Appraisal of Abelmoschus esculentus L. Response to Aluminum and Barium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Setup
2.3. TMEs and Minerals Analysis
2.4. Translocation Factor
2.5. Proline
2.6. Determination of Phenolic Compounds and Flavonoids
2.7. Statistical Analysis
3. Results
3.1. Growth
3.1.1. Plant Morphology
3.1.2. Dry Biomass Production
3.1.3. Tolerance Index
3.1.4. Water Content
3.1.5. Fructification Yield
3.2. TME and Minerals Accumulation
3.2.1. Al and Ba Accumulation
3.2.2. Translocation Factor of Al and Ba
3.3. Mineral Accumulation
3.3.1. Potassium
3.3.2. Calcium
3.3.3. Magnesium
3.3.4. Zinc
3.3.5. Iron
3.4. Proline
3.5. Secondary Metabolites
3.5.1. Total Phenols
3.5.2. Flavonoids
3.6. Principal Component Analyses (PCA)
4. Discussion
4.1. Growth
4.2. TMEs Accumulation
4.3. Mineral Uptake
4.4. Proline
4.5. Polyphenols and Flavonoids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer–advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Vitorello, V.A.; Capaldi, F.R.; Stefanuto, V.A. Recent advances in aluminum toxicity and resistance in higher plants. Braz. J. Plant Phys. 2005, 17, 129–143. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, X.Y.; Yu, H.M.; Rudnick, R.L.; Gaschnig, R.M.; Xu, J.; Li, W.Y.; Zhang, Q.; Jin, Z.D.; Li, X.H.; Huang, F. Barium isotopic composition of the upper continental crust. Geochim. Cosmochim. Acta 2018, 233, 33–49. [Google Scholar] [CrossRef]
- Nogaj, E.; Kwapulinski, J.; Misiolek, H. Pharyngeal Tonsil as new biomarker of pollution on example of barium. Pol. J. Environ. Stud. 2011, 20, 161–172. [Google Scholar]
- Llugany, M.; Poschenrieder, C.; Barceló, J. Assessment of barium toxicity in bush beans. Arch. Environ. Contam. Toxicol. 2000, 39, 440–444. [Google Scholar] [CrossRef]
- Suwa, R.K.; Jayachandran, N.T.; Nguyen, A.; Boulenouar, K.; Fujita, K.; Saneoka, H. Barium toxicity effects in soybean plants. Arch. Environ. Contam. Toxicol. 2008, 55, 397–403. [Google Scholar] [CrossRef]
- Kowalska, J.; Stryjewska, E.; Bystrzejewska-Piotrowska, G.; Lewandowski, K.; Tobiasz, M.; Pańdyna, J.; Golimowski, J. Studies of plants useful in the Re-cultivation of heavy metals-contaminated wasteland-a new hyperaccumulator of barium? Pol. J. Environ. Stud. 2012, 21, 401–405. [Google Scholar]
- Varma, S.; Jangra, M. Heavy metals stress and defense strategies in plants: An overview. J. Pharmacogn. Phytochem. 2021, 10, 608–614. [Google Scholar]
- Hewitt, E.J. Sand and water culture methods used in the study of plant nutrition. J. Assoc. Off. Anal. Chem. 1966, 49, 888–889. [Google Scholar]
- Stolt, J.P.; Sneller, F.E.C.; Brynelsson, T.; Lundborg, T.; Schat, H. Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 2003, 49, 21–28. [Google Scholar] [CrossRef]
