Bioactive Compounds Intake of the Brazilian Population According to Geographic Region
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Study Population
4.2. Dietary Intake Assessment
4.3. Correspondence between Food Items in Dietary Recalls and in Food Composition Database
4.4. Estimation of Intake and Dietary Contributors
4.5. Demographic Information
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, C.E.; Dal’Magro, G.P.; Viacava, K.R.; Dewes, H. Food acquisition in the geography of Brazilian obesity. Front. Public Health 2020, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, M.A.; Souza, A.M.; Barufaldi, L.A.; Tavares, B.M.; Bloch, K.V.; Vasconcelos, F.A.G. Dietary patterns of Brazilian adolescents according to geographic region: An analysis of the Study of Cardiovascular Risk in Adolescents (ERICA). Cad. Saude Publica 2019, 35, e00153818. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.A.; Fonseca, G.G. Brazilian savannah fruits: Characteristics, properties, and potential applications. Food Sci. Biotechnol. 2016, 25, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Farias, T.R.B.; Sanches, N.B.; Petrus, R.R. The amazing native Brazilian fruits. In Critical Reviews in Food Science and Nutrition; Taylor & Francis: London, UK, 2023; pp. 1–18. [Google Scholar]
- Cardoso, D.; Sarkinen, T.; Alexander, S.; Amorim, A.M.; Bittrich, V.; Celis, M.; Daly, D.C.; Fiaschi, P.; Funk, V.A.; Giacomin, L.L.; et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 2017, 114, 10695–10700. [Google Scholar] [CrossRef] [Green Version]
- de Albuquerque, U.P. Re-examining hypotheses concerning the use and knowledge of medicinal plants: A study in the Caatinga vegetation of NE Brazil. J. Ethnobiol. Ethnomed. 2006, 2, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H.O.; Rockett, F.C.; Pagno, C.H.; Possa, J.; Assis, R.Q.; de Oliveira, V.R.; da Silva, V.L.; Flores, S.H.; Rios, A.O. Vitamin and bioactive compound diversity of seven fruit species from south Brazil. J. Sci. Food Agric. 2019, 99, 3307–3317. [Google Scholar] [CrossRef]
- Lachat, C.; Raneri, J.E.; Smith, K.W.; Kolsteren, P.; Van Damme, P.; Verzelen, K.; Penafiel, D.; Vanhove, W.; Kennedy, G.; Hunter, D.; et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl. Acad. Sci. USA 2018, 115, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Arimond, M.; Ruel, M.T. Dietary diversity is associated with child nutritional status: Evidence from 11 demographic and health surveys. J. Nutr. 2004, 134, 2579–2585. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M.I.; Pinto, M.S.; Gonçalves, A.E.S.S.; Lajolo, F.M. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- Perez-Gregorio, R.; Simal-Gandara, J. A critical review of bioactive food components, and of their functional mechanisms, biological effects and health outcomes. Curr. Pharm. Des. 2017, 23, 2731–2741. [Google Scholar] [CrossRef]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Manson, J.E.; Willett, W.C. Dietary carotenoids and risk of coronary artery disease in women. Am. J. Clin. Nutr. 2003, 77, 1390–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rienks, J.; Barbaresko, J.; Oluwagbemigun, K.; Schmid, M.; Nothlings, U. Polyphenol exposure and risk of type 2 diabetes: Dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018, 108, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.W.; Sun, Z.H.; Tong, W.W.; Yang, K.; Guo, K.Q.; Liu, G.; Pan, A. Dietary intake and circulating concentrations of carotenoids and risk of type 2 diabetes: A dose-response meta-analysis of prospective observational studies. Adv. Nutr. 2021, 12, 1723–1733. [Google Scholar] [CrossRef]
- Shishtar, E.; Rogers, G.T.; Blumberg, J.B.; Au, R.; Jacques, P.F. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2020, 112, 343–353. [Google Scholar] [CrossRef]
- Godos, J.; Caraci, F.; Micek, A.; Castellano, S.; D’Amico, E.; Paladino, N.; Ferri, R.; Galvano, F.; Grosso, G. Dietary phenolic acids and their major food sources are associated with cognitive status in older italian adults. Antioxidants 2021, 10, 700. [Google Scholar] [CrossRef]
- Wang, W.; Shinto, L.; Connor, W.E.; Quinn, J.F. Nutritional biomarkers in Alzheimer’s disease: The association between carotenoids, n-3 fatty acids, and dementia severity. J. Alzheimers Dis. 2008, 13, 31–38. [Google Scholar] [CrossRef]
