Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield
Abstract
:1. Introduction
2. Results
2.1. Effects of Year, Irrigation, and P Fertilization on Alfalfa Yield
2.2. Effects of Irrigation on Yield of Different Cut Alfalfa
2.3. Effects of P Fertilization on Yield of Different Cut Alfalfa
2.4. Coupling Effects of Irrigation and P Fertilization on Alfalfa Yield
2.5. Relationship between Alfalfa Yield and Water Supply
3. Discussion
3.1. Alfalfa Responses to Irrigation and Optimal Water Supply
3.2. Alfalfa Responses to P Fertilization and P Residual Effect
3.3. Alfalfa Responses to the Coupling of Irrigation and P Fertilization
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Design and Treatments
4.3. Crop Management and Yield Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouton, J.A. International Grassland Congress; Fundacao de Estudos Agrarios Luiz de Queiroz: Piracicaba, Brazil, 2021. [Google Scholar]
- Radović, J.; Sokolović, D.; Marković, J. Alfalfa—Most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 2009, 25, 465–475. [Google Scholar] [CrossRef]
- Ren, L.; Bennett, J.A.; Coulman, B.; Liu, J.; Biligetu, B. Forage yield trend of alfalfa cultivars in the Canadian prairies and its relation to environmental factors and harvest management. Grass Forage Sci. 2021, 76, 390–399. [Google Scholar] [CrossRef]
- Hosseinirad, A.; Chaichi, M.R.; Sadeghpour, A. Response of alfalfa seed yield and yield components to phosphorus fertilizing systems and seeding rate at semi-saline soil conditions. J. Plant Nutr. 2013, 36, 491–502. [Google Scholar] [CrossRef]
- Iannucci, A.; Di Fonzo, N.; Martiniello, P. Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a Mediterranean environment. Field Crops Res. 2002, 78, 65–74. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, T.; Chen, Z.; Niu, J.; Cui, X.; Mao, Y.; Hassan, M.U.; Kareem, H.A.; Xu, N.; Sui, X.; et al. Occurrence, Distribution, and Genetic Diversity of Alfalfa (Medicago sativa L.) Viruses in Four Major Alfalfa-Producing Provinces of China. Front. Microbiol. 2022, 12, 4305. [Google Scholar] [CrossRef]
- Shi, S.; Nan, L.; Smith, K.F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Kanatas, P.; Gazoulis, I.; Travlos, I. Irrigation Timing as a Practice of Effective Weed Management in Established Alfalfa (Medicago sativa L.) Crop. Agronomy 2021, 11, 550. [Google Scholar] [CrossRef]
- Huang, J.; Lu, X.; Li, T.; Zhao, L.; Gao, K. Effects of different irrigation and fertilization conditions on plant height, yield, and fertilizer utilization efficiency of alfalfa. Grassl. Lawn 2022, 42, 46–53. [Google Scholar]
- Zhang, Q.; Liu, J.; Liu, X.; Li, S.; Sun, Y.; Lu, W.; Ma, C. Optimizing water and phosphorus management to improve hay yield and water- and phosphorus-use efficiency in alfalfa under drip irrigation. Food Sci. Nutr. 2020, 8, 2406–2418. [Google Scholar] [CrossRef]
- Pan, X.Y.; Wu, J.C. Current situation and prospects of water and fertilizer coupling effects. J. Henan Agric. Sci. 2011, 40, 20–23. [Google Scholar]
- Kamran, M.; Yan, Z.; Jia, Q.; Chang, S.; Ahmad, I.; Ghani, M.U.; Hou, F. Irrigation and nitrogen fertilization influence on alfalfa yield, nutritive value, and resource use efficiency in an arid environment. Field Crops Res. 2022, 284, 108587. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, X.; Zehnder, A.J. Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agric. Water Manag. 2003, 61, 143–161. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Tkachuk, O. Biological Features of the distribution of root systems of perennial legume grasses in the context of climate change. Sci. Horizons 2021, 24, 69–76. [Google Scholar] [CrossRef]
- Krogman, K.; Hobbs, E. Evapotranspiration by irrigated alfalfa as related to season and growth stage. Can. J. Plant Sci. 1965, 45, 309–313. [Google Scholar] [CrossRef]