- Sleimi, N.; Abdely, C. Salt-tolerance strategy of two halophytes species: Spartina alterniflora and Suaeda fruticosa. In Tasks for Vegetation Science; Cash Crop Halophytes: Recent Studies; Lieth, H., Mochtchenko, M., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; Volume 38, pp. 79–85. [Google Scholar] [CrossRef]
- Sleimi, N.; Bankaji, I.; Kouki, R.; Dridi, N.; Duarte, B.; Caçador, I. Assessment of Extraction Methods of Trace Metallic Elements in Plants: Approval of a Common Method. Sustainability 2022, 14, 1428. [Google Scholar] [CrossRef]
- Mattina, M.J.I.; Lannucci-Berger, W.; Musante, C.; White, J.C. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut. 2003, 124, 375–378. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Bouslimi, H.; Ferreira, R.; Dridi, N.; Brito, P.; Martins-Dias, S.; Caçador, I.; Sleimi, N. Effects of Barium stress in Brassica juncea and Cakile maritima: The indicator role of some antioxidant enzymes and secondary metabolites. Phyton Int. J. Exp. Bot. 2021, 90, 145–158. [Google Scholar] [CrossRef]
- Quittier, D.C.; Gressier, B. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and four. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Wang, S.; Ren, X.; Huang, B.; Wang, G.; Zhou, P.; An, Y. Aluminum-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci. Rep. 2016, 6, 30079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.B.; Liu, P.; Yang, Y.S.; Xu, G.D. Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot. Stud. 2007, 48, 435–444. [Google Scholar]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Kouki, R.; Ayachi, R.; Ferreira, R.; Sleimi, N. Behavior of Cucumis sativus L. in presence of aluminum stress: Germination, plant growth, and antioxidant enzymes. Food Sci. Nutr. 2021, 9, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Pirzadah, T.B.; Malika, B.; Tahirc, I.; Ul Rehman, R.; Hakeem, O.R.; Alharby, H.F. Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiol. Biochem. 2019, 144, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, H.; Xu, J.; Chun, X.; Ni, D. Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol. Plant. 2010, 33, 973–978. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, J.; Cao, J.; Zeng, Y.; Li, X.; Ma, J.; Huang, Z.; Jiang, M.; Sun, L. The Beneficial Effects of Aluminum on the Plant Growth in Camellia japonica. J. Soil Sci. Plant Nutr. 2020, 20, 1799–1809. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.W.; Pan, J.L.; Huang, Z.B.; Li, Y.Z. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta 2015, 242, 1391–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomioka, R.; Takenaka, C. Enhancement of root respiration and photosyn-thesis in Quercus serrata Thunb. Seedlings by long-term aluminum treatment. Environ. Sci. 2007, 14, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.; Zvobgo, G.; Zhang, G.P. The beneficial effect and possible mechanisms of aluminum on plant growth in acid soil: A review. J. Integr. Agric. 2019, 18, 1518–1528. [Google Scholar] [CrossRef]
