Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybridization and Experimental Site
2.2. Measured Traits
2.2.1. Physiological and Biochemical Traits
Chlorophyll Content and Chlorophyll Fluorescence
Relative Water Content (RWC)
Determination of Proline Content and Antioxidant Enzyme Activities
2.2.2. Agronomic Traits
2.2.3. Grain Quality Traits
2.3. Drought Tolerance Indices
2.4. Statistical Analysis
3. Results
3.1. Diallel Analysis
3.2. Mean Performance of the Evaluated Parents and Their Cross Combinations
3.2.1. Physiological and Biochemical Traits
3.2.2. Agronomic Traits
3.2.3. Grain Quality Traits
3.3. Genotypic Classification Based on Drought Tolerance Indices
3.4. General Combining Ability (GCA) Effects
3.4.1. Physiological and Biochemical Traits
3.4.2. Agronomic Traits
3.4.3. Grain Quality Traits
3.5. Specific Combining Ability (SCA) Estimates
3.5.1. Physiological and Biochemical Traits
3.5.2. Agronomic Traits
3.5.3. Grain Quality Traits
3.6. Interrelationship among Physiological, Agronomic, and Quality Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical Database. 2021. Available online: http://www.fao.org/faostat/en/#data (accessed on 9 September 2021).
- Asseng, S.; Kheir, A.M.S.; Kassie, B.T.; Hoogenboom, G.; Abdelaal, A.I.N.; Haman, D.Z.; Ruane, A.C. Can Egypt become self-sufficient in wheat? Environ. Res. Lett. 2018, 13, 094012. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef]
- Tufail, T.; Saeed, F.; Afzaal, M.; Ain, H.B.U.; Gilani, S.A.; Hussain, M.; Anjum, F.M. Wheat straw: A natural remedy against different maladies. Food Sci. Nutr. 2021, 9, 2335–2344. [Google Scholar] [CrossRef]
- Swailam, M.; Mowafy, S.; El-Naggar, N.; Mansour, E. Agronomic responses of diverse bread wheat genotypes to phosphorus levels and nitrogen forms in a semiarid environment. SABRAO J. Breed. Genet. 2021, 53, 592–608. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.; Kapuscinski, A.R.; Locke, K.A.; Peters, C.J. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anth. 2018, 6, 52. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef]
- Ding, Z.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 2021, 244, 106626. [Google Scholar] [CrossRef]
- Han, B.; Benner, S.G.; Flores, A.N. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights. Hydrol. Earth Syst. Sci. Discuss. 2018, 5194, 1–53. [Google Scholar]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; dos Santos Vianna, M.; Ullah, H.; Mansour, E.; Datta, A. Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crops Res. 2021, 260, 107981. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Qabil, N.; Abdelsalam, A.; Wafa, H.A.; El Kenawy, A.; Casas, A.M.; Igartua, E. Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Res. 2018, 224, 67–75. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 29, 185–212. [Google Scholar]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2019, 70, 2549–2560. [Google Scholar] [CrossRef]
- Tardieu, F.; Parent, B.; Caldeira, C.F.; Welcker, C. Genetic and physiological controls of growth under water deficit. Plant Physiol. 2014, 164, 1628–1635. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; El-Sobky, E.-S.E.; Abdul-Hamid, M.I.; Taha, T.F.; Elakkad, H.A.; Arnaout, S.M.; Eid, R.S.; El-Tarabily, K.A.; Yasin, M.A. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Front. Plant Sci. 2021, 12, 637783. [Google Scholar] [CrossRef]
- Sakran, R.M.; Ghazy, M.I.; Rehan, M.; Alsohim, A.S.; Mansour, E. Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions. Plants 2022, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, A.; Al Ayoubi, S.; Sher, A.; Bibi, Y.; Ahmad, S.; Shen, Z.; Jenks, M.A. Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi J. Biol. Sci. 2021, 28, 5238–5249. [Google Scholar] [CrossRef] [PubMed]
- Desoky, E.-S.M.; Mansour, E.; Ali, M.M.A.; Yasin, M.A.T.; Abdul-Hamid, M.I.E.; Rady, M.M.; Ali, E.F. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Moustafa, E.S.; Desoky, E.-S.M.; Ali, M.; Yasin, M.A.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- El-Mageed, A.; Taia, A.; Belal, E.E.; Rady, M.O.; El-Mageed, A.; Shimaa, A.; Mansour, E.; Awad, M.F.; Semida, W.M. Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy 2021, 11, 1290. [Google Scholar] [CrossRef]
- El-Sanatawy, A.M.; Ash-Shormillesy, S.M.; Qabil, N.; Awad, M.F.; Mansour, E. Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water 2021, 13, 2115. [Google Scholar] [CrossRef]
- Mannan, M.; Tithi, M.A.; Islam, M.R.; Al Mamun, M.; Mia, S.; Rahman, M.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M. Soil and foliar applications of zinc sulfate and iron sulfate alleviate the destructive impacts of drought stress in wheat. Cereal Res. Commun. 2022. [Google Scholar] [CrossRef]
- Nasirzadeh, L.; Sorkhilaleloo, B.; Hervan, E.M.; Fatehi, F. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Res. Commun. 2021, 49, 83–89. [Google Scholar] [CrossRef]
- Mansour, E.; Mahgoub, H.A.; Mahgoub, S.A.; El-Sobky, E.-S.E.; Abdul-Hamid, M.I.; Kamara, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Desoky, E.-S.M. Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 2021, 11, 24142. [Google Scholar] [CrossRef]