- Bourchier, J.C. Irrigation of lucerne for hay. Agric. Notes 1998, 5, 1–3. [Google Scholar]
- Bao, F.; Liu, M.; Cao, Y.; Li, J.; Yao, B.; Xin, Z.; Lu, Q.; Wu, B. Water Addition Prolonged the Length of the Growing Season of the Desert Shrub Nitraria tangutorum in a Temperate Desert. Front. Plant Sci. 2020, 11, 1099. [Google Scholar] [CrossRef]
- Mu, H.B.; Hou, X.Y.; Mi, F.G. Analysis of growing conditions and economic benefits of alfalfa planted in different densities. China Dairy Cattle 2008, 28, 16–18. [Google Scholar]
- Klocke, N.L.; Currie, R.S.; Holman, J.D. Alfalfa Response to Irrigation from Limited Water Supplies. Trans. ASABE 2013, 56, 1759–1768. [Google Scholar] [CrossRef]
- An, X.; Liu, J.; Liu, X.; Ma, C.; Zhang, Q. Optimizing Phosphorus Application Rate and the Mixed Inoculation of Arbuscular Mycorrhizal Fungi and Phosphate-Solubilizing Bacteria Can Improve the Phosphatase Activity and Organic Acid Content in Alfalfa Soil. Sustainability 2022, 14, 11342. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Shao, L.; Sun, H.; Niu, J.; Liu, X. Effects of straw and manure management on soil and crop performance in North China Plain. Catena 2020, 187, 104359. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, J.; Nie, J.; Zang, H.; Zeng, Z.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat—Summer maize system in the North China Plain. Eur. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
- Davies, T.G.E.; Ying, J.; Xu, Q.; Li, Z.S.; Li, J.; Gordon-Weeks, R. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant Cell Environ. 2002, 25, 1325–1339. [Google Scholar] [CrossRef] [Green Version]
- Maharajan, T.; Ceasar, S.A.; Krishna, T.P.A.; Ignacimuthu, S. Management of phosphorus nutrient amid climate change for sustainable agriculture. J. Environ. Qual. 2021, 50, 1303–1324. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.; Joern, B.C.; Johnson, K.D.; Santini, J.; Volenec, J.J. Influence of Phosphorus and Potassium on Alfalfa Yield and Yield Components. Crops Sci. 2005, 45, 297–304. [Google Scholar] [CrossRef]
- Havlin, J.L.; Westfall, D.G.; Golus, H.M. Six Years of Phosphorus and Potassium Fertilization of Irrigated Alfalfa on Calcareous Soils. Soil Sci. Soc. Am. J. 1984, 48, 331–336. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, Z.F.; Shedeed, S.I. Climate smart agriculture and intelligent irrigation system for management of water resources in arid and semi-arid regions—A review. In Water, Flood Management and Water Security under a Changing Climate: Proceedings from the 7th International Conference on Water and Flood Management, Dhaka, Bangladesh, 2–4 March 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 361–370. [Google Scholar]
- Deng, X.P.; Shan, L.; Zhang, H.P.; Turner, N.C. Improving agricultural water use efficiency in and and semiarid areas of china. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Yu, Y.; Pi, Y.; Yu, X.; Ta, Z.; Sun, L.; Disse, M.; Zeng, F.; Li, Y.; Chen, X.; Yu, R. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J. Arid. Land 2019, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fransen, S.; Kugler, J.; Evans, D.; Ford, W. Alfalfa Irrigation Management; Drought Advisory Series, EM4824; Washington State University Cooperative Extension: Pullman, WA, USA, 2001. [Google Scholar]
- Xu, R.; Zhao, H.; Liu, G.; Li, Y.; Li, S.; Zhang, Y.; Liu, N.; Ma, L. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain. Agric. Syst. 2022, 195, 103305. [Google Scholar] [CrossRef]
- Saeed, I.; El-Nadi, A. Irrigation effects on the growth, yield, and water use efficiency of alfalfa. Irrig. Sci. 1997, 17, 63–68. [Google Scholar] [CrossRef]
- Brown, P.W.; Tanner, C. Alfalfa Stem and Leaf Growth during Water Stress. Agron. J. 1983, 75, 799–805. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Liu, M.; Wu, X.; Yang, H. Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China. Agric. Water Manag. 2022, 260, 107316. [Google Scholar] [CrossRef]