- Li, H.; Yang, L.T.; Qi, Y.P.; Guo, P.; Lu, Y.B.; Chen, L.S. Aluminum toxicity-induced alterations of leaf proteome in two citrus species differing in aluminum tolerance. Int. J. Mol. Sci. 2016, 17, 1180. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Lan, P.; Shen, R.F.; Li, W.F. Proteomics of aluminum tolerance in plants. Proteomics 2014, 14, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Sleimi, N.; Kouki, R.; Hadj-Ammar, M.; Ferreira, R.; Pérez-Clemente, R. Barium effect on germination, plant growth, and antioxidant enzymes in Cucumis sativus L. plants. Food Sci. Nutr. 2021, 9, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- de Souza Cardoso, A.A.; Monteiro, F.A. Sulfur supply reduces barium toxicity in Tanzania guinea grass (Panicum maximum) by inducing antioxidant enzymes and proline metabolism. Ecotoxicol. Environ. Saf. 2021, 208, 111643. [Google Scholar] [CrossRef] [PubMed]
- Barrachina, A.C.; Carbonell, F.B.; Beneyto, J.M. Arsenic uptake, distribution, and accumulation in tomato plants: Effect of arsenite on plant growth and yield. J. Plant Nutr. 1995, 18, 1237–1250. [Google Scholar] [CrossRef]
- Shekar, C.H.C.; Sammaiah, D.; Shasthree, T.; Reddy, K.J. Effect of mercury on tomato growth and yield attributes. Int. J. Pharma Bio Sci. 2011, 2, 358–364. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, R.; Li, D.; Jia, X.; Zhou, D.; Li, J.; Lyi, S.M.; Hou, S.; Huang, Y.; Kochian, L.V. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, 5047–5052. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Watanabe, T.; Caris, P.; Geuten, K.; Lens, F.; Pyck, N.; Smets, E. The distribution and phylogeny of aluminium accumulating plants in the ericales. Plant Biol. 2004, 6, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Horst, W.J.; Wang, Y.; Eticha, D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Ann. Bot. 2010, 106, 185–197. [Google Scholar] [CrossRef]
- Jansen, S.; Broadley, M.R.; Robbrecht, E.; Smets, E. Aluminum hyperaccumulation in angiosperms: A review of if phylogenetic significance. Bot. Rev. 2002, 68, 235–269. [Google Scholar] [CrossRef]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental barium: Potential exposure and health-hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kamachi, H.; Kitamura, N.; Sakatoku, A.; Tanaka, D.; Nakamura, S. Barium accumulation in the metalliferous fern Athyrium yokoscense. Theor. Exp. Plant Physiol. 2015, 27, 99–107. [Google Scholar] [CrossRef]