- Hong-Bo, S.; Xiao-Yan, C.; Li-Ye, C.; Xi-Ning, Z.; Gang, W.; Yong-Bing, Y.; Chang-Xing, Z.; Zan-Min, H. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf. B. 2006, 53, 113–119. [Google Scholar] [CrossRef]
- Farooq, M.; Nawaz, A.; Chaudhry, M.; Indrasti, R.; Rehman, A. Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma—Aminobutyric acid. J. Agron. Crop Sci. 2017, 203, 464–472. [Google Scholar] [CrossRef]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front. Plant Sci. 2016, 7, 1276. [Google Scholar] [CrossRef] [PubMed]
- ŽIVČÁK, M.; Repkova, J.; OLŠOVSKÁ, K.; BRESTIČ, M. Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res. Commun. 2009, 37, 569–572. [Google Scholar]
- Desoky, E.-S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Mansour, E.; Desoky, E.-S.M.; Ali, M.M.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Nuttall, J.; O’leary, G.; Panozzo, J.; Walker, C.; Barlow, K.; Fitzgerald, G. Models of grain quality in wheat-A review. Field Crops Res. 2017, 202, 136–145. [Google Scholar] [CrossRef]
- Zhao, C.-X.; He, M.-R.; Wang, Z.-L.; Wang, Y.-F.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C. R. Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. The influence of drought and heat stress on the expression of end-use quality parameters of common wheat. J. Cereal Sci. 2013, 57, 73–78. [Google Scholar] [CrossRef]
- Begcy, K.; Walia, H. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Sci. 2015, 240, 109–119. [Google Scholar] [CrossRef]
- Ozturk, A.; Aydin, F. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J. Agron. Crop Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Balla, K.; Rakszegi, M.; Li, Z.; Bekes, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef]
- Panozzo, J.; Eagles, H. Cultivar and environmental effects on quality characters in wheat. II. Protein. Aust. J. Agric. Res. 2000, 51, 629–636. [Google Scholar] [CrossRef]
- Blanco, A.; Mangini, G.; Giancaspro, A.; Giove, S.; Colasuonno, P.; Simeone, R.; Signorile, A.; De Vita, P.; Mastrangelo, A.; Cattivelli, L. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol. Breed. 2012, 30, 79–92. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, Y.; Hou, L.; He, Y. Combining protein content and grain yield by genetic dissection in bread wheat under low-input management. Foods 2021, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Abaza, G.M.S.M.; Awaad, H.A.; Attia, Z.M.; Abdel-lateif, K.S.; Gomaa, M.A.; Abaza, S.M.S.M.; Mansour, E. Inducing potential mutants in bread wheat using different doses of certain physical and chemical mutagens. Plant Breed. Biotech. 2020, 8, 252–264. [Google Scholar] [CrossRef]
- Farshadfar, E.; Rafiee, F.; Hasheminasab, H. Evaluation of genetic parameters of agronomic and morpho-physiological indicators of drought tolerance in bread wheat (Triticum aestivum L.) using diallel mating design. Aust. J. Crop Sci. 2013, 7, 268–275. [Google Scholar]
- Kamara, M.M.; Ghazy, N.A.; Mansour, E.; Elsharkawy, M.M.; Kheir, A.; Ibrahim, K.M. Molecular genetic diversity and line× tester analysis for resistance to late wilt disease and grain yield in maize. Agronomy 2021, 11, 898. [Google Scholar] [CrossRef]
- ElShamey, E.A.; Sakran, R.M.; ElSayed, M.A.; Aloufi, S.; Alharthi, B.; Alqurashi, M.; Mansour, E.; Abd El-Moneim, D. Heterosis and combining ability for floral and yield characters in rice using cytoplasmic male sterility system. Saudi J. Biol. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Salem, T.; Rabie, H.; Mowafy, S.; Eissa, A.; Mansour, E. Combining ability and genetic components of egyptian cotton for earliness, yield, and fiber quality traits. SABRAO J. Breed Genet. 2020, 52, 369–389. [Google Scholar]
- Semahegn, Y.; Shimelis, H.; Laing, M.; Mathew, I. Combining ability of bread wheat genotypes for yield and yield-related traits under drought-stressed and non-stressed conditions. S. Afr. J. Plant Soil. 2021, 38, 171–179. [Google Scholar] [CrossRef]
- Fadeel, A.A. Location and Properties of Chloroplasts and Pigment Determination in Roots. Physiol. Plant. 1962, 15, 130–146. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Barrs, H.; Weatherley, P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Aebi, H.; Wyss, S.R.; Scherz, B.; SKVARIL, F. Heterogeneity of erythrocyte catalase II: Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur. J. Biochem. 1974, 48, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J.; Steinberg, M.; Nelson, A. Enzyme assay, quantitative determination of peroxidase in sweet corn. J. Agric. Food Chem. 1958, 6, 39–41. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Choice Reviews Online: Washington, DC, USA, 1999; p. 35. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Pleshkov, B.P. Biochemistry of Agricultural Plants; Kolos: Moscow, Russia, 1965; p. 447. [Google Scholar]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.; Ricciardi, G.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. 2017. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 25 December 2021).