- Fike, L.T.; Munro, H.; Yu, D.; Dai, Q.; Shrubsole, M.J. Dietary polyphenols and the risk of colorectal cancer in the prospective Southern Community Cohort Study. Am. J. Clin. Nutr. 2022, 115, 1155–1165. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Cayssials, V.; Jenab, M.; Rothwell, J.A.; Fedirko, V.; Aleksandrova, K.; Tjonneland, A.; Kyro, C.; Overvad, K.; Boutron-Ruault, M.C.; et al. Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Eur. J. Epidemiol. 2018, 33, 1063–1075. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Yngve, A.; Lagergren, J.; Lu, Y. A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer. Br. J. Nutr. 2014, 112, 2002–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.S.; Fang, Y.J.; Chen, Y.M.; Luo, W.P.; Pan, Z.Z.; Zhong, X.; Zhang, C.X. Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults: A case-control study. Eur. J. Nutr. 2015, 54, 619–628. [Google Scholar] [CrossRef]
- Michaud, D.S.; Feskanich, D.; Rimm, E.B.; Colditz, G.A.; Speizer, F.E.; Willett, W.C.; Giovannucci, E. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am. J. Clin. Nutr. 2000, 72, 990–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora-Ros, R.; Biessy, C.; Rothwell, J.A.; Monge, A.; Lajous, M.; Scalbert, A.; López-Ridaura, R.; Romieu, I. Dietary polyphenol intake and their major food sources in the Mexican Teachers’ Cohort. Br. J. Nutr. 2018, 120, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjonneland, A.; Kyro, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziauddeen, N.; Rosi, A.; Del Rio, D.; Amoutzopoulos, B.; Nicholson, S.; Page, P.; Scazzina, F.; Brighenti, F.; Ray, S.; Mena, P. Dietary intake of (poly)phenols in children and adults: Cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014). Eur. J. Nutr. 2018, 58, 3183–3198. [Google Scholar] [CrossRef]
- Kim, K.; Vance, T.M.; Chun, O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2015, 55, 833–843. [Google Scholar] [CrossRef]
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Kent, K.; Charlton, K.; O’Sullivan, T.; Oddy, W.H. Estimated intake and major food sources of flavonoids among Australian adolescents. Eur. J. Nutr. 2020, 59, 3841–3856. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Zujko, M.E.; Waskiewicz, A.; Terlikowska, K.M.; Piotrowski, W. Comparison of various databases for estimation of dietary polyphenol intake in the population of Polish adults. Nutrients 2015, 7, 9299–9308. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovaskainen, M.L.; Torronen, R.; Koponen, J.M.; Sinkko, H.; Hellstrom, J.; Reinivuo, H.; Mattila, P. Dietary intake and major food sources of polyphenols in Finnish adults. J. Nutr. 2008, 138, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-de-Miguel, B.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Assessment of dietary vitamin A intake (retinol, α-carotene, β-carotene, β-cryptoxanthin) and its sources in the National Survey of Dietary Intake in Spain (2009–2010). Int. J. Food Sci. Nutr. 2015, 66, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán-Cabral, M.; Fernández-Jalao, I.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Assessment of individual carotenoid and vitamin A dietary intake in overweight and obese Dominican subjects. Nutr. Hosp. 2017, 34, 407–415. [Google Scholar] [CrossRef]
- Carnauba, R.A.; Sarti, F.M.; Hassimotto, N.M.A.; Lajolo, F.M. Estimated polyphenol intake and major food sources of the Brazilian population: Changes between 2008–2009 and 2017–2018. Br. J. Nutr. 2022, 130, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, S.; Barbosa, F.S.; Sichieri, R.; Pereira, R.A. Dietary availability patterns of the Brazilian macro-regions. Nutr. J. 2010, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Anater, A.S.; Hampton, J.C.; Lopes, T.D.V.C.; Giuntini, E.B.; Campos, V.C.; Harnack, L.J.; Peasley, J.M.L.; Eldridge, A.L. Nutrient intakes among Brazilian children need improvement and show differences by region and socioeconomic level. Nutrients 2022, 14, 485. [Google Scholar] [CrossRef] [PubMed]
- Pena, S.D.; Di Pietro, G.; Fuchshuber-Moraes, M.; Genro, J.P.; Hutz, M.H.; Kehdy, F.S.; Kohlrausch, F.; Magno, L.A.; Montenegro, R.C.; Moraes, M.O.; et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE 2011, 6, e17063. [Google Scholar] [CrossRef] [Green Version]
- Manta, F.S.N.; Pereira, R.; Vianna, R.; de Araújo, A.R.B.; Gitaí, D.L.G.; da Silva, D.A.; Wolfgramm, E.V.; Pontes, I.M.; Aguiar, J.I.; Moraes, M.O.; et al. Revisiting the genetic ancestry of Brazilians using autosomal AIM-Indels. PLoS ONE 2013, 8, e75145. [Google Scholar]
- Antunes, A.B.S.; Cunha, D.B.; Baltar, V.T.; Steluti, J.; Pereira, R.A.; Yokoo, E.M.; Sichieri, R.; Marchioni, D.M. Dietary patterns of Brazilian adults in 2008–2009 and 2017–2018. Rev. Saude Publica 2021, 55, 8. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics (IBGE). Household Budget Surveys 2017–2018: Analysis of Personal Food Intake in Brazil; IBGE: Rio de Janeiro, Brazil, 2020.