- Njenga, L.W.; Maina, D.M.; David, N.; Kariuki, D.N.; Mwangi, F.K. Aluminium exposure from vegetables and fresh raw vegetable juices in Kenya. J. Food Agric. Environ. 2007, 5, 8–11. [Google Scholar]
- FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods; WHO: Geneva, Switzerland, 2011; pp. 64–89. [Google Scholar]
- Bawwab, M.; Qutob, A.; Al Khatib, M.; Malassa, H.; Shawahna, A.; Qutob, M. Evaluation of Heavy Metal Concentrations in Soil and Edible Vegetables Grown in Compost from Unknown Sources in Al-Jiftlik, Palestine. J. Environ. Prot. 2022, 13, 112–125. [Google Scholar] [CrossRef]
- Olaiya, C.O. Effects of Three Plant Bioregulators on Some Biochemical Properties of Lycopersicon esculentum (L.) Mill. Ph.D. Thesis, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria, 2006. [Google Scholar]
- Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus. Span. J. Agric. Res. 2016, 14, e0810. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, L.B.; Fernandes, D.M.; Maia, S.C.M.; Mazziero, B.G. Aluminum in mineral nutrition of upland rice plants. Rev. Bras. Ciênc. Agrár. 2017, 12, 26–34. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Cacefo, V.; Ribas, A.F.; Guidorizi, K.A.; Vieira, L.G.E. Exogenous proline alters the leaf ionomic profiles of transgenic and wild-type tobacco plants under water deficit. Ind. Crops Prod. 2021, 170, 113830. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
- Wallace, A.; Romney, E.M. Some interactions of Ca, Sr, and Ba in plants. Agron. J. 1971, 63, 245–248. [Google Scholar] [CrossRef]
- Dridi, N.; Bouslimi, H.; Duarte, B.; Caçador, I.; Sleimi, N. Evaluation of Physiological and Biochemical Parameters and Some Bioindicators of Barium Tolerance in Limbarda crithmoides and Helianthus annuus. Int. J. Plant Biol. 2022, 13, 115–131. [Google Scholar] [CrossRef]
- Rengel, Z.; Bose, J.; Chen, Q.; Tripathi, B.N. Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci. 2015, 66, 1298–1307. [Google Scholar] [CrossRef]
- Sleimi, N.; Guerfali, S.; Bankaji, I. Biochemical indicators of salt stress in Plantago maritima: Implications for environmental stress assessment. Ecol. Indic. 2015, 48, 570–577. [Google Scholar] [CrossRef]
- Labidi, O.; Vives-Peris, V.; Aurelio Gómez-Cadenas, A.; Pérez-Clemente, R.M.; Sleimi, N. Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress. Food Sci. Nutr. 2021, 9, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Hasan, S.A.; Hayat, S.; Hayat, Q.; Yadav, S.; Fariduddin, Q.; Ahmad, A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ. Exp. Bot. 2008, 62, 153–159. [Google Scholar] [CrossRef]
- Garg, G.; Neha, P. Plant transcription factors networking of pyrroline-5-carboxylate (P5C) enzyme under stress condition: A review. Plant Arch. 2019, 19, 562–569. [Google Scholar]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Sangwan, N.S. Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regul. 2019, 87, 403–412. [Google Scholar] [CrossRef]
