. [Google Scholar] [CrossRef]
- Viswanathan, C.; Anburaj, J.; Prabu, G. Identification and Validation of Sugarcane Streak Mosaic Virus-Encoded microRNAs and Their Targets in Sugarcane. Plant Cell Rep. 2014, 33, 265–276. [Google Scholar] [CrossRef]
- Widyaningrum, S.; Pujiasih, D.R.; Sholeha, W.; Harmoko, R.; Sugiharto, B. Induction of Resistance Tolerance to Sugarcane Mosaic Virus by RNA Interference Targeting Coat Protein Gene Silencing in Transgenic Sugarcane. Mol. Biol. Rep. 2021, 48, 3047–3054. [Google Scholar] [CrossRef]
- Yao, W.; Ruan, M.; Qin, L.; Yang, C.; Chen, R.; Chen, B.; Zhang, M. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Front. Plant Sci. 2017, 8, 104. [Google Scholar] [CrossRef]
- Noguera, A.; Enrique, R.; Perera, M.F.; Ostengo, S.; Racedo, J.; Costilla, D.; Zossi, S.; Cuenya, M.I.; Filippone, M.P.; Welin, B.; et al. Genetic Characterization and Field Evaluation to Recover Parental Phenotype in Transgenic Sugarcane: A Step toward Commercial Release. Mol. Breed. 2015, 35, 115. [Google Scholar] [CrossRef]
- Nerkar, G.; Thorat, A.; Sheelavantmath, S.; Kassa, H.B.; Devarumath, R. Genetic Transformation of Sugarcane and Field Performance of Transgenic Sugarcane. In Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 207–226. ISBN 978-3-319-90650-8. [Google Scholar]
- Weng, L.-X.; Deng, H.-H.; Xu, J.-L.; Li, Q.; Zhang, Y.-Q.; Jiang, Z.-D.; Li, Q.-W.; Chen, J.-W.; Zhang, L.-H. Transgenic Sugarcane Plants Expressing High Levels of Modified cry1Ac Provide Effective Control against Stem Borers in Field Trials. Transgenic Res. 2011, 20, 759–772. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, R.S.; Khan, M.A.; Gul, K.; Jalil, F.; Shah, D.A.; Rahman, H.; Ahmed, T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol. Biotechnol. 2021, 63, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Schneider, V.K.; Soares-Costa, A.; Chakravarthi, M.; Ribeiro, C.; Chabregas, S.M.; Falco, M.C.; Henrique-Silva, F. Transgenic Sugarcane Overexpressing CaneCPI-1 Negatively Affects the Growth and Development of the Sugarcane Weevil Sphenophorus levis. Plant Cell Rep. 2017, 36, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.; Malhotra, P.K.; Gosal, S.S. Direct Plant Regeneration from Cultured Young Leaf Segments of Sugarcane. Plant Cell Tissue Organ Cult. 2006, 84, 227–231. [Google Scholar] [CrossRef]
- Gosal, S.S.; Wani, S.H. Plant Genetic Transformation and Transgenic Crops: Methods and Applications. In Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–23. ISBN 978-3-319-90650-8. [Google Scholar]
- Sétamou, M.; Bernal, J.S.; Legaspi, J.C.; Mirkov, T.E.; Legaspi, B.C. Evaluation of Lectin-Expressing Transgenic Sugarcane against Stalkborers (Lepidoptera: Pyralidae): Effects on Life History Parameters. J. Econ. Entomol. 2002, 95, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-N.; Wei, Y.-W.; Lü, W.-L.; Li, Y.-R. Fusion Insect-Resistant Gene Mediated by Matrix Attachment Region (MAR) Sequence in Transgenic Sugarcane. Sugar Tech 2008, 10, 87–90. [Google Scholar] [CrossRef]
- Christy, L.A.; Arvinth, S.; Saravanakumar, M.; Kanchana, M.; Mukunthan, N.; Srikanth, J.; Thomas, G.; Subramonian, N. Engineering Sugarcane Cultivars with Bovine Pancreatic Trypsin Inhibitor (Aprotinin) Gene for Protection against Top Borer (Scirpophaga excerptalis Walker). Plant Cell Rep. 2009, 28, 175–184. [Google Scholar] [CrossRef]
- Riaz, S.; Nasir, I.A.; Bhatti, M.U.; Adeyinka, O.S.; Toufiq, N.; Yousaf, I.; Tabassum, B. Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in Transgenic Lines of Sugarcane Expressing Bacillus thuringiensis Derived Vip3A Protein. Mol. Biol. Rep. 2020, 47, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Dessoky, E.S.; Ismail, R.M.; Elarabi, N.I.; Abdelhadi, A.A.; Abdallah, N.A. Improvement of Sugarcane for Borer Resistance Using Agrobacterium Mediated Transformation of cry1Ac Gene. GM Crops Food 2021, 12, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Cristofoletti, P.T.; Kemper, E.L.; Capella, A.N.; Carmago, S.R.; Cazoto, J.L.; Ferrari, F.; Galvan, T.L.; Gauer, L.; Monge, G.A.; Nishikawa, M.A.; et al. Development of Transgenic Sugarcane Resistant to Sugarcane Borer. Trop. Plant Biol. 2018, 11, 17–30. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Su, L.; Li, G.; Huang, Z.; Huang, D.; Wu, W.; Zhao, Y. Expression of Pinellia pedatisecta Agglutinin PPA Gene in Transgenic Sugarcane Led to Stomata Patterning Change and Resistance to Sugarcane Woolly Aphid, Ceratovacuna lanigera Zehntner. Int. J. Mol. Sci. 2022, 23, 7195. [Google Scholar] [CrossRef]