- Verly, E., Jr.; Marchioni, D.M.; Araujo, M.C.; Carli, E.; Oliveira, D.C.R.S.; Yokoo, E.M.; Sichieri, R.; Pereira, R.A. Evolution of energy and nutrient intake in Brazil between 2008–2009 and 2017–2018. Rev. Saude Publica 2021, 55, 5. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Household Budget Surveys 2017–2018: Analysis of Food Security in Brazil; IBGE: Rio de Janeiro, Brazil, 2020.
- Termote, C.; Meyi, M.B.; Djailo, B.D.; Huybregts, L.; Lachat, C.; Kolsteren, P.; Van Damme, P. A biodiverse rich environment does not contribute to a better diet: A case study from DR Congo. PLoS ONE 2012, 7, e30533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, M.C.M.; de Medeiros, M.F.A.; Albuquerque, U.P. Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE 2020, 15, e0230936. [Google Scholar] [CrossRef] [PubMed]
- Valli, M.; Russo, H.M.; Bolzani, V.S. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An. Acad. Bras. Cienc. 2018, 90, 763–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes, T.C.; Meira, K.C.; Santos, J.; Camara, D.C.P. Prevalence of chronic diseases and access to health services in Brazil: Evidence of three household surveys. Cienc. Saude Coletiva 2021, 26, 9. [Google Scholar]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar]
- Tavani, A.; Gallus, S.; Negri, E.; Parpinel, M.; La Vecchia, C. Dietary intake of carotenoids and retinol and the risk of acute myocardial infarction in Italy. Free Radic. Res. 2006, 40, 659–664. [Google Scholar] [CrossRef]
- Xu, Y.; Sayec, M.l.; Roberts, C.; Hein, S.; Rodriguez-Mateos, A.; Gibson, R. Dietary assessment methods to estimate (poly)phenol intake in epidemiological studies: A systematic review. Adv. Nutr. 2021, 12, 1781–1801. [Google Scholar] [CrossRef]
- Coelho, K.S.; Bistriche, E.G.; Grande, F.; Dias, J.S.; Purgatto, E.; Franco, B.D.G.M.; Lajolo, F.M.; Menezes, E.W. 12th IFDC 2017 Special Issue—Brazilian Food Composition Table (TBCA): Development and functionalities of the online version. J. Food Compos. Anal. 2019, 84, 103287. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
Characteristics | North | Northeast | Midwest | Southeast | South | |||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | |
Total | 6836 | 14.8 | 16,097 | 34.9 | 5740 | 12.4 | 11,471 | 24.9 | 6020 | 13.0 |
Sex | ||||||||||
Men | 3244 | 47.5 | 7285 | 45.3 | 2783 | 48.5 | 5327 | 46.4 | 2821 | 46.9 |
Women | 3592 | 52.5 | 8812 | 54.7 | 2957 | 51.5 | 6144 | 53.6 | 3199 | 53.1 |
Age group (years) | ||||||||||
10–13 | 653 | 9.6 | 1178 | 7.3 | 425 | 7.4 | 692 | 6.0 | 323 | 5.4 |
14–18 | 800 | 11.7 | 1633 | 10.1 | 560 | 9.8 | 943 | 8.2 | 471 | 7.8 |
19–59 | 4534 | 66.3 | 10,447 | 64.9 | 3803 | 66.3 | 7449 | 64.9 | 3917 | 65.1 |