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Chowdhury, M.K.; Hasan, M.; Bahadur, M.; Islam, M.; Hakim, M.; Iqbal, M.A.; Javed, T.; Raza, A.; Shabbir, R.; Sorour, S. Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy 2021, 11, 1792. [Google Scholar] [CrossRef]
- Ali, M.M.; Mansour, E.; Awaad, H.A. Drought Tolerance in Some Field Crops: State of the Art Review. In Mitigating Environmental Stresses for Agricultural Sustainability in Egypt; Springer Nature: Cham, Switzerland, 2021; pp. 17–62. [Google Scholar]
- Mansour, E.; Moustafa, E.S.; El-Naggar, N.Z.; Abdelsalam, A.; Igartua, E. Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop Pasture Sci. 2018, 69, 681–690. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P. Wild relatives of wheat respond well to water deficit stress: A comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture 2020, 10, 415. [Google Scholar] [CrossRef]
- Osipova, S.V.; Permyakov, A.V.; Permyakova, M.D.; Pshenichnikova, T.A.; Genaev, M.A.; Börner, A. The antioxidant enzymes activity in leaves of inter-varietal substitution lines of wheat (Triticum aestivum L.) with different tolerance to soil water deficit. Acta Physiol. Plant. 2013, 35, 2455–2465. [Google Scholar] [CrossRef]
- Bogale, A.; Tesfaye, K.; Geleto, T. Morphological and physiological attributes associated to drought tolerance of Ethiopian durum wheat genotypes under water deficit condition. J. Biodivers. Environ. Sci. 2011, 1, 22–36. [Google Scholar]
- El-Hendawy, S.; Al-Suhaibani, N.; Al-Ashkar, I.; Alotaibi, M.; Tahir, M.U.; Solieman, T.; Hassan, W.M. Combining genetic analysis and multivariate modeling to evaluate spectral reflectance indices as indirect selection tools in wheat breeding under water deficit stress conditions. Remote Sens. 2020, 12, 1480. [Google Scholar] [CrossRef]
- Morsy, S.M.; Elbasyoni, I.S.; Abdallah, A.M.; Baenziger, P.S. Imposing water deficit on modern and wild wheat collections to identify drought-resilient genotypes. J. Agron. Crop Sci. 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Liu, H.; Searle, I.R.; Mather, D.E.; Able, A.J.; Able, J.A. Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop Pasture Sci. 2015, 66, 1024–1038. [Google Scholar] [CrossRef]
- Ozturk, A.; Erdem, E.; Aydin, M.; Karaoglu, M.M. The effects of drought after anthesis on the grain quality of bread wheat depend on drought severity and drought resistance of the variety. Cereal Res. Commun. 2021, 1, 105–116. [Google Scholar] [CrossRef]
- Elbasyoni, I.S.; Morsy, S.M.; Ramamurthy, R.K.; Nassar, A.M. Identification of genomic regions contributing to protein accumulation in wheat under well-watered and water deficit growth conditions. Plants 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Magallanes-López, A.M.; Ammar, K.; Morales-Dorantes, A.; González-Santoyo, H.; Crossa, J.; Guzmán, C. Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. J. Cereal Sci. 2017, 75, 1–9. [Google Scholar] [CrossRef]
- Ayed, S.; Othmani, A.; Bouhaouel, I.; da Silva, J.A.T. Multi-environment screening of durum wheat genotypes for drought tolerance in changing climatic events. Agronomy 2021, 11, 875. [Google Scholar] [CrossRef]
- Arjenaki, F.G.; Jabbari, R.; Morshedi, A. Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. Int. J. Agric. Crop Sci. 2012, 4, 726–729. [Google Scholar]
- Lonbani, M.; Arzani, A. Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agron. Res. 2011, 9, 315–329. [Google Scholar]