- Braga, D.P.V.; Arrigoni, E.D.B.; Silva-Filho, M.C.; Ulian, E.C. Expression of the Cry1Ab Protein in Genetically Modified Sugarcane for the Control of Diatraea saccharalis (Lepidoptera: Crambidae). J. New Seeds 2003, 5, 209–221. [Google Scholar] [CrossRef]
- Weng, L.-X.; Deng, H.; Xu, J.-L.; Li, Q.; Wang, L.-H.; Jiang, Z.; Zhang, H.B.; Li, Q.; Zhang, L.-H. Regeneration of Sugarcane Elite Breeding Lines and Engineering of Stem Borer Resistance. Pest. Manag. Sci. 2006, 62, 178–187. [Google Scholar] [CrossRef]
- Zhangsun, D.; Luo, S.; Chen, R.; Tang, K. Improved Agrobacterium-Mediated Genetic Transformation of GNA Transgenic Sugarcane. Biologia 2007, 62, 386–393. [Google Scholar] [CrossRef]
- Xu, J.-S.; Gao, S.; Xu, L.; Chen, R. Construction of Expression Vector of CryIA(c) Gene and Its Transformation in Sugarcane. Sugar Tech 2008, 10, 269–273. [Google Scholar] [CrossRef]
- Ribeiro, C.W.; Soares-Costa, A.; Falco, M.C.; Chabregas, S.M.; Ulian, E.C.; Cotrin, S.S.; Carmona, A.K.; Santana, L.A.; Oliva, M.L.V.; Henrique-Silva, F. Production of a His-Tagged Canecystatin in Transgenic Sugarcane and Subsequent Purification. Biotechnol. Prog. 2008, 24, 1060–1066. [Google Scholar] [CrossRef]
- Kalunke, R.M.; Kolge, A.M.; Babu, K.H.; Prasad, D.T. Agrobacterium Mediated Transformation of Sugarcane for Borer Resistance Using Cry 1Aa3 Gene and One-Step Regeneration of Transgenic Plants. Sugar Tech 2009, 11, 355–359. [Google Scholar] [CrossRef]
- Arvinth, S.; Arun, S.; Selvakesavan, R.K.; Srikanth, J.; Mukunthan, N.; Ananda Kumar, P.; Premachandran, M.N.; Subramonian, N. Genetic Transformation and Pyramiding of Aprotinin-Expressing Sugarcane with cry1Ab for Shoot Borer (Chilo infuscatellus) Resistance. Plant Cell Rep. 2010, 29, 383–395. [Google Scholar] [CrossRef]
- Gao, S.; Yang, Y.; Wang, C.; Guo, J.; Zhou, D.; Wu, Q.; Su, Y.; Xu, L.; Que, Y. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer. PLoS ONE 2016, 11, e0153929. [Google Scholar] [CrossRef]
- Islam, N.; Laksana, C.; Chanprame, S. Agrobacterium-mediated Transformation and Expression of Bt Gene in Transgenic Sugarcane. J. Int. Soc. Southeast Asian Agric. Sci. 2016, 22, 84–95. [Google Scholar]
- Shibao, P.Y.T.; Santos-Júnior, C.D.; Santiago, A.C.; Mohan, C.; Miguel, M.C.; Toyama, D.; Vieira, M.A.S.; Narayanan, S.; Figueira, A.; Carmona, A.K.; et al. Sugarcane Cystatins: From Discovery to Biotechnological Applications. Int. J. Biol. Macromol. 2021, 167, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Liu, X.; Gao, S.; Guo, J.; Su, Y.; Ling, H.; Wang, C.; Li, Z.; Xu, L.; Que, Y. Foreign cry1Ac Gene Integration and Endogenous Borer Stress-Related Genes Synergistically Improve Insect Resistance in Sugarcane. BMC Plant Biol. 2018, 18, 342. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Yang, Y.; Xu, L.; Guo, J.; Su, Y.; Wu, Q.; Wang, C.; Que, Y. Particle Bombardment of the cry2A Gene Cassette Induces Stem Borer Resistance in Sugarcane. Int. J. Mol. Sci. 2018, 19, 1692. [Google Scholar] [CrossRef]
- Cheavegatti-Gianotto, A.; Gentile, A.; Oldemburgo, D.A.; Merheb, G.d.A.; Sereno, M.L.; Lirette, R.P.; Ferrseira, T.H.S.; de Oliveira, W.S. Lack of Detection of Bt Sugarcane Cry1Ab and nptII DNA and Proteins in Sugarcane Processing Products Including Raw Sugar. Front. Bioeng. Biotechnol. 2018, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Gianotto, A.C.; Rocha, M.S.; Cutri, L.; Lopes, F.C.; Dal’Acqua, W.; Hjelle, J.J.; Lirette, R.P.; Oliveira, W.S.; Sereno, M.L. The Insect-Protected CTC91087-6 Sugarcane Event Expresses Cry1Ac Protein Preferentially in Leaves and Presents Compositional Equivalence to Conventional Sugarcane. GM Crops Food 2019, 10, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Koerniati, S.; Sukmadjaja, D.; Samudra, I.M. C Synthetic Gene of CryIAb-CryIAc Fusion to Generate Resistant Sugarcane to Shoot or Stem Borer. IOP Conf. Ser. Earth Environ. Sci. 2020, 418, 012069. [Google Scholar] [CrossRef]
- Punithavalli, M.; Jebamalaimary, A. Inhibitory Activities of Proteinase Inhibitors on Developmental Characteristics of Sugarcane Chilo infuscatellus (Snellen). Phytoparasitica 2019, 47, 43–53. [Google Scholar] [CrossRef]
- Punithavalli, M. Spatial Distribution of Proteinase Inhibitors among Diverse Groups of Sugarcane and Their Interaction with Sugarcane Borers. Indian J. Entomol. 2022, 84, 693–696. [Google Scholar] [CrossRef]