≥60 | 849 | 12.4 | 2839 | 17.6 | 952 | 16.6 | 2387 | 20.8 | 1309 | 21.7 |
Race/ethnicity | ||||||||||
White | 1216 | 17.8 | 4185 | 26.0 | 1987 | 34.6 | 5327 | 46.4 | 4489 | 74.6 |
Others | 5620 | 82.2 | 11,912 | 74.0 | 3753 | 65.4 | 6144 | 53.6 | 1531 | 25.4 |
Household situation | ||||||||||
Urban | 4764 | 69.7 | 12,932 | 80.3 | 3828 | 66.7 | 9418 | 82.1 | 4449 | 73.9 |
Rural | 2072 | 30.3 | 3165 | 19.7 | 1912 | 33.3 | 2053 | 17.9 | 1571 | 26.1 |
Per capita income (PPP) * | $497.7 ± 14.8 | $552.0 ± 7.5 | $1156.5 ± 22.7 | $1017.7 ± 12.7 | $1046.8 ± 16.1 |
Polyphenols | North | Northeast | Midwest | Southeast | South | p * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | ||
Phenolic acids | 72.2 | 46.1–119.6 | 82.9 | 49.1–134.7 | 85.4 | 46.9–149.5 | 99.3 | 54.6–159.2 | 110.3 | 60.4–207.0 | 0.0001 |
Hydroxyenzoic acids | 1.1 | 0.6–2.1 | 1.0 | 0.6–2.4 | 1.0 | 0.6–2.2 | 1.0 | 0.6–2.2 | 1.2 | 0.6–2.8 | 0.0001 |
Hydroxycinnamic acids | 70.6 | 43.9–117.2 | 80.6 | 46.7–132.1 | 83.5 | 44.5–146.7 | 97.1 | 52.7–156.1 | 108.0 | 58.0–203.3 | 0.0001 |
Flavonoids | 53.5 | 26.2–283.9 | 56.8 | 25.4–252.9 | 57.9 | 26.4–223.8 | 67.6 | 29.6–352.6 | 119.6 | 43.1–529.7 | 0.0001 |
Flavan3ols | 2.7 | 1.0–9.7 | 4.1 | 1.2–13.1 | 3.7 | 0.9–14.2 | 4.4 | 1.2–16.4 | 5.4 | 1.4–18.9 | 0.0001 |
Flavones | 3.8 | 2.3–5.4 | 4.1 | 2.5–5.9 | 3.7 | 2.3–5.3 | 4.4 | 3.0–6.0 | 4.8 | 3.3–6.6 | 0.0001 |
Flavonols | 8.5 | 5.5–12.4 | 8.7 | 5.9–12.6 | 11.9 | 8.2–17.0 | 10.7 | 7.5–15.5 | 11.6 | 7.2–21.1 | 0.0001 |
Flavanones | 13.5 | 2.2–236.5 | 17.8 | 3.0–201.9 | 9.8 | 3.4–116.9 | 19.3 | 3.7–291.0 | 54.3 | 5.7–472.4 | 0.0001 |
Anthocyanins | 0.9 | 0.4–5.1 | 0.7 | 0.3–1.9 | 0.7 | 0.3–1.9 | 0.7 | 0.3–1.7 | 0.8 | 0.3–2.3 | 0.0001 |
Other polyphenols † | 5.8 | 4.2–8.1 | 5.8 | 4.2–8.0 | 6.2 | 4.4–8.9 | 7.2 | 5.2–10.2 | 7.8 | 5.3–11.5 | 0.0001 |
Total polyphenols | 214.6 | 123.5–446.2 | 195.2 | 120.3–416.5 | 207.2 | 122.5–432.7 | 236.4 | 145.0–521.8 | 353.3 | 173.9–734.1 | 0.0001 |
Polyphenols | North | Northeast | Midwest | Southeast | South | p * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | Median | 25–75th Percentiles | ||
α-carotene | 0.7 | 0.3–2.6 | 0.6 | 0.2–2.0 | 0.8 | 0.3–1.9 | 0.7 | 0.3–1.9 | 0.9 | 0.3–2.3 | 0.0001 |
β-carotene | 4.5 | 1.6–12.1 | 5.0 | 1.9–11.2 | 6.1 | 2.5–10.9 | 5.3 | 2.3–10.5 | 6.0 | 2.5–12.3 | 0.0001 |
β-cryptoxanthin | 0.08 | 0.0–0.2 | 0.1 | 0.0–0.2 | 0.07 | 0.0–0.2 | 0.07 | 0.0–0.2 | 0.08 | 0.0–0.2 | 0.0001 |
Lycopene | 1.1 | 0.5–2.5 | 1.3 | 0.6–2.8 | 2.2 | 1.1–3.6 | 1.9 | 0.9–3.2 | 2.0 | 0.8–3.5 | 0.0001 |
Lutein | 2.0 | 0.9–3.5 | 2.0 | 1.1–3.7 | 2.4 | 1.2–4.0 | 2.3 | 1.3–4.1 | 2.4 | 1.4–4.2 | 0.0001 |
Neoxanthin | 0.2 | 0.0–0.6 | 0.3 | 0.1–0.6 | 0.5 | 0.2–0.9 | 0.4 | 0.2–0.8 | 0.3 | 0.1–0.8 | 0.0001 |