- El-Sanatawy, A.M.; El-Kholy, A.S.; Ali, M.; Awad, M.F.; Mansour, E. Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a mediterranean arid environment. Agronomy 2021, 11, 756. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Merwad, A.-R.; Abo El-Maati, M.F.; Mansour, E.; Arnaout, S.M.; Awad, M.F.; Ramadan, M.F.; Ibrahim, S.A. Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy 2021, 11, 926. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Mansour, E.; Yasin, M.A.; El Sobky, E.-S.E.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 18, 16. [Google Scholar] [CrossRef]
- Kirova, E.; Pecheva, D.; Simova-Stoilova, L. Drought response in winter wheat: Protection from oxidative stress and mutagenesis effect. Acta Physiol. Plant. 2021, 43, 8. [Google Scholar] [CrossRef]
- Habibullah, M.; Sarkar, S.; Islam, M.M.; Ahmed, K.U.; Rahman, M.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M. Assessing the response of diverse sesame genotypes to waterlogging durations at different plant growth stages. Plants 2021, 10, 2294. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.-H. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J. Microbiol. 2017, 55, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; de Groot, S.; Soole, K.; Langridge, P. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 2017, 8, 1950. [Google Scholar] [CrossRef] [PubMed]
- Onyemaobi, I.; Liu, H.; Siddique, K.H.; Yan, G. Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Front. Plant Sci. 2017, 7, 2071. [Google Scholar] [CrossRef] [PubMed]
- Dolferus, R.; Powell, N.; Xuemei, J.; Ravash, R.; Edlington, J.; Oliver, S.; Van Dongen, J.; Shiran, B. The Physiology of Reproductive-Stage Abiotic Stress Tolerance in Cereals. In Molecular Stress Physiology of Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 193–216. [Google Scholar]
- Grzesiak, S.; Hordyńska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechyńska-Hebda, M. Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I–selection approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef]
- Mujtaba, S.; Faisal, S.; Khan, M.A.; Shirazi, M.; Khan, M. Evaluation of drought tolerant wheat genotypes using morpho-physiological indices as screening tools. Pak. J. Bot. 2018, 50, 51–58. [Google Scholar]
- Shamsi, K.; Petrosyan, M.; Noor-Mohammadi, G.; Haghparast, R. The role of water deficit stress and water use efficiency on bread wheat cultivars. J. Appl. Biosci. 2010, 35, 2325–2331. [Google Scholar]
- Saint Pierre, C.; Peterson, C.; Ross, A.; Ohm, J.; Verhoeven, M.; Larson, M.; Hoefer, B. Winter wheat genotypes under different levels of nitrogen and water stress: Changes in grain protein composition. J. Cereal Sci. 2008, 47, 407–416. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Zhu, G.; Zhu, D.; Yan, Y. Effects of water deficit and high N fertilization on wheat storage protein synthesis, gluten secondary structure, and breadmaking quality. Crop J. 2021, in press. [Google Scholar] [CrossRef]
- Gracia, M.; Mansour, E.; Casas, A.; Lasa, J.; Medina, B.; Cano, J.L.M.; Moralejo, M.; López, A.; Fuster, P.L.; Escribano, J. Progress in the Spanish national barley breeding program. Span. J. Agric. Res. 2012, 10, 741–751. [Google Scholar] [CrossRef]
- Gharib, M.A.A.H.; Qabil, N.; Salem, A.H.; Ali, M.M.A.; Awaad, H.A.; Mansour, E. Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits. Cereal Res. Commun. 2021, 49, 149–159. [Google Scholar] [CrossRef]
- Ponce-Molina, L.J.; María Casas, A.; Pilar Gracia, M.; Silvar, C.; Mansour, E.; Thomas, W.B.; Schweizer, G.; Herz, M.; Igartua, E. Quantitative trait loci and candidate loci for heading date in a large population of a wide barley cross. Crop Sci. 2012, 52, 2469–2480. [Google Scholar] [CrossRef]