- Salgado, L.D.; Wilson, B.E.; Villegas, J.M.; Richard, R.T.; Penn, H.J. Resistance to the Sugarcane Borer (Lepidoptera: Crambidae) in Louisiana Sugarcane Cultivars. Environ. Entomol. 2022, 51, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Sivalingam, P.N.; Baskaran, R.K.M.; Senthil-Kumar, M.; Ghosh, P.K. Plant Responses to Concurrent Abiotic and Biotic Stress: Unravelling Physiological and Morphological Mechanisms. Plant Physiol. Rep. 2024, 29, 6–17. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic Stress Responses in Plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Zhao, J.-Y.; Javed, T.; Ali, A.; Huang, M.-T.; Fu, H.-Y.; Zhang, H.-L.; Gao, S.-J. Insights into Reactive Oxygen Species Production-Scavenging System Involved in Sugarcane Response to Xanthomonas albilineans Infection under Drought Stress. Plants 2024, 13, 862. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Jiang, C.; Chen, L.; Paul, A.; Chatterjee, A.; Shen, G. Achieving Abiotic Stress Tolerance in Plants through Antioxidative Defense Mechanisms. Front. Plant Sci. 2023, 14, 1110622. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, F. Any Trait or Trait-Related Allele Can Confer Drought Tolerance: Just Design the Right Drought Scenario. J. Exp. Bot. 2012, 63, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Cominelli, E.; Conti, L.; Tonelli, C.; Galbiati, M. Challenges and Perspectives to Improve Crop Drought and Salinity Tolerance. New Biotechnol. 2013, 30, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.R.; Andrade Dias Brito da Cunha, B.; Martins, P.K.; Martins, M.T.B.; Alekcevetch, J.C.; Chalfun-Júnior, A.; Andrade, A.C.; Ribeiro, A.P.; Qin, F.; Mizoi, J.; et al. Induced Over-Expression of AtDREB2A CA Improves Drought Tolerance in Sugarcane. Plant Sci. 2014, 221–222, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mbambalala, N.; Panda, S.K.; van der Vyver, C. Overexpression of AtBBX29 Improves Drought Tolerance by Maintaining Photosynthesis and Enhancing the Antioxidant and Osmolyte Capacity of Sugarcane Plants. Plant Mol. Biol. Rep. 2021, 39, 419–433. [Google Scholar] [CrossRef]
- Kumar, T.; Uzma; Khan, M.R.; Abbas, Z.; Ali, G.M. Genetic Improvement of Sugarcane for Drought and Salinity Stress Tolerance Using Arabidopsis Vacuolar Pyrophosphatase (AVP1) Gene. Mol. Biotechnol. 2014, 56, 199–209. [Google Scholar] [CrossRef] [PubMed]
- RAZA, G.; Ali, K.; Ashraf, M.; Mansoor, S.; Javid, M.; Asad, S. Overexpression of an H+-PPase Gene from Arabidopsis in Sugarcane Improves drought Tolerance, Plant Growth, and Photosynthetic Responses. Turk. J. Biol. 2016, 40, 109–119. [Google Scholar] [CrossRef]
- Ramiro, D.A.; Melotto-Passarin, D.M.; Barbosa, M.d.A.; dos Santos, F.; Gomez, S.G.P.; Massola Júnior, N.S.; Lam, E.; Carrer, H. Expression of Arabidopsis Bax Inhibitor-1 in Transgenic Sugarcane Confers Drought Tolerance. Plant Biotechnol. J. 2016, 14, 1826–1837. [Google Scholar] [CrossRef]
- Guerzoni, J.T.S.; Belintani, N.G.; Moreira, R.M.P.; Hoshino, A.A.; Domingues, D.S.; Filho, J.C.B.; Vieira, L.G.E. Stress-Induced Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS) Gene Confers Tolerance to Salt Stress in Transgenic Sugarcane. Acta Physiol. Plant. 2014, 36, 2309–2319. [Google Scholar] [CrossRef]
- Li, J.; Phan, T.-T.; Li, Y.-R.; Xing, Y.-X.; Yang, L.-T. Isolation, Transformation and Overexpression of Sugarcane SoP5CS Gene for Drought Tolerance Improvement. Sugar Tech 2018, 20, 464–473. [Google Scholar] [CrossRef]
- Mohanan, M.V.; Pushpanathan, A.; Padmanabhan, S.; Sasikumar, T.; Jayanarayanan, A.N.; Selvarajan, D.; Ramalingam, S.; Ram, B.; Chinnaswamy, A. Overexpression of Glyoxalase III Gene in Transgenic Sugarcane Confers Enhanced Performance under Salinity Stress. J. Plant Res. 2021, 134, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Augustine, S.M.; Cherian, A.V.; Syamaladevi, D.P.; Subramonian, N. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. Hybrid) in Response to Drought Stress. Plant Cell Physiol. 2015, 56, 2368–2380. [Google Scholar] [CrossRef] [PubMed]
- Belintani, N.G.; Guerzoni, J.T.S.; Moreira, R.M.P.; Vieira, L.G.E. Improving Low-Temperature Tolerance in Sugarcane by Expressing the Ipt Gene under a Cold Inducible Promoter. Biol. Plant 2012, 56, 71–77. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Khan, Q.; Sun, B.; Tang, L.-H.; Yang, L.-T.; Zhang, B.-Q.; Xiu, X.-Y.; Dong, D.-F.; Li, Y.-R. Overexpression of Sugarcane SoTUA Gene Enhances Cold Tolerance in Transgenic Sugarcane. Agron. J. 2021, 113, 4993–5005. [Google Scholar] [CrossRef]
- Zhang, S.-Z.; Yang, B.-P.; Feng, C.-L.; Chen, R.-K.; Luo, J.-P.; Cai, W.-W.; Liu, F.-H. Expression of the Grifola frondosa Trehalose Synthase Gene and Improvement of Drought-Tolerance in Sugarcane (Saccharum officinarum L.). J. Integr. Plant Biol. 2006, 48, 453–459. [Google Scholar] [CrossRef]