- Dridi, N.; Ferreira, R.; Bouslimi, H.; Brito, P.; Martins-Dias, S.; Caçador, I.; Sleimi, N. Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. Plants 2022, 11, 988. [Google Scholar] [CrossRef]
- Amarowicz, R.; Weidner, S. Biological activity of grapevine phenolic compounds. In Grapevine Molecular Physiology & Biotechnology; Springer: New York, NY, USA, 2009; pp. 389–405. [Google Scholar] [CrossRef]
- Andersen, C.P. Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 2003, 157, 213–228. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Handa, N.; Kohli, S.K.; Sharma, A.; Thukral, A.K.; Bhardwaj, R.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. S. Afr. J. Bot. 2018, 119, 1–10. [Google Scholar] [CrossRef]
- Berni, R.; Luyckxc, M.; Xud, X.; Legayd, S.; Sergeantd, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metalstress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
Al (µM) | S/R | TI % | WC (mL·g−1 DW) | |||
---|---|---|---|---|---|---|
Roots | Shoots | Entire Plant | Roots | Shoots | ||
0 | 3.63 ± 0.2 | 13.85 ± 0.24 | 7.31 ± 0.14 | |||
100 | 3.31 ± 0.1 | 91.32 ± 4.44 | 88.26 ± 2.63 | 88.06 ± 3.17 | 13.44 ± 0.27 | 8.38 ± 0.23 |
200 | 4.23 ± 0.27 * | 103.98 ± 5.06 | 127.67 ± 5.09 | 122.8 ± 4.14 | 13.08 ± 0.56 | 6.74 ± 0.13 |
400 | 3.23 ± 0.17 | 112.75 ± 5.5 | 100.25 ± 3.96 | 102.82 ± 4.24 | 13.82 ± 0.17 | 7.81 ± 0.24 |
600 | 2.98 ± 0.16 | 121.8 ± 4.93 | 99.88 ± 4.12 | 104.39 ± 3.5 | 12.21 ± 0.5 | 8.2 ± 0.27 |
Ba (µM) | S/R | TI % | WC (mL·g−1 DW) | |||
Roots | Shoots | Entire plant | Roots | Shoots | ||
0 | 3.63 ± 0.2 | 13.85 ± 0.24 | 7.31 ± 0.14 | |||
100 | 2.92 ± 0.11 * | 89.86 ± 6.59 | 75.53 ± 2.56 | 76.33 ± 2.27 | 13.1 ± 0.61 | 7.84 ± 0.3 |
200 | 2.85 ± 0.06 * | 88 ± 4.83 | 70.92 ± 3.38 | 74.17 ± 3.43 | 15.73 ± 0.83 | 8.35 ± 0.41 |
400 | 2.94 ± 0.11 * | 87.48 ± 3.09 | 72.57 ± 2.25 | 75.63 ± 1.84 | 15.37 ± 0.95 | 8.79 ± 0.28 |
600 | 2.73 ± 0.1 * | 88.4 ± 2.74 | 67.35 ± 2.91 | 71.67 ± 2.51 | 15.39 ± 0.82 | 10.33 ± 0.7 * |
Treatment (µM) | Fructification Yield (%) | |
---|---|---|
Al | Ba | |
0 | 100% | 100% |
100 | 80% | 50% |
200 | 100% | 60% |
400 | 100% | 70% |
600 | 90% | 60% |
Treatment (µM) | Translocation Factor (TF) | |
---|---|---|
Al | Ba | |
100 | 0.873 ± 0.0577 | 0.611 ± 0.034 |
200 | 0.854 ± 0.063 | 0.812 ± 0.087 |
400 | 0.708 ± 0.050 | 0.668 ± 0.038 |
600 | 0.653 ± 0.032 | 0.845 ± 0.035 |
K (mg·g−1 DW) | Al (µM) | Ba (µM) | ||||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | |||
0 | 17.77 ± 0.81 | 23.81 ± 0.73 | 22.19 ± 0.42 | 0 | 17.77 ± 0.81 | 23.81 ± 0.73 | 22.19 ± 0.42 | |
100 | 11.75 ± 0.37 * | 18.86 ± 0.74 * | 23.75 ± 0.37 | 100 | 14.11 ± 0.67 * | 20.74 ± 0.88 | 22.99 ± 0.53 | |