- Kamara, M.M.; Ibrahim, K.M.; Mansour, E.; Kheir, A.; Germoush, M.O.; El-Moneim, A.; Motawei, M.I.; Alhusays, A.Y.; Farid, M.A.; Rehan, M. Combining ability and gene action controlling grain yield and its related traits in bread wheat under heat stress and normal conditions. Agronomy 2021, 11, 1450. [Google Scholar] [CrossRef]
- MS, A.E.-A.; MA, E.H.; Abo-Youssef, M.; Omar, A.; Kamara, M. Genetic behavior of rice (Oryza sativa) genotypes under normal and infested weed conditions. Indian J. Agric. Sci. 2020, 90. [Google Scholar]
- Mwadzingeni, L.; Shimelis, H.; Tsilo, T.J. Combining ability and gene action controlling yield and yield components in bread wheat (Triticum aestivum L.) under drought-stressed and nonstressed conditions. Plant Breed. Biotech. 2018, 137, 502–513. [Google Scholar] [CrossRef]
- Mia, M.S.; Liu, H.; Wang, X.; Lu, Z.; Yan, G. Response of wheat to post-anthesis water stress, and the nature of gene action as revealed by combining ability analysis. Crop Pasture Sci. 2017, 68, 534–543. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Xin, W.; Wei, Y.; Zhang, J.; Guo, L. Wheat breeding in northern China: Achievements and technical advances. Crop J. 2019, 7, 718–729. [Google Scholar] [CrossRef]
- Battenfield, S.D.; Guzmán, C.; Gaynor, R.C.; Singh, R.P.; Peña, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J.A. Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, S.; Singhania, D.; Sain, R. Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell). Hereditas 2004, 141, 115–121. [Google Scholar] [CrossRef]
- Jatoi, W.; Baloch, M.; Khan, N.; Munir, M.; Khakwani, A.; Vessar, N.; Panhwar, S.; Gul, S. Heterosis for yield and physiological traits in wheat under water stress conditions. J. Anim. Plant Sci. 2014, 24, 252–261. [Google Scholar]
- Mohi-Ud-Din, M.; Hossain, M.; Rohman, M.; Uddin, M.; Haque, M.; Ahmed, J.U.; Hossain, A.; Hassan, M.M.; Mostofa, M.G. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 2021, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- Mekaoussi, R.; Rabti, A.-B.; Fellahi, Z.E.A.; Hannachi, A.; Benmahammed, A.; Bouzerzour, H. Assessment of durum wheat (Triticum durum Desf.) genotypes based on their agro-physiological characteristics and stress tolerance indices. Acta Agric. Slov. 2021, 117, 1–16. [Google Scholar] [CrossRef]
- Islam, M.; De, R.K.; Hossain, M.; Haque, M.; Uddin, M.; Fakir, M.; Ali, S.; Kader, M.; Dessoky, E.S.; Attia, A.O. Evaluation of the tolerance ability of wheat genotypes to drought stress: Dissection through culm-reserves contribution and grain filling physiology. Agronomy 2021, 11, 1252. [Google Scholar] [CrossRef]
- Moustafa, E.S.; Ali, M.; Kamara, M.M.; Awad, M.F.; Hassanin, A.A.; Mansour, E. Field screening of wheat advanced lines for salinity tolerance. Agronomy 2021, 11, 281. [Google Scholar] [CrossRef]
- Moustafa, E.S.; El-Sobky, E.-S.E.; Farag, H.I.; Yasin, M.A.; Attia, A.; Rady, M.O.; Awad, M.F.; Mansour, E. Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agronomy 2021, 11, 717. [Google Scholar] [CrossRef]
- Sinolinding, K.; Chowdhry, A.R. Heterosis and combining ability in wheat under irrigation and moisture stress. Exp. Agric. 1974, 10, 241–245. [Google Scholar] [CrossRef]
- El-Maghraby, M.; Moussa, M.; Hana, N.; Agrama, H. Combining ability under drought stress relative to SSR diversity in common wheat. Euphytica 2005, 141, 301–308. [Google Scholar] [CrossRef]
- Rad, M.R.N.; Kadir, M.A.; Yusop, M.R.; Jaafar, H.Z.; Danaee, M. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Aust. J. Crop Sci. 2013, 7, 407–413. [Google Scholar]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H. Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 2019, 9, 6955. [Google Scholar] [CrossRef]