Violaxanthin | 0.6 | 0.3–1.5 | 0.8 | 0.3–1.9 | 1.0 | 0.5–2.0 | 1.0 | 0.5–1.9 | 0.8 | 0.4–1.8 | 0.0001 |
Zeaxanthin | 0.3 | 0.2–0.5 | 0.4 | 0.2–0.6 | 0.3 | 0.2–0.4 | 0.3 | 0.2–0.5 | 0.4 | 0.2–0.5 | 0.0001 |
Total carotenoids | 12.3 | 6.2–25.2 | 13.3 | 7.2–24.0 | 15.3 | 8.3–25.0 | 13.7 | 7.8–23.1 | 15.1 | 8.3–26.5 | 0.0001 |
Polyphenol Classes and Subclasses | Rank | North | Northeast | Midwest | Southeast | South | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Food Item | % | Food Item | % | Food Item | % | Food Item | % | Food Item | % | ||
Phenolic acids | 1 | Coffee | 84.8 | Coffee | 85.2 | Coffee | 84.3 | Coffee | 86.1 | Coffee | 71.3 |
2 | Rice and preparations | 4.0 | Rice and preparations | 4.4 | Rice and preparations | 6.0 | Rice and preparations | 3.2 | Tea | 12.1 | |
3 | Açaí | 1.6 | Bread | 0.7 | Potato | 0.6 | Bread | 0.9 | Rice and preparations | 2.1 | |
Hydroxybenzoic acids | 1 | Beer | 9.8 | Beer | 9.9 | Beer | 13.4 | Tea | 25.2 | Tea | 84.4 |
2 | Rice and preparations | 6.8 | Rice and preparations | 7.2 | Tea | 11.7 | Beer | 11.7 | Wine | 2.5 | |
3 | Açaí | 7.8 | Banana | 1.9 | Rice and preparations | 9.9 | Rice and preparations | 3.2 | Beer | 1.5 | |
Hydroxycinnamic acids | 1 | Coffee | 86.3 | Coffee | 86.4 | Coffee | 86.2 | Coffee | 87.5 | Coffee | 82.0 |
2 | Rice and preparations | 4.0 | Rice and preparations | 4.3 | Rice and preparations | 4.9 | Rice and preparations | 3.1 | Rice and preparations | 2.3 | |
3 | Açaí | 1.3 | Bread | 0.7 | Potato | 0.6 | Bread | 0.9 | Tea | 1.9 | |
Flavonoids | 1 | Bean and preparations | 40.7 | Bean and preparations | 46.9 | Bean and preparations | 47.6 | Bean and preparations | 45.0 | Tea | 52.2 |
2 | Orange juice | 15.1 | Orange juice | 12.8 | Orange juice | 16.5 | Orange juice | 11.2 | Bean and preparations | 15.6 | |
3 | Bread and sandwiches | 2.9 | Bread and sandwiches | 3.8 | Tea | 5.2 | Tea | 3.2 | Orange juice | 6.5 | |
Flavan3ols | 1 | Chocolate | 7.0 | Chocolate | 9.8 | Tea | 16.6 | Tea | 24.6 | Tea | 84.5 |
2 | Chocolate powder | 2.8 | Chocolate powder | 2.3 | Chocolate | 10.4 | Chocolate | 12.6 | Chocolate | 14.2 | |
3 | Tucumã’s bread | 1.4 | Grape | 1.1 | Chocolate powder | 5.5 | Chocolate powder | 5.1 | Wine | 5.4 | |
Flavones | 1 | Bread and sandwiches | 47.8 | Bread and sandwiches | 36.8 | Pasta and preparations | 31.5 | Bread and sandwiches | 44.4 | Pasta and preparations | 40.9 |
2 | Pasta and preparations | 23.5 | Pasta and preparations | 28.1 | Bread and sandwiches | 24.3 | Pasta and preparations | 34.4 | Bread and sandwiches | 26.1 | |
3 | Cracker | 4.3 | Cracker | 7.4 | Cracker | 4.2 | Cracker | 3.7 | Cracker | 2.6 | |