- Augustine, S.M.; Ashwin Narayan, J.; Syamaladevi, D.P.; Appunu, C.; Chakravarthi, M.; Ravichandran, V.; Tuteja, N.; Subramonian, N. Overexpression of EaDREB2 and Pyramiding of EaDREB2 with the Pea DNA Helicase Gene (PDH45) Enhance Drought and Salinity Tolerance in Sugarcane (Saccharum spp. Hybrid). Plant Cell Rep. 2015, 34, 247–263. [Google Scholar] [CrossRef]
- Moran, J.F.; Becana, M.; Iturbe-Ormaetxe, I.; Frechilla, S.; Klucas, R.V.; Aparicio-Tejo, P. Drought Induces Oxidative Stress in Pea Plants. Planta 1994, 194, 346–352. [Google Scholar] [CrossRef]
- Narayan, J.A.; Manoj, V.M.; Nerkar, G.; Chakravarthi, M.; Dharshini, S.; Subramonian, N.; Premachandran, M.N.; Valarmathi, R.; Kumar, R.A.; Gomathi, R.; et al. Transgenic Sugarcane with Higher Levels of BRK1 Showed Improved Drought Tolerance. Plant Cell Rep. 2023, 42, 1611–1628. [Google Scholar] [CrossRef]
- Mohanan, M.V.; Thelakat Sasikumar, S.P.; Jayanarayanan, A.N.; Selvarajan, D.; Ramanathan, V.; Shivalingamurthy, S.G.; Raju, G.; Govind, H.; Chinnaswamy, A. Transgenic Sugarcane Overexpressing Glyoxalase III Improved Germination and Biomass Production at Formative Stage under Salinity and Water-Deficit Stress Conditions. 3 Biotech 2024, 14, 52. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Y.; Liu, Q.; Yang, H.; Wang, Z.; Zhang, M. Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Front. Microbiol. 2020, 11, 704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Q.; Xie, S.; Jiang, Y.; Yang, H.; Wang, Z.; Zhang, M. Response of Soil Fungal Community to Drought-Resistant Ea-DREB2B Transgenic Sugarcane. Front. Microbiol. 2020, 11, 562775. [Google Scholar] [CrossRef]
- Mall, A.K.; Manimekalai, R.; Misra, V.; Pandey, H.; Srivastava, S.; Sharma, A. CRISPR/Cas-mediated Genome Editing for Sugarcane Improvement. Sugar Tech 2024, 1–13. [Google Scholar] [CrossRef]
- Appunu, C.; Ram, B.; Subramonian, N. Sugarcane: An Efficient Platform for Molecular Farming. In Sugarcane Biotechnology: Challenges and Prospects; Mohan, C., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–110. ISBN 978-3-319-58946-6. [Google Scholar]
- Fischer, R.; Stoger, E.; Schillberg, S.; Christou, P.; Twyman, R.M. Plant-Based Production of Biopharmaceuticals. Curr. Opin. Plant Biol. 2004, 7, 152–158. [Google Scholar] [CrossRef]
- Jackson, M.A.; Nutt, K.A.; Hassall, R.; Rae, A.L. Comparative Efficiency of Subcellular Targeting Signals for Expression of a Toxic Protein in Sugarcane. Funct. Plant Biol. 2010, 37, 785–793. [Google Scholar] [CrossRef]
- Palaniswamy, H.; Syamaladevi, D.P.; Mohan, C.; Philip, A.; Petchiyappan, A.; Narayanan, S. Vacuolar Targeting of R-Proteins in Sugarcane Leads to Higher Levels of Purifiable Commercially Equivalent Recombinant Proteins in Cane Juice. Plant Biotechnol. J. 2016, 14, 791–807. [Google Scholar] [CrossRef]
- Gabriel, C.; Fernhout, J.; Fichtner, F.; Feil, R.; Lunn, J.E.; Kossmann, J.; Lloyd, J.R.; van der Vyver, C. Genetic Manipulation of Trehalose-6-phosphate Synthase Results in Changes in the Soluble Sugar Profile in Transgenic Sugarcane Stems. Plant Direct 2021, 5, e358. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, X.; Li, X.; Luo, Z.; Lu, X.; You, Q.; Yang, X.; Xu, C.; Liu, X.; Liu, J.; et al. Haplotype Variations of Sucrose Phosphate Synthase Gene among Sugarcane Accessions with Different Sucrose Content. BMC Genom. 2023, 24, 42. [Google Scholar] [CrossRef]
- Anur, R.M.; Mufithah, N.; Sawitri, W.D.; Sakakibara, H.; Sugiharto, B. Overexpression of Sucrose Phosphate Synthase Enhanced Sucrose Content and Biomass Production in Transgenic Sugarcane. Plants 2020, 9, 200. [Google Scholar] [CrossRef]
- Suherman; Wijayanto, S.I.; Anur, R.M.; Neliana, I.R.; Dewanti, P.; Sugiharto, B. Field Evaluation on Growth and Productivity of the Transgenic Sugarcane Lines Overexpressing Sucrose-Phosphate Synthase. Sugar Technol. 2022, 24, 1689–1698. [Google Scholar] [CrossRef]
- Awan, M.F.; Ali, S.; Iqbal, M.S.; Sharif, M.N.; Ali, Q.; Nasir, I.A. Enhancement of Healthful Novel Sugar Contents in Genetically Engineered Sugarcane Juice Integrated with Molecularly Characterized ThSyGII (CEMB-SIG2). Sci. Rep. 2022, 12, 18621. [Google Scholar] [CrossRef] [PubMed]