- Ahmed, K.; Shabbir, G.; Ahmed, M.; Shah, K.N. Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 2020, 729, 139082. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Reddy, S.; Fuentealba, M.; Xue, Q.; Rudd, J.; Jessup, K.; Devkota, R.; Liu, S. Physiological responses to water stress and yield of winter wheat cultivars differing in drought tolerance. J. Agron. Crop Sci. 2018, 204, 347–358. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Al-Suhaibani, N.; Abdella, K.; Sallam, M.; Alotaibi, M.; Seleiman, M.F. Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants 2021, 10, 931. [Google Scholar] [CrossRef] [PubMed]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Thungo, Z.; Shimelis, H.; Odindo, A.; Mashilo, J.; Shayanowako, A. Genetic relationship among selected heat and drought tolerant bread wheat genotypes using SSR markers, agronomic traits and grain protein content. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 594–604. [Google Scholar] [CrossRef]
- Šíp, V.; Vavera, R.; Chrpová, J.; Kusá, H.; Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
Source of Variance | DF | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Fv/Fm | RWC (%) | Proline (mg g−1 FW) | ||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | ||
Genotypes (G) | 35 | 0.01 ** | 0.12 ** | 0.08 ** | 0.06 ** | 0.11 ** | 0.25 ** | 0.007 ** | 0.003 ** | 54.89 ** | 26.25 ** | 0.0008 ** | 0.015 ** |
Parents (P) | 7 | 0.01 ** | 0.06 ** | 0.16 ** | 0.05 ** | 0.15 ** | 0.10 ** | 0.003 ** | 0.003 ** | 62.97 ** | 20.05 ** | 0.0008 ** | 0.018 ** |
F1 Crosses (C) | 27 | 0.01 ** | 0.14 ** | 0.07 ** | 0.06 ** | 0.10 ** | 0.28 ** | 0.008 ** | 0.003 ** | 52.00 ** | 28.74 ** | 0.0008 ** | 0.014 ** |
P vs. C | 1 | 0.003 | 0.12 ** | 0.02 ** | 0.21 ** | 0.03 ** | 0.64 ** | 0.017 ** | 0.007 ** | 76.54 ** | 2.47 ** | 0.00004 | 0.025 ** |
Error | 70 | 0.002 | 0.001 | 0.0002 | 0.0004 | 0.002 | 0.001 | 0.001 ** | 0.001 ** | 0.52 | 0.35 | 0.0001 | 0.002 |
GCA | 7 | 0.036 ** | 0.0038 ** | 0.03 ** | 0.03 ** | 0.04 ** | 0.07 ** | 0.003 ** | 0.001 * | 29.13 ** | 12.44 ** | 0.00023 ** | 0.007 ** |
SCA | 28 | 0.043 ** | 0.0036 ** | 0.03 ** | 0.02 ** | 0.04 ** | 0.09 ** | 0.002 ** | 0.001 ** | 15.59 ** | 7.83 ** | 0.0003 ** | 0.005 ** |
Error term | 70 | 0.001 | 0.0004 | 0.0001 | 0.0001 | 0.001 | 0.0005 | 0.0003 | 0.0002 | 0.17 | 0.12 | 0.00004 | 0.001 |
GCA/SCA | 0.85 | 1.06 | 1.19 | 1.59 | 1.03 | 0.75 | 1.32 | 0.62 | 1.87 | 1.59 | 0.87 | 1.37 | |
CAT (Unit mg−1 Protein) | POD(Unit mg−1 Protein) | SOD(Unit mg−1 Protein) | Plant Height (cm) | Spike Length (cm) | Number of Grains/Spike | ||||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | ||
Genotypes (G) | 35 | 19.01 ** | 114.8 ** | 0.0004 ** | 0.003 ** | 58.55 ** | 62.58 ** | 202.85 ** | 210.2 ** | 2.22 ** | 2.98 ** | 215.6 ** | 235.4 ** |
Parents (P) | 7 | 14.49 ** | 44.22 ** | 0.0012 ** | 0.002 ** | 47.49 ** | 24.13 ** | 180.27 ** | 157.5 ** | 2.79 ** | 3.75 ** | 211.2 ** | 157.3 ** |
F1 Crosses (C) | 27 | 18.22 ** | 135.8 ** | 0.0002 ** | 0.002 ** | 63.33 ** | 74.67 ** | 149.49 ** | 163.0 ** | 2.04 ** | 2.77 ** | 222.8 ** | 263.1 ** |
P vs. C | 1 | 72.04 ** | 42.64 ** | 0.0023 ** | 0.039 ** | 6.89 | 5.30 | 1801.58 ** | 1851.9 ** | 3.05 ** | 3.07 * | 52.00 * | 33.56 * |
Error | 70 | 2.91 | 3.95 | 0.00001 | 0.0001 | 4.96 | 5.68 | 14.22 | 12.49 | 0.24 | 0.49 | 8.92 | 7.93 |
GCA | 7 | 2.57 * | 59.08 ** | 0.0001 ** | 0.0009 ** | 22.59 ** | 17.46 ** | 97.95 ** | 86.91 ** | 1.42 ** | 1.80 ** | 151.4 ** | 154.9 ** |
SCA | 28 | 7.28 ** | 33.08 ** | 0.0001 ** | 0.001 ** | 18.75 ** | 21.71 ** | 60.03 ** | 65.85 ** | 0.57 ** | 0.79 ** | 51.98 ** | 59.33 ** |