- Halim, R.A.; Buxton, D.R.; Hattendorf, M.J.; Carlson, R.E. Water-Deficit Effects on Alfalfa at Various Growth Stages. Agron. J. 1989, 81, 765–770. [Google Scholar] [CrossRef]
- English, M. Deficit irrigation. I: Analytical framework. J. Irrig. Drain. Eng. 1990, 116, 399–412. [Google Scholar] [CrossRef]
- Lopes, L.; de Carvalho, F.; Belo, A.; Batista, Â.; Camargo, K.; da Silva, J.; Cardoso, D.; Carvalho, C. Water balance and renal excretion of metabolites in dairy fed alfalfa hay and spineless cactus. Med. Veterinária 2019, 13, 583–590. [Google Scholar] [CrossRef]
- Qiu, Y.; Fan, Y.; Chen, Y.; Hao, X.; Li, S.; Kang, S. Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China. Agric. Water Manag. 2021, 254, 106934. [Google Scholar] [CrossRef]
- Testa, G.; Gresta, F.; Cosentino, S. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Min, D. Effects of Cutting Interval between Harvests on Dry Matter Yield and Nutritive Value in Alfalfa. Am. J. Plant Sci. 2016, 7, 1226–1231. [Google Scholar] [CrossRef] [Green Version]
- Myer, G.L.; Miller, W.W.; Narayanan, R.; Jensen, E.H.; Zheng, Y.-B. Water Management of Alfalfa through Individual Harvest Production Functions. J. Prod. Agric. 1991, 4, 505–508. [Google Scholar] [CrossRef]
- Damodar Reddy, D.; Subba Rao, A.; Sammi Reddy, K.; Takkar, P. Yield sustainability and phosphorus utilization in soybean–wheat system on vertisols in response to integrated use of manure and fertilizer phosphorus. Field Crops Res. 1999, 62, 181–190. [Google Scholar] [CrossRef]
- Nahas, E. Phosphate solubilizing microorganisms: Effect of carbon, nitrogen, and phosphorus sources. In First International Meeting on Microbial Phosphate Solubilization, Salamanca, Spain, 16–19 July 2002; Springer: Berlin/Heidelberg, Germany, 2007; pp. 111–115. [Google Scholar]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Santini, J.B.; Volenec, J.J. The Long-Term Impact of Phosphorus and Potassium Fertilization on Alfalfa Yield and Yield Components. Crops Sci. 2007, 47, 2198–2209. [Google Scholar] [CrossRef]
- Pheav, S.; Bell, R.W.; White, P.F.; Kirk, G.J.D. Phosphorus Mass Balances for Successive Crops of Fertilised Rainfed Rice on a Sandy Lowland Soil. Nutr. Cycl. Agroecosyst. 2005, 73, 277–292. [Google Scholar] [CrossRef]
- Bansiwal, A.K.; Rayalu, S.S.; Labhasetwar, N.K.; Juwarkar, A.A.; Devotta, S. Surfactant-Modified Zeolite as a Slow Release Fertilizer for Phosphorus. J. Agric. Food Chem. 2006, 54, 4773–4779. [Google Scholar] [CrossRef]
- Zhan, F.; Liu, M.; Guo, M.; Wu, L. Preparation of superabsorbent polymer with slow-release phosphate fertilizer. J. Appl. Polym. Sci. 2004, 92, 3417–3421. [Google Scholar] [CrossRef]
- Malhi, S.; Arshad, M.; Gill, K.; McBeath, D. Response of alfalfa hay yield to phosphorus fertilization in two soils in central Alberta. Commun. Soil Sci. Plant Anal. 1992, 23, 717–724. [Google Scholar] [CrossRef]
- Moyer, J.R. Alfalfa yields in establishment and subsequent years after herbicide and phosphorus application during establishment. Can. J. Plant Sci. 1992, 72, 619–625. [Google Scholar] [CrossRef]
- Xi, Z.B. The Modern Chemical Fertilizers Science; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- Tian, Z.X.; Cao, J.J. Research on phosphate fertilizer residual effect. Soils 1997, 251–253. [Google Scholar]
- Schneider, K.D.; Martens, J.R.T.; Zvomuya, F.; Reid, D.K.; Fraser, T.D.; Lynch, D.H.; O’Halloran, I.P.; Wilson, H.F. Options for Improved Phosphorus Cycling and Use in Agriculture at the Field and Regional Scales. J. Environ. Qual. 2019, 48, 1247–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, T.L.; Doerge, T.A.; Godin, R.E. Nitrogen and Water Interactions in Subsurface Drip-Irrigated Cauliflower II. Agronomic, Economic, and Environmental Outcomes. Soil Sci. Soc. Am. J. 2000, 64, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Zhang, F. Soil Water, Fertility and Sustainable Agricultural Production in Arid and Semiarid Regions on the Loess Plateau. J. Plant Nutr. Soil Sci. 2000, 163, 107–113. [Google Scholar] [CrossRef]