- Petrasovits, L.A.; Purnell, M.P.; Nielsen, L.K.; Brumbley, S.M. Production of Polyhydroxybutyrate in Sugarcane. Plant Biotechnol. J. 2007, 5, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Petrasovits, L.A.; Zhao, L.; McQualter, R.B.; Snell, K.D.; Somleva, M.N.; Patterson, N.A.; Nielsen, L.K.; Brumbley, S.M. Enhanced Polyhydroxybutyrate Production in Transgenic Sugarcane. Plant Biotechnol. J. 2012, 10, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Altpeter, F. TALEN Mediated Targeted Mutagenesis of the Caffeic Acid O-Methyltransferase in Highly Polyploid Sugarcane Improves Cell Wall Composition for Production of Bioethanol. Plant Mol. Biol. 2016, 92, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Kannan, B.; Jung, J.H.; Moxley, G.W.; Lee, S.-M.; Altpeter, F. TALEN-Mediated Targeted Mutagenesis of More than 100 COMT Copies/Alleles in Highly Polyploid Sugarcane Improves Saccharification Efficiency without Compromising Biomass Yield. Plant Biotechnol. J. 2018, 16, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Maitra, S.; Singh, V. Chemical-Free Production of Multiple High-Value Bioproducts from Metabolically Engineered Transgenic Sugarcane ‘Oilcane’ Bagasse and Their Recovery Using Nanofiltration. Bioresour. Technol. 2023, 371, 128630. [Google Scholar] [CrossRef] [PubMed]
- Zale, J.; Jung, J.H.; Kim, J.Y.; Pathak, B.; Karan, R.; Liu, H.; Chen, X.; Wu, H.; Candreva, J.; Zhai, Z.; et al. Metabolic Engineering of Sugarcane to Accumulate Energy-Dense Triacylglycerols in Vegetative Biomass. Plant Biotechnol. J. 2016, 14, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, S.; Kannan, B.; Karan, R.; Sanahuja, G.; Liu, H.; Garcia-Ruiz, E.; Kumar, D.; Singh, V.; Zhao, H.; Long, S.; et al. Towards Oilcane: Engineering Hyperaccumulation of Triacylglycerol into Sugarcane Stems. GCB Bioenergy 2020, 12, 476–490. [Google Scholar] [CrossRef]
- Bhatti, F.; Asad, S.; Khan, Q.M.; Mobeen, A.; Iqbal, M.J.; Asif, M. Risk Assessment of Genetically Modified Sugarcane Expressing AVP1 Gene. Food Chem. Toxicol. 2019, 130, 267–275. [Google Scholar] [CrossRef]
- Perera, M.F.; Ovejero, S.N.; Racedo, J.; Noguera, A.S.; Cuenya, M.I.; Castagnaro, A.P. TRAP Markers Allow the Identification of Transgenic Lines That Are Genetically Close to Their Parental Genotype. Sugar Tech 2020, 22, 750–755. [Google Scholar] [CrossRef]
- Schaart, J.G.; van de Wiel, C.C.M.; Smulders, M.J.M. Genome Editing of Polyploid Crops: Prospects, Achievements and Bottlenecks. Transgenic Res. 2021, 30, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.; Mohan, C.; Sanchez, S.; Wang, D.; Altpeter, F. Multiallelic, Targeted Mutagenesis of Magnesium Chelatase with CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front. Genome Ed. 2021, 3, 654996. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, R.; Javed, T.; Afzal, I.; Sabagh, A.E.; Ali, A.; Vicente, O.; Chen, P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. Agronomy 2021, 11, 1042. [Google Scholar] [CrossRef]
- Ko, J.K.; Jung, J.H.; Altpeter, F.; Kannan, B.; Kim, H.E.; Kim, K.H.; Alper, H.S.; Um, Y.; Lee, S.-M. Largely Enhanced Bioethanol Production through the Combined Use of Lignin-Modified Sugarcane and Xylose Fermenting Yeast Strain. Bioresour. Technol. 2018, 256, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Sander, J.D.; Dahlborg, E.J.; Goodwin, M.J.; Cade, L.; Zhang, F.; Cifuentes, D.; Curtin, S.J.; Blackburn, J.S.; Thibodeau-Beganny, S.; Qi, Y.; et al. Selection-Free Zinc-Finger-Nuclease Engineering by Context-Dependent Assembly (CoDA). Nat. Methods 2011, 8, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.; Bao, A.-K.; Bao, Z.; Wang, F.; Gao, L.; Wang, S.-M. The Progress of Genetic Improvement in Alfalfa (Medicago sativa L.). Czech J. Genet. Plant Breed. 2018, 54, 41–51. [Google Scholar] [CrossRef]
- Tsanova, T.; Stefanova, L.; Topalova, L.; Atanasov, A.; Pantchev, I. DNA-Free Gene Editing in Plants: A Brief Overview. Biotechnol. Biotechnol. Equip. 2021, 35, 131–138. [Google Scholar] [CrossRef]
- Javaid, D.; Ganie, S.Y.; Hajam, Y.A.; Reshi, M.S. CRISPR/Cas9 System: A Reliable and Facile Genome Editing Tool in Modern Biology. Mol. Biol. Rep. 2022, 49, 12133–12150. [Google Scholar] [CrossRef] [PubMed]
- Wolter, F.; Puchta, H. Knocking out Consumer Concerns and Regulator’s Rules: Efficient Use of CRISPR/Cas Ribonucleoprotein Complexes for Genome Editing in Cereals. Genome Biol. 2017, 18, 43. [Google Scholar] [CrossRef]