Error term | 70 | 0.97 | 1.32 | 0.000002 | 0.00004 | 1.65 | 1.89 | 4.74 | 4.16 | 0.08 | 0.16 | 2.97 | 2.64 |
GCA/SCA | 0.35 | 1.79 | 1.02 | 0.93 | 1.21 | 0.80 | 1.63 | 1.32 | 2.50 | 2.28 | 2.91 | 2.61 | |
1000-Grain Weight (g) | Grain Yield/Plant (g) | Carbohydrates Content (%) | Grain Protein Content (%) | Wet Gluten (%) | Dry Gluten (%) | ||||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | ||
Genotypes (G) | 35 | 43.61 ** | 28.12 ** | 38.99 ** | 37.75 ** | 13.66 ** | 7.69 ** | 7.71 ** | 6.57 ** | 74.36 ** | 74.29 ** | 10.44 ** | 11.11 ** |
Parents (P) | 7 | 38.36 ** | 27.02 ** | 26.49 ** | 29.95 ** | 8.91 ** | 6.12 ** | 7.92 ** | 6.24 ** | 63.96 ** | 68.85 ** | 17.73 ** | 14.35 ** |
F1 Crosses (C) | 27 | 46.59 ** | 28.58 ** | 43.04 ** | 40.62 ** | 13.59 ** | 7.98 ** | 7.60 ** | 6.89 ** | 76.27 ** | 73.83 ** | 8.94 ** | 10.64 ** |
P vs. C | 1 | 0.003 | 23.38 ** | 16.95 * | 14.92 * | 48.87 ** | 10.79 ** | 9.20 ** | 0.36 | 95.36 ** | 124.9 ** | 0.12 | 1.41 |
Error | 70 | 3.29 | 2.70 | 4.13 | 3.68 | 0.38 | 0.43 | 0.17 | 0.14 | 0.63 | 0.52 | 0.37 | 0.43 |
GCA | 7 | 20.39 ** | 10.35 ** | 31.33 ** | 26.11 ** | 3.86 ** | 1.93 ** | 2.86 ** | 3.35 ** | 37.77 ** | 38.12 ** | 6.38 ** | 5.74 ** |
SCA | 28 | 13.07 ** | 9.13 ** | 8.41 ** | 9.20 ** | 4.73 ** | 2.72 ** | 2.50 ** | 1.90 ** | 21.54 ** | 21.42 ** | 2.76 ** | 3.20 ** |
Error term | 70 | 1.10 | 0.90 | 1.38 | 1.23 | 0.13 | 0.14 | 0.06 | 0.05 | 0.21 | 0.17 | 0.12 | 0.14 |
GCA/SCA | 35 | 1.56 | 1.13 | 3.72 | 2.84 | 0.82 | 0.71 | 1.10 | 1.76 | 1.75 | 1.78 | 2.31 | 1.80 |
Parent | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Fv/Fm | RWC (%) | Proline (mg g−1 FW) | ||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | |
P1 | 0.003 | 0.05 ** | −0.07 ** | −0.10 ** | −0.07 ** | −0.05 ** | −0.003 | 0.01 * | −0.10 | −2.18 ** | −0.001 | −0.011 |
P2 | 0.01 * | 0.02 ** | −0.07 ** | 0.04 ** | −0.06 ** | 0.06 ** | 0.014 ** | 0.007 | −1.93 ** | −0.46 ** | −0.005 ** | −0.04 ** |
P3 | 0.01 * | −0.01 * | 0.08 ** | 0.08 ** | 0.10 ** | 0.07 ** | 0.0002 | 0.009 * | 3.01 ** | 1.33 ** | 0.009 ** | 0.04 ** |
P4 | 0.03 ** | −0.09 ** | −0.01 ** | 0.0005 | 0.01 | −0.09 ** | −0.025 ** | −0.011 * | −0.08 | 0.55 ** | −0.003 | −0.01 * |
P5 | −0.01 * | −0.02 ** | −0.03 ** | −0.006 | −0.04 ** | −0.03 ** | −0.011 * | −0.009 * | 1.00 ** | −0.27 ** | −0.004 * | −0.01 * |
P6 | −0.02 ** | 0.04 ** | −0.003 | −0.01 ** | −0.02 ** | 0.03 ** | −0.001 | −0.002 | 0.25 * | 0.24 * | −0.001 | 0.003 |
P7 | −0.03 ** | −0.07 ** | 0.04 ** | −0.04 ** | 0.01 | −0.11 ** | −0.006 | −0.002 | −2.52 ** | −0.38 ** | 0.00001 | 0.03 ** |
P8 | −0.01 * | 0.08 ** | 0.06 ** | 0.03 ** | 0.07 ** | 0.12 ** | 0.032 ** | −0.002 | 0.36 ** | 1.17 ** | 0.004 * | −0.01 * |
LSD (gi) 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.011 | 0.009 | 0.24 | 0.20 | 0.004 | 0.01 |
LSD (gi) 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.014 | 0.012 | 0.32 | 0.27 | 0.005 | 0.02 |
CAT (Unit mg−1 Protein) | POD(Unit mg−1 Protein) | SOD(Unit mg−1 Protein) | Plant Height (cm) | Spike Length (cm) | Number of Grains/Spike | |||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | |
P1 | −0.18 | −1.78 ** | −0.004 ** | −0.015 ** | 0.99 * | 2.09 ** | −1.26 | −0.68 | −0.37 ** | −0.21 | −1.40 ** | −2.07 ** |
P2 | 0.04 | 0.84 * | −0.005 ** | 0.012 ** | −1.29 ** | −0.89 * | −4.85 ** | −5.10 ** | 0.24 ** | 0.20 | 4.18 ** | 2.68 ** |
P3 | −0.35 | −2.23 ** | 0.002 ** | 0.001 | 0.45 | 0.92 * | 2.13 ** | 1.96 ** | −0.28 ** | −0.63 ** | 2.82 ** | 0.38 |
P4 | −0.31 | −3.16 ** | 0.0001 | −0.010 ** | −0.90 * | −2.05 ** | 1.38 * | 1.48 * | 0.42 ** | 0.46 ** | 3.58 ** | 5.34 ** |