200 | 13.04 ± 0.31 * | 18.90 ± 0.53 * | 23.96 ± 0.52 | 200 | 14.39 ± 0.77 * | 17.46 ± 1.11 * | 23.02 ± 0.26 | |
400 | 13.94 ± 0.24 * | 19.83 ± 0.87 * | 23.26 ± 0.65 | 400 | 12.35 ± 0.29 * | 17.12 ± 0.43 * | 23 ± 0.5 | |
600 | 11.29 ± 0.42 * | 16.41 ± 0.44 * | 22.69 ± 0.7 | 600 | 13.33 ± 0.49 * | 17.22 ± 0.26 * | 23.73 ± 0.7 | |
Ca (mg·g−1 DW) | Al (µM) | Ba (µM) | ||||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | |||
0 | 8.35 ± 0.42 | 12.49 ± 0.41 | 4.71 ± 0.15 | 0 | 8.35 ± 0.42 | 12.49 ± 0.41 | 4.71 ± 0.15 | |
100 | 8.84 ± 0.55 | 12.44 ± 0.3 | 4.74 ± 0.24 | 100 | 6.85 ± 0.47 | 12.94 ± 0.86 | 3.99 ± 0.16 | |
200 | 7.01 ± 0.2 * | 10.45 ± 0.26 * | 4.24 ± 0.08 | 200 | 6.71 ± 0.16 | 10.61 ± 0.18 * | 3.62 ± 0.31 | |
400 | 6.49 ± 0.47 * | 9.94 ± 0.46 * | 5.20 ± 0.38 | 400 | 6.82 ± 0.24 | 10.21 ± 0.55 * | 3.78 ± 0.11 | |
600 | 6.54 ± 0.25 * | 9.70 ± 0.32 * | 4.37 ± 0.22 | 600 | 7.04 ± 0.24 | 10.94 ± 0.24 * | 3.36 ± 0.16 | |
Mg (mg·g−1 DW) | Al (µM) | Ba (µM) | ||||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | |||
0 | 9.2 ± 0.25 | 6.96 ± 0.18 | 4.91 ± 0.11 | 0 | 9.2 ± 0.25 | 6.96 ± 0.18 | 4.91 ± 0.11 | |
100 | 8.92 ± 0.25 | 5.82 ± 0.14 * | 4.98 ± 0.15 | 100 | 9.46 ± 0.33 | 7.4 ± 0.55 | 4.69 ± 0.2 | |
200 | 7.56 ± 0.19 * | 5.5 ± 0.12 * | 5.37 ± 0.23 | 200 | 10.3 ± 0.66 | 7.16 ± 0.32 | 4.85 ± 0.43 | |
400 | 7.38 ± 0.34 * | 5.89 ± 0.2 * | 5.61 ± 0.28 | 400 | 10.28 ± 0.32 | 7.01 ± 0.29 | 4.56 ± 0.13 | |
600 | 8.82 ± 0.19 | 5.43 ± 0.11 * | 5.02 ± 0.12 | 600 | 10.33 ± 0.41 | 7.64 ± 0.39 | 5.47 ± 0.22 | |
Zn (mg·g−1 DW) | Al (µM) | Ba (µM) | ||||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | |||
0 | 0.24 ± 0.02 | 0.39 ± 0.02 | 0.13 ± 0.01 | 0 | 0.24 ± 0.02 | 0.39 ± 0.02 | 0.13 ± 0.01 | |
100 | 0.21 ± 0.01 | 0.21 ± 0.02 * | 0.13 ± 0.01 | 100 | 0.22 ± 0.01 | 0.18 ± 0.02 * | 0.15 ± 0.01 | |
200 | 0.15 ± 0.01 * | 0.18 ± 0.03 * | 0.11 ± 0.01 | 200 | 0.13 ± 0.01 * | 0.09 ± 0.01 * | 0.11 ± 0.02 | |
400 | 0.14 ± 0.01 * | 0.13 ± 0.01 * | 0.14 ± 0.02 | 400 | 0.14 ± 0.01 * | 0.14 ± 0.02 * | 0.14 ± 0.01 | |
600 | 0.17 ± 0.01 * | 0.14 ± 0.01 * | 0.14 ± 0.01 | 600 | 0.15 ± 0.01 * | 0.14 ± 0.01 * | 0.13 ± 0.02 | |
Fe (mg·g−1 DW) | Al (µM) | Ba (µM) | ||||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | |||
0 | 0.27 ± 0.01 | 0.22 ± 0.01 | 0.19 ± 0.02 | 0 | 0.27 ± 0.01 | 0.22 ± 0.01 | 0.19 ± 0.02 | |
100 | 0.26 ± 0.01 | 0.21 ± 0.02 | 0.19 ± 0.01 | 100 | 0.13 ± 0.01 * | 0.18 ± 0.03 | 0.11 ± 0.01 * | |
200 | 0.17 ± 0.01 * | 0.14 ± 0.02 * | 0.17 ± 0.01 | 200 | 0.07 ± 0.007 * | 0.07 ± 0.01 * | 0.09 ± 0.01 * | |
400 | 0.18 ± 0.01 * | 0.12 ± 0.01 * | 0.17 ± 0.01 | 400 | 0.10 ± 0.005 * | 0.03 ± 0.01 * | 0.07 ± 0.003 * | |
600 | 0.18 ± 0.01 * | 0.12 ± 0.002 * | 0.14 ± 0.01 * | 600 | 0.02 ± 0.004 * | 0.02 ± 0.005 * | 0.09 ± 0.01 * |