- Singh, R.K.; Banerjee, N.; Khan, M.S.; Yadav, S.; Kumar, S.; Duttamajumder, S.K.; Lal, R.J.; Patel, J.D.; Guo, H.; Zhang, D.; et al. Identification of Putative Candidate Genes for Red Rot Resistance in Sugarcane (Saccharum Species Hybrid) Using LD-Based Association Mapping. Mol. Genet. Genom. 2016, 291, 1363–1377. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, H.; Guo, F.; Yang, Y.; Shen, X.; Chen, B. SsUbc2, a Determinant of Pathogenicity, Functions as a Key Coordinator Controlling Global Transcriptomic Reprogramming during Mating in Sugarcane Smut Fungus. Front. Microbiol. 2022, 13, 954767. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Guo, F.; Shen, X.; Lu, S.; Chen, B. SsRSS1 Mediates Salicylic Acid Tolerance and Contributes to Virulence in Sugarcane Smut Fungus. J. Integr. Agric. 2023, 22, 2126–2137. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, J.; Mi, Q.; Yang, W.; Xiang, H.; Xu, L.; Zeng, W.; Wang, J.; Deng, L.; Jiang, J.; et al. Highly Efficient Transgene-Free Genome Editing in Tobacco Using an Optimized CRISPR/Cas9 System, pOREU3TR. Plant Sci. 2023, 326, 111523. [Google Scholar] [CrossRef]
- Tyagi, S.; Kesiraju, K.; Saakre, M.; Rathinam, M.; Raman, V.; Pattanayak, D.; Sreevathsa, R. Genome Editing for Resistance to Insect Pests: An Emerging Tool for Crop Improvement. ACS Omega 2020, 5, 20674–20683. [Google Scholar] [CrossRef]
- Eid, A.; Mahfouz, M.M. Genome Editing: The Road of CRISPR/Cas9 from Bench to Clinic. Exp. Mol. Med. 2016, 48, e265. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, J.; Zhang, X.; Yang, Y.; Zhou, D.; Yu, Q.; Que, Y.; Xu, L.; Guo, J. A Novel Non-Specific Lipid Transfer Protein Gene from Sugarcane (NsLTPs), Obviously Responded to Abiotic Stresses and Signaling Molecules of SA and MeJA. Sugar Tech 2017, 19, 17–25. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Z.; Liu, F.; Li, Z.; Peng, Q.; Guo, J.; Xu, L.; Que, Y. Isolation and Characterization of ScGluD2, a New Sugarcane Beta-1,3-glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. Front. Plant Sci. 2016, 7, 1348. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Pan, Y.-B.; Su, Y.; Zou, W.; Xu, F.; Sun, T.; Grisham, M.P.; Yang, S.; Xu, L.; Que, Y. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Int. J. Mol. Sci. 2022, 23, 10770. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Cao, V.D.; Kannan, B.; Liu, H.; Shanklin, J.; Altpeter, F. Metabolic Engineering of Energycane to Hyperaccumulate Lipids in Vegetative Biomass. BMC Biotechnol. 2022, 22, 24. [Google Scholar] [CrossRef]
- Laksana, C.; Sophiphun, O.; Chanprame, S. Lignin Reduction in Sugarcane by Performing CRISPR/Cas9 Site-Direct Mutation of SoLIM Transcription Factor. Plant Sci. 2024, 340, 111987. [Google Scholar] [CrossRef]
- Kannan, B.; Liu, H.; Shanklin, J.; Altpeter, F. Towards Oilcane: Preliminary Field Evaluation of Metabolically Engineered Sugarcane with Hyper-Accumulation of Triacylglycerol in Vegetative Tissues. Mol. Breed. 2022, 42, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iqbal, M.A. Leveraging the Sugarcane CRISPR/Cas9 Technique for Genetic Improvement of Non-Cultivated Grasses. Front. Plant Sci. 2024, 15, 1369416. [Google Scholar] [CrossRef]
Variety | Trait Method | Explant | Promoter | Gene | Reference |
---|---|---|---|---|---|
SP80–180 | Particle bombardment | Axillary bud | Ubi-1 | bar | [20] |
ROC22 | Agrobacterium mediated | Embryogenic calli | Ubi-1 | EPSPS, Cry1Ab | [21] |
CPF-234, CPF-213, HSF-240 & CPF-246 | Particle bombardment | Embryogenic calli | CaMV35S | Glyphosate | [22] |
TUC 03-12 | Particle bombardment | Embryogenic calli | Rice Actin | EPSPS | [23] |
CPF-246 | Agrobacterium mediated | Embryogenic calli | Ubi-1 | Cry1Ac, Cry2 & GT | [24] |
ROC22 | Agrobacterium mediated | Embryogenic calli | CaMV35S | bar | [25] |
ROC22 | Agrobacterium mediated | Embryogenic calli | Ubi-1 | bar | [26] |
RA87-3 | Particle bombardment | Embryogenic calli | Rice Actin | EPSPS | [27] |
NCo310 | Particle bombardment | Meristem | Pat | [28] | |
Ja60-15 | Agrobacterium mediated | Embryogenic calli | Rice-Ubi | bar | [29] |
Co92061 and Co671 | Agrobacterium mediated | Somatic embryos | CaMV35S | bar | [30] |
Target Disease | Variety | Trait Method | Explant | Promoter | Gene | Reference |
---|---|---|---|---|---|---|
SCMV | SPF-234 & NSG-311 | Particle bombardment | Calli | Ubi | CP | [1] |
SrMV | CP65-357 & CP72-1210 | Particle bombardment | Calli | Ubi-1 | CP | [43] |
FDV | Q124 | Particle bombardment | Calli | Ubi | Segment 9 of ORF 1 | [44] |
SCYLV | H62-4671 | Particle bombardment | Cell cultures | Ubi | CP | [45] |
SCMV | Bululawang | Agrobacterium mediated | Shoots | CaMV35S | CP | [46] |
SrMV | ROC22 | Agrobacterium mediated | Leaf | CaMV35S | CP | [47] |
SCMV | CP 84-1198 and CP 80-1827 | Particle bombardment | Calli | Ubi | CP | [48] |