Flavonols | 1 | Bean and preparations | 52.9 | Bean and preparations | 58.1 | Bean and preparations | 60.6 | Bean and preparations | 55.9 | Tea | 44.4 |
2 | Salads | 6.0 | Salads | 6.8 | Salads | 11.3 | Salads | 9.3 | Bean and preparations | 27.0 | |
3 | Soups and broths | 5.0 | Apple | 4.8 | Tea | 7.8 | Apple | 7.5 | Salads | 3.5 | |
Flavanones | 1 | Orange juice | 81.2 | Orange juice | 83.8 | Orange juice | 76.2 | Orange juice | 82.9 | Orange juice | 80.7 |
2 | Orange | 11.9 | Orange | 15.6 | Orange | 13.4 | Orange | 13.7 | Orange | 17.8 | |
3 | Lemon | 0.2 | Lemon | 0.4 | Lemon | 0.4 | Fruit salad | 0.9 | Fruit salad | 1.1 | |
Anthocyanins | 1 | Açaí | 51.2 | Açaí | 31.9 | Bean and preparations | 17.2 | Bean and preparations | 17.0 | Grape juice | 21.3 |
2 | Bean and preparations | 13.1 | Bean and preparations | 25.1 | Açaí | 6.1 | Grape juice | 12.3 | Bean and preparations | 15.3 | |
3 | Bean’s soup | 2.0 | Grape | 1.9 | Grape juice | 5.5 | Açaí | 4.2 | Wine | 3.2 | |
Other | 1 | Coffee | 25.3 | Coffee | 28.9 | Coffee | 20.6 | Coffee | 17.8 | Coffee | 17.4 |
2 | Wheat flour products | 8.4 | Orange juice | 17.7 | Wheat flour products | 6.9 | Wheat flour products | 6.5 | Orange juice | 15.4 | |
3 | Açaí | 4.7 | Wheat flour products | 14.3 | Orange juice | 5.3 | Orange juice | 6.2 | Wheat flour products | 13.7 | |
Total polyphenols | 1 | Coffee | 57.3 | Coffee | 57.0 | Coffee | 54.3 | Coffee | 56.0 | Tea | 35.0 |
2 | Bean and preparations | 8.3 | Bean and preparations | 13.6 | Bean and preparations | 17.8 | Bean and preparations | 15.1 | Coffee | 33.7 | |
3 | Orange juice | 6.2 | Orange juice | 5.4 | Orange juice | 5.0 | Orange juice | 5.1 | Bean and preparations | 7.4 |
Carotenoid | Rank | North | Northeast | Midwest | Southeast | South | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Food Item | % | Food Item | % | Food Item | % | Food Item | % | Food Item | % | ||
α-carotene | 1 | Soups and broths | 14.1 | Salads | 10.8 | Salad | 23.8 | Salads | 13.4 | Salads | 11.2 |
2 | Salads | 7.9 | Pumpkin | 6.9 | Pumpkin | 19.6 | Pumpkin | 12.4 | Carrot | 8.1 | |
3 | Banana | 2.1 | Carrot | 2.0 | Carrot | 6.3 | Carrot | 8.2 | Banana | 5.6 | |
β-carotene | 1 | Açaí | 6.8 | Pumpkin | 7.8 | Salads | 26.2 | Salads | 18.4 | Salads | 15.7 |
2 | Salads | 5.8 | Salads | 6.7 | Pumpkin | 9.8 | Pumpkin | 5.7 | Carrot | 5.5 | |
3 | Pumpkin | 1.9 | Maracuja juice | 3.2 | Carrot | 4.5 | Carrot | 5.6 | Pumpkin | 1.9 | |
β-cryptoxanthin | 1 | Caja juice | 12.6 | Papaya | 11.5 | Tangerine | 14.4 | Papaya | 10.1 | Tangerine | 33.4 |
2 | Orange juice | 11.9 | Maracuja juice | 10.0 | Orange juice | 10.5 | Orange juice | 9.3 | Orange juice | 17.4 | |
3 | Papaya | 5.0 | Caja juice | 5.0 | Papaya | 7.1 | Fruit salad | 5.8 | Papaya | 15.7 | |