Proline | (µM) | Al | Ba | ||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | ||
0 | 2.11 ± 0.03 | 1.87 ± 0.1 | 2.98 ± 0.09 | 2.11 ± 0.03 | 1.87 ± 0.1 | 2.98 ± 0.09 | |
100 | 2.19 ± 0.03 | 1.86 ± 0.07 | 2.88 ± 0.08 | 1.38 ± 0.08 * | 2.48 ± 0.09 | 2.8 ± 0.08 | |
200 | 2.16 ± 0.09 | 2.56 ± 0.07 | 3.3 ± 0.17 | 1.48 ± 0.09 * | 2.89 ± 0.09 * | 3.3 ± 0.15 | |
400 | 2.58 ± 0.1 * | 2.64 ± 0.03 * | 3.34 ± 0.13 | 2.7 ± 0.12 * | 2.86 ± 0.06 * | 3.3 ± 0.1 | |
600 | 2.59 ± 0.08 * | 2.99 ± 0.13 * | 3.86 ± 0.03 * | 2.71 ± 0.08 * | 2.72 ± 0.24 * | 3.96 ± 0.05 * | |
Total phenols | (µM) | Al | Ba | ||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | ||
0 | 10.42 ± 0.58 | 8.74 ± 0.70 | 15.25 ± 0.72 | 10.42 ± 1.08 | 8.74 ± 0.7 | 15.25 ± 0.72 | |
100 | 12.84 ± 0.85 | 17.52 ± 0.82 * | 16.64 ± 1.32 | 10.25 ± 0.71 | 11.12 ± 0.5 | 15 ± 0.78 | |
200 | 12.35 ± 0.66 | 17.88 ± 0.38 * | 14.56 ± 0.89 | 13.18 ± 0.77 * | 10.61 ± 0.95 | 14.34 ± 1.6 | |
400 | 14.25 ± 0.44 * | 20.99 ± 1.03 * | 15.68 ± 0.81 | 13.46 ± 0.47 * | 13.41 ± 0.5 * | 16.02 ± 0.57 | |
600 | 17.61 ± 0.58 * | 21.60 ± 2.31 * | 15.87 ± 1.31 | 14.11 ± 0.68 * | 14.05 ± 0.84 * | 15.35 ± 0.8 | |
Flavonoids | (µM) | Al | Ba | ||||
Roots | Shoots | Fruits | Roots | Shoots | Fruits | ||
0 | 3.89 ± 0.51 | 9.08 ± 0.4 | 6.28 ± 0.27 | 3.89 ± 0.51 | 9.08 ± 0.4 | 6.28 ± 0.27 | |
100 | 3.19 ± 0.31 | 7.48 ± 0.76 | 6.67 ± 0.48 | 1.60 ± 0.13 * | 6 ± 0.52 | 6.43 ± 0.36 | |
200 | 2.62 ± 0.57 | 7.61 ± 0.2 | 6.20 ± 0.22 | 0.46 ± 0.04 * | 3.34 ± 0.29 * | 6.29 ± 0.15 | |
400 | 0.50 ± 0.18 * | 5.64 ± 0.4 | 6.78 ± 0.34 | 0.47 ± 0.02 * | 3.43 ± 0.22 * | 6.92 ± 0.27 | |
600 | 0.15 ± 0.0 * | 4.61 ± 0.57 | 7.18 ± 0.31 | 0.58 ± 0.05 * | 3.22 ± 0.25 * | 7.13 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouki, R.; Dridi, N.; Vives-Peris, V.; Gómez-Cadenas, A.; Caçador, I.; Pérez-Clemente, R.M.; Sleimi, N. Appraisal of Abelmoschus esculentus L. Response to Aluminum and Barium Stress. Plants 2023, 12, 179. https://doi.org/10.3390/plants12010179
Kouki R, Dridi N, Vives-Peris V, Gómez-Cadenas A, Caçador I, Pérez-Clemente RM, Sleimi N. Appraisal of Abelmoschus esculentus L. Response to Aluminum and Barium Stress. Plants. 2023; 12(1):179. https://doi.org/10.3390/plants12010179
Chicago/Turabian StyleKouki, Rim, Nesrine Dridi, Vicente Vives-Peris, Aurelio Gómez-Cadenas, Isabel Caçador, Rosa María Pérez-Clemente, and Noomene Sleimi. 2023. "Appraisal of Abelmoschus esculentus L. Response to Aluminum and Barium Stress" Plants 12, no. 1: 179. https://doi.org/10.3390/plants12010179
APA StyleKouki, R., Dridi, N., Vives-Peris, V., Gómez-Cadenas, A., Caçador, I., Pérez-Clemente, R. M., & Sleimi, N. (2023). Appraisal of Abelmoschus esculentus L. Response to Aluminum and Barium Stress. Plants, 12(1), 179. https://doi.org/10.3390/plants12010179