SCYLV | CP 92-1666 | Particle bombardment | Calli | Ubi | CP | [49] |
SCMV | Bululawang | PDR & RNAi | Lateral buds | CP | [50] | |
SCSMV | ROC22 | Agrobacterium mediated | Calli | Ubi 1 | Pac1 | [51] |
Red rot | CoJ 83 | Agrobacterium mediated | Axillary bud | CaMV35S | β-1,3-glucanase | [52] |
Red rot | S2006SP-93 | Particle bombardment | Calli | Ubi | Chitinase class-II | [53] |
Colletotrichum | SPF-234 | Particle bombardment | Calli | Ubi | SWO, SWT | [54] |
Smut | KRFo93-1 | Particle bombardment | Calli | CaMV35S | BSR1 | [55] |
Leaf scald | Q63 & Q87 | Particle bombardment | Calli | Ubi | Albicidin detoxifying | [56] |
Variety | Trait Method | Explant | Promoter | Candidate Gene | Target Pest | Reference |
---|---|---|---|---|---|---|
Ja60-5 | Electroporation | Calli | CaMV35S | cry1Ab | D. saccharalis | [15] |
TUC95-10/TUC03-12 | Particle bombardment | Calli | pCab1 | Bt | Diatraea saccharalis. | [18] |
SP80-1842 & SP80-3280 | Particle bombardment | Calli | Maize Ubi-1 | skti, sbbi | D. saccharalis | [20] |
ROC22 | Agrobacterium mediated | Calli | Ubi-1 | cry1Ab | D. saccharalis | [21] |
YT79-177 & ROC16 | Particle bombardment | Calli | Maize Ubi-1 | cry1Ac | P. venosatus | [64] |
CP65-357 | Paint-sprayer delivery | Maize Ubi-1 | Snowdrop lectin | Eoreuma loftini, D. saccharalis | [69] | |
ROC25 | Agrobacterium mediated | Calli | Ubi-1 | Amaranthus viridis & skti | D. saccharalis | [70] |
CoC92061 & Co 86032 | Particle bombardment | Calli | Maize Ubi-1 | Aprotinin | S. excerptalis | [71] |
CPF-246 | Agrobacterium mediated | Calli | Maize Ubi-1 | Vip3A | C. infuscatellus | [72] |
GT54-9(C9) | Agrobacterium mediated | Leaves | CaMV 35S | cry1Ac | Sesamia cretica | [73] |
SP 803280 | Agrobacterium mediated | Calli | 35S & FMV | cry1Ab, cry2Ab | D. saccharalis | [74] |
Zhongzhe1 (ZZ1) | Particle bombardment | Direct embryo | Ubi | PPA | Ceratovacuna lanigera Zehntner | [75] |
SP80-3280 & 1842 | Particle bombardment | Calli | Maize PEPC | cry1Ab | D. saccharalis | [76] |
YT79-177 & ROC16 | Particle bombardment | Calli | Maize Ubi-1 | Synthetic-cry1Ac | P. venosatus | [77] |
FN81–745 & Badila | Agrobacterium mediated | Calli | RSs-1,Ubi-1 | Gna | Ceratovacuna lanigera | [78] |
Gui94-119 | Particle bombardment | Calli | Ubi | cry1Ac | D. saccharalis | [79] |
SP80-185 | Plasmid transformation | Calli | Maize ubi-1 | HIS Cane CPI -1 | S. levis | [80] |
CoC671 | Agrobacterium mediated | Leaf roll | CaMV35S | cry1Aa3 | C. infuscatellus, C. sacchariphagu & S. excerptalis | [81] |
Co 86032 & CoJ 64 | Particle bombardment | Calli | Maize Ubi-1 | cry1Ab | C. infuscatellus | [82] |
FN15 | Particle bombardment | Calli | CaMV35S | cry1Ac | D. saccharalis | [83] |
LK 92-11 | Agrobacterium mediated | Calli | CaMV35S | cry1Ab | D. saccharalis | [84] |
SP80-185 | Particle bombardment | Calli | Maize ubi-1 | CaneCPI-1 | S. levis | [85] |
FN15 & ROC22 | Particle bombardment | Calli | CaMV35S | cry1Ac | D. saccharalis | [86] |
ROC22 | Particle bombardment | Calli | ST-LSI | cry2A | C. sacchariphagus, S. nivella, C. infuscatellus, A. schistaceana & S. inferens | [87] |
Event CTC175-A | Agrobacterium mediated | Calli | PEPC | cry1Ab | D. saccharalis | [88] |
Event CTC91087-6 | Agrobacterium mediated | Calli | Maize ubi-1 | Cry1ac | D. saccharalis | [89] |
Bululawang | Agrobacterium mediated | Calli | RUBISCO | CryIAb-CryIAc | Scripophaga excerptalis | [90] |
Variety | Trait Method | Type of Explant | Promoter | Gene | Gene Function | Stress | Reference |
---|---|---|---|---|---|---|---|
ROC22 | Agrobacterium | CaMV35S | TERF1 | Gene regulation | Drought | [2] | |
RB855156 | Biolistic | Embryogenic calli | pRab17 | DREB2A CA | Gene regulation | Drought | [100] |
NCo310 | Biolistic | Embryogenic calli | UBI | AtBBX29 | Gene regulation | Drought | [101] |
CP-77-400 | Agrobacterium | Apical buds | CaMV35S | AVP1 | Osmotic regulation | Drought | [102] |
CSSG-668 | Biolistic | Embryogenic calli | CaMV35S | AVP1 | Osmotic regulation | Drought | [103] |
RB835089 | Biolistic | Embryogeniccalli | UBI | BI-1 | PCD-regulation | Drought | [104] |
RB855156 | Biolistic | Nodal buds | ABA-AIPC | P5CS | Proline synthesis | Salinity | [105] |
Guitang21 | Agrobacterium | Embryogenic calli | UBI | SoP5CS | Proline synthesis | Drought | [106] |
Co 86032 | Biolistic | UBI | EaGly III | Reduce oxidative stress | Salinity | [107] | |
Co86032 | Agrobacterium | UBI | HSP70 | Cellular stability | Drought/ Salinity | [108] | |
RB855536 | Biolistic | Embryogenic calli | AtCOR15a | ipt | Cytokinin | Cold | [109] |