Lycopene | 1 | Tomato | 8.5 | Tomato sauce | 19.9 | Tomato | 23.4 | Tomato | 20.4 | Tomato | 25.2 |
2 | Watermelon | 4.1 | Tomato | 9.2 | Tomato sauce | 9.9 | Tomato sauce | 16.9 | Tomato sauce | 22.6 | |
3 | Papaya | 2.7 | Papaya | 5.2 | Papaya | 3.9 | Papaya | 4.2 | Papaya | 5.4 | |
Lutein | 1 | Açaí | 6.7 | Corn and preparations | 22.1 | Salads | 23.6 | Salads | 18.2 | Salad | 17.7 |
2 | Salad | 5.9 | Salads | 6.1 | Corn and preparations | 6.1 | Corn and preparations | 5.9 | Corn and preparations | 10.8 | |
3 | Egg | 5.2 | Eggs | 6.0 | Eggs | 3.0 | Eggs | 5.1 | Eggs | 3.8 | |
Neoxanthin | 1 | Salads | 15.3 | Salads | 19.1 | Salads | 38.0 | Salads | 32.8 | Salads | 28.2 |
2 | Mango | 5.2 | Corn and preparations | 10.3 | Mango | 4.1 | Kale | 5.4 | Kale | 4.1 | |
3 | Mango juice | 3.9 | Mango | 6.2 | Lettuce | 3.5 | Mango | 2.8 | Lettuce | 3.9 | |
Violaxanthin | 1 | Mango juice | 14.4 | Salads | 13.6 | Salads | 33.1 | Salads | 32.1 | Salads | 28.0 |
2 | Salads | 10.6 | Mango juice | 12.6 | Mango | 6.2 | Mango | 4.2 | Mango | 4.0 | |
3 | Mango | 9.7 | Mango | 10.1 | Mango juice | 4.1 | Mango juice | 3.2 | Mango juice | 3.2 | |
Zeaxanthin | 1 | Corn and preparations | 12.1 | Corn and preparations | 54.1 | Corn and preparations | 27.4 | Corn and preparations | 23.1 | Corn and preparations | 31.1 |
2 | Orange juice | 10.5 | Orange juice | 12.5 | Orange juice | 8.2 | Orange juice | 5.7 | Orange juice | 13.9 | |
3 | Mango | 7.7 | Mango | 6.9 | Orange | 2.3 | Orange | 2.3 | Orange | 3.1 | |
Total carotenoids | 1 | Salads | 8.2 | Salads | 9.1 | Salads | 23.2 | Salads | 19.1 | Salads | 16.8 |
2 | Açaí | 5.8 | Corn and preparations | 8.3 | Pumpkin | 7.1 | Pumpkin | 5.4 | Tomato | 4.5 | |
3 | Pumpkin | 1.3 | Pumpkin | 5.2 | Tomato | 5.0 | Tomato | 4.9 | Pumpkin | 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnauba, R.A.; Sarti, F.M.; Hassimotto, N.M.A.; Lajolo, F.M. Bioactive Compounds Intake of the Brazilian Population According to Geographic Region. Plants 2023, 12, 2414. https://doi.org/10.3390/plants12132414
Carnauba RA, Sarti FM, Hassimotto NMA, Lajolo FM. Bioactive Compounds Intake of the Brazilian Population According to Geographic Region. Plants. 2023; 12(13):2414. https://doi.org/10.3390/plants12132414
Chicago/Turabian StyleCarnauba, Renata A., Flavia M. Sarti, Neuza M. A. Hassimotto, and Franco M. Lajolo. 2023. "Bioactive Compounds Intake of the Brazilian Population According to Geographic Region" Plants 12, no. 13: 2414. https://doi.org/10.3390/plants12132414
APA StyleCarnauba, R. A., Sarti, F. M., Hassimotto, N. M. A., & Lajolo, F. M. (2023). Bioactive Compounds Intake of the Brazilian Population According to Geographic Region. Plants, 12(13), 2414. https://doi.org/10.3390/plants12132414