- Kafkafi, U.; Valoras, N.; Letey, J. Chloride interaction with nitrate and phosphate nutrition in tomato (Lycopersicon esculentum L.). J. Plant Nutr. 1982, 5, 1369–1385. [Google Scholar] [CrossRef]
- Wang, Q.S.; Sun, D.B.; Hou, X.Y. Optimization of irrigation frequency and application norm of phosphorus fertilizer for alfalfa in semiarid region of northern Shanxi province. Trans. Chin. Soc. Agric. Eng. 2012, 28, 112–117. [Google Scholar]
- Helalia, A.M.; Al-Tapir, O.; Al-Nabulsi, Y. The influence of irrigation water salinity and fertilizer management on the yield of Alfalfa (Medicago sativa L.). Agric. Water Manag. 1996, 31, 105–114. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Publishing House: Beijing, China, 2000. [Google Scholar]
- Wen, X. Study on the Effect of Water and Fertilizer on the Production Performance and Quality of Alfalfa. Master’s thesis, Lanzhou University, Lanzhou, China, 2010. [Google Scholar]
Source | df | F Value | Significance |
---|---|---|---|
Year (Y) | 5 | 110.25 | ** |
Irrigation (W) | 3 | 2.39 | ns |
P fertilization (F) | 2 | 10.28 | ** |
Y × W | 15 | 1.87 | * |
Y × F | 10 | 2.57 | * |
W× F | 6 | 0.73 | * |
Y × W × F | 30 | 0.89 | ns |
Treatment | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean |
---|---|---|---|---|---|---|---|
W0F0 | 14,276.9 a | 11,245.9 a | 10,786.5 c | 12,582.5 c | 12,156.5 c | 9153.8 g | 10,681.8 |
W0F1 | 13,638.1 a | 11,609.1 a | 11,677.6 bc | 14,402.5 bc | 14,436 ab | 11,544.6 e | 12,348.7 |
W0F2 | 14,271.3 a | 11,740.3 a | 11,890.5 ab | 15,110.8 ab | 15,143.4 ab | 11,933.4 e | 12,782.4 |
W1F0 | 14,184.9 a | 11,587.9 a | 11,215 bc | 13,279.1 bc | 13,510.6 bc | 11,819.4 e | 12,287.5 |
W1F1 | 13,561.9 a | 12,082.9 a | 12,359.5 ab | 14,860.6 ab | 14,710.3 ab | 12,617.9 d | 13,066.5 |
W1F2 | 14,099.2 a | 12,191.3 a | 12,385.3 ab | 14,862.5 ab | 15,332.6 ab | 13,068.1 c | 13,421.2 |
W2F0 | 13,550.5 a | 12,431.3 a | 11,891.5 ab | 13,817.5 bc | 13,965 bc | 12,599.8 d | 12,865.5 |
W2F1 | 13,784.7 a | 12,510.0 a | 12,747.6 ab | 14,478.9 ab | 15,048.4 ab | 13,558.3 b | 13,636.1 |
W2F2 | 13,967.3 a | 12,253.2 a | 12,958.4 a | 15,712.5 a | 15,686.8 a | 13,806.5 a | 13,961.1 |
W3F0 | 14,321.3 a | 11,872.4 a | 11,632.2 bc | 13,685.2 bc | 13,934.2 bc | 10,952.2 f | 12,020.7 |
W3F1 | 13,168.2 a | 12,289.2 a | 12,226.9 bc | 14,792.4 ab | 13,963.6 bc | 12,568.3 d | 12,928.2 |
W3F2 | 13,792.7 a | 12,147.5 a | 12,514.2 ab | 14,567.2 ab | 13,546.6 bc | 13,197.6 b | 13,255.6 |
Cut | Year | ||||||
---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | |
First | 88.6 | 35.0 | 42.3 | 40.7 | 57.0 | 22.0 | 47.6 |
Second | 96.1 | 56.0 | 49.2 | 58.4 | 60.0 | 46.6 | 61.0 |
Third | 153.6 | 105.0 | 133.9 | 132.4 | 149.6 | 199.9 | 145.7 |
Forth | 213.4 | 244.0 | 195.2 | 301.0 | 277.8 | 233.3 | 244.1 |
Growing season | 551.7 | 440.0 | 420.6 | 532.5 | 544.4 | 501.8 | 498.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; An, J.; Hou, X. Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield. Plants 2023, 12, 2227. https://doi.org/10.3390/plants12112227
Li X, An J, Hou X. Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield. Plants. 2023; 12(11):2227. https://doi.org/10.3390/plants12112227
Chicago/Turabian StyleLi, Xinle, Jingyuan An, and Xiangyang Hou. 2023. "Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield" Plants 12, no. 11: 2227. https://doi.org/10.3390/plants12112227
APA StyleLi, X., An, J., & Hou, X. (2023). Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield. Plants, 12(11), 2227. https://doi.org/10.3390/plants12112227