ROC22 | Agrobacterium | Calli | UBI | SoTUA | α-tubulin synthesis | Cold | [110] |
ROC10 | Agrobacterium | CaMV35S | TSase | Biomolecules stabilization | Drought | [111] | |
Co86032 | Agrobacterium/ biobalistic | Embryogenic calli | UBI | PDH45/DREB2 | Nucleic acids metabolism | Drought/ Salinity | [112] |
Developer | Event Name | Trait Method | Gene | Gene Source | Product | Function | Country/Year |
---|---|---|---|---|---|---|---|
Centro de Tecnologia Canavieira (CTC) | CTB141175/01-A | Microparticle bombardment | cry1Ab | B. thuringiensis subsp. kurstaki | Cry1Ab delta-endotoxin | lepidopteron insects | Brazil 2017, Canada & United States 2018 |
CTC-92015-7 | Agrobacterium mediated | cry1Ac | B. thuringiensis subsp. Kurstaki strain HD73 | Cry1Ac delta-endotoxin | lepidopteron insects | Brazil 2022 | |
nptII | E.coli Tn5 transposon | neomycin phosphotransferase II | neomycin & kanamycin antibiotics | Brazil 2022 | |||
CTC75064-3 | Agrobacterium mediated | cry1Ac | B.thuringiensis subsp. Kurstaki strain HD73 | Cry1Ac delta-endotoxin | lepidopteron insects | Brazil 2020, Canada 2022 | |
nptII | E.coli Tn5 transposon | neomycin phosphotransferase II | neomycin & kanamycin antibiotics | Brazil 2020, Canada 2022 | |||
CTC91087-6 | cry1Ac | B. thuringiensis subsp. Kurstaki strain HD73 | Cry1Ac delta-endotoxin | lepidopteron insects | Brazil 2018 & United States 2020 | ||
CTC93209 | Agrobacterium mediated | cry1Ac | B. thuringiensis subsp. Kurstaki strain HD73 | Cry1Ac delta-endotoxin | lepidopteron insects | Brazil 2019 | |
CTC95019-5 | Agrobacterium mediated | cry1Ac | B. thuringiensis subsp. Kurstaki strain HD73 | Cry1Ac delta-endotoxin | lepidopteron insects | Brazil 2021 | |
nptII | E. coli Tn5 transposon | neomycin phospho transferase II | neomycin & kanamycin antibiotics | Brazil 2021 | |||
PT Perkebunan Nusantara XI (Persero) | NXI-1T | Agrobacterium mediated | EcBetA | E. coli | choline dehydrogenase | Osmoprotectant, glycine betaine | Indonesia 2011 |
nptII | E. coli Tn5 transposon | neomycin phospho transferase II | neomycin & kanamycin | Indonesia 2011 | |||
aph4 hpt) | E. coli | hygromycin-B phosphotransferase | hygromycin B | Indonesia 2011 | |||
PT Perkebunan Nusantara XI (Persero) | NXI-4T | Agrobacterium mediated | RmBetA | Rhizobium meliloti | choline dehydrogenase | osmoprotectantglycine betaine) | Indonesia 2013 |
PT Perkebunan Nusantara XI (Persero) | NXI-6T | Agrobacterium mediated | RmBetA | Rhizobium meliloti | choline dehydrogenase | Osmoprotectant, glycine betaine | Indonesia 2013 |
Estación Experimental Agroindustrial Obispo Colombres (EEAOC) | TUC-873RH-7 | Microparticle bombardment | cp4 epsps (aroA:CP4) | A. tumefaciens strain CP4 | (EPSPS) enzyme | glyphosate herbicide | Argentina 2015 |
nptII | E. coli Tn5 transposon | neomycin phosphotransferase II | neomycin & kanamycin antibiotics | Argentina 2015 | |||
Monsanto Company & Bayer Crop Science | MON87427 × MON95379 × MON87411 | Conventional breeding-cross hybridization-transgenic donor(s) | cry1Da_7 | B. thuringiensis | crystalline protein prototoxin Cry1Da_7 | S. italica promoter and O. sativa gos2 terminator-Rice actin 15 gene-intron | Brazil 2021 |
cry1B.868 | B. thuringiensis | crystalline protein prototoxin Cry1B.868 | S. italica promoter and O. sativa gos2 terminator-Rice actin 15 gene-intron | Brazil 2021 | |||
cry3Bb1 | B. thuringiensis subsp. kumamotoensis | Cry3Bb1 delta endotoxin | Tolerance to coleopteran insects & corn rootworm | Brazil 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, T.; Wang, J.-G.; Xu, C.-H.; Lu, X.; Mao, J.; Lin, X.-Q.; Kong, C.-Y.; Li, C.-J.; Li, X.-J.; Tian, C.-Y.; et al. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. Plants 2024, 13, 1739. https://doi.org/10.3390/plants13131739
Kumar T, Wang J-G, Xu C-H, Lu X, Mao J, Lin X-Q, Kong C-Y, Li C-J, Li X-J, Tian C-Y, et al. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. Plants. 2024; 13(13):1739. https://doi.org/10.3390/plants13131739
Chicago/Turabian StyleKumar, Tanweer, Jun-Gang Wang, Chao-Hua Xu, Xin Lu, Jun Mao, Xiu-Qin Lin, Chun-Yan Kong, Chun-Jia Li, Xu-Juan Li, Chun-Yan Tian, and et al. 2024. "Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses" Plants 13, no. 13: 1739. https://doi.org/10.3390/plants13131739
APA StyleKumar, T., Wang, J.-G., Xu, C.-H., Lu, X., Mao, J., Lin, X.-Q., Kong, C.-Y., Li, C.-J., Li, X.-J., Tian, C.-Y., Ebid, M. H. M., Liu, X.-L., & Liu, H.-B. (2024). Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. Plants, 13(13), 1739. https://doi.org/10.3390/plants13131739