P5 | −0.23 | 0.39 | −0.001 | −0.001 | −1.90 ** | −0.70 | −1.33 * | −1.33 * | −0.07 | −0.05 | −3.62 ** | −2.36 ** |
P6 | 1.19 ** | −0.35 | 0.006 ** | 0.013 ** | 0.48 | 0.59 | −1.83 ** | −1.30 * | −0.51 ** | −0.52 ** | 0.76 | 2.48 ** |
P7 | −0.25 | 4.23 ** | −0.003 ** | 0.003 | −0.64 | −0.75 | 0.11 | −0.02 | 0.04 | 0.32 ** | −7.17 ** | −7.46 ** |
P8 | 0.09 | 2.07 ** | 0.004 ** | −0.003 | 2.81 ** | 0.78 | 5.65 ** | 4.99 ** | 0.53 ** | 0.43 ** | 0.85 | 1.01 * |
LSD (gi) 0.05 | 0.58 | 0.68 | 0.001 | 0.004 | 0.76 | 0.81 | 1.28 | 1.20 | 0.17 | 0.24 | 1.02 | 0.96 |
LSD (gi) 0.01 | 0.77 | 0.90 | 0.001 | 0.005 | 1.00 | 1.07 | 1.70 | 1.59 | 0.22 | 0.31 | 1.35 | 1.27 |
1000-Grain Weight (g) | Grain Yield/Plant (g) | Carbohydrate Content (%) | Grain Protein Content (%) | Wet Gluten (%) | Dry Gluten (%) | |||||||
Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | Well-Watered | Water Deficit | |
P1 | −1.42 ** | −0.38 | 0.92 ** | −1.02 ** | −0.01 | −0.60 ** | 0.23 ** | 0.47 ** | 2.52 ** | 1.86 ** | 0.66 ** | 1.42 ** |
P2 | −1.62 ** | −1.61 ** | −0.83 * | −1.48 ** | −0.25 * | −0.22 * | 0.75 ** | 0.50 ** | 1.19 ** | 1.82 ** | 0.10 | −0.03 |
P3 | 0.82 * | 0.56 * | 1.58 ** | 1.49 ** | 0.64 ** | 0.60 ** | −0.80 ** | −0.41 ** | −2.56 ** | −2.74 ** | −0.75 ** | −0.58 ** |
P4 | 1.32 ** | 0.23 | 1.00 ** | 1.23 ** | 1.10 ** | 0.45 ** | −0.55 ** | 0.15 * | −1.29 ** | −1.80 ** | 0.27 * | −0.11 |
P5 | 0.15 | −0.34 | −0.57 | −0.87 ** | −0.53 ** | −0.05 | 0.33 ** | 0.70 ** | −1.52 ** | −1.10 ** | 1.17 ** | 0.67 ** |
P6 | −0.62 * | −0.67 * | −1.22 ** | 0.69 * | −0.84 ** | −0.56 ** | 0.16 * | −0.53 ** | −1.46 ** | −0.98 ** | −0.68 ** | −0.69 ** |
P7 | 0.42 | 0.36 | −3.14 ** | −2.27 ** | −0.17 | 0.20 | 0.32 ** | 0.07 | 2.32 ** | 2.62 ** | 0.40 ** | 0.16 |
P8 | 2.58 ** | 1.86 ** | 2.28 ** | 2.23 ** | 0.05 | 0.18 | −0.45 ** | −0.95 ** | 0.79 ** | 0.32 * | −1.17 ** | −0.83 ** |
LSD (gi) 0.05 | 0.62 | 0.56 | 0.69 | 0.65 | 0.21 | 0.22 | 0.14 | 0.13 | 0.27 | 0.24 | 0.21 | 0.22 |
LSD (gi) 0.01 | 0.82 | 0.74 | 0.92 | 0.86 | 0.28 | 0.29 | 0.19 | 0.17 | 0.36 | 0.32 | 0.27 | 0.30 |
Cross | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Fv/Fm | RWC (%) | Proline (mg g−1 FW) | CAT (Unit mg−1 Protein) | POD (Unit mg−1 Protein) | SOD (Unit mg−1 Protein) | |||||||||
Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | |
P1 × P2 | 0.02 | 0.03 | −0.11 ** | −0.10 ** | −0.09 ** | −0.06 ** | 0.03 | −0.01 | −0.84 * | −2.69 ** | 0.01 | 0.04 * | −1.14 | 2.58 * | 0.008 ** | 0.03 ** | −3.72 ** | −5.87 ** |
P1 × P3 | −0.003 | 0.15 ** | −0.35 ** | −0.04 ** | −0.36 ** | 0.11 ** | −0.04 * | 0.003 | −0.88 * | −2.08 ** | −0.03 ** | 0.003 | 0.25 | 1.64 | −0.005 ** | −0.03 ** | 0.96 | 0.34 |
P1 × P4 | 0.01 | 0.22 ** | −0.01 | 0.11 ** | −0.01 | 0.32 ** | −0.08 ** | 0.004 | 1.91 ** | 1.13 ** | 0.01 * | −0.05 * | 2.22 * | −0.24 | 0.003 * | −0.03 ** | −2.39 * | −2.49 * |
P1 × P5 | −0.09 ** | 0.17 ** | 0.12 ** | 0.10 ** | 0.03 | 0.27 ** | 0.05 ** | 0.02 | 0.21 | −2.65 ** | 0.002 | −0.002 | 0.13 | −9.00 ** | 0.001 | −0.01 | 1.48 | 0.30 |
P1 × P6 | 0.04 * | 0.09 ** | 0.09 ** | 0.0001 | 0.12 ** | 0.08 ** | −0.003 | 0.03 * | 3.62 ** | 2.84 ** | −0.01 | 0.08 ** | 2.18 * | 2.72 * | −0.012 ** | −0.02 * | 0.18 | 1.70 |
P1 × P7 | 0.02 | −0.33 ** | −0.08 ** | 0.09 ** | −0.07 ** | −0.24 ** | −0.02 | −0.03 * | 0.66 | −0.21 | −0.01 | 0.01 | −3.49 ** | 0.19 | −0.004 ** | 0.03 ** | −0.22 | 4.95 ** |
P1 × P8 | 0.0003 | 0.05 ** | 0.13 ** | 0.09 ** | 0.13 ** | 0.14 ** | 0.04 * | 0.00 | −6.41 ** | −3.01 ** | 0.004 | −0.02 | −2.81 ** | −0.64 | −0.004 ** | −0.01 | 4.12 ** | 5.17 ** |
P2 × P3 | −0.002 | −0.40 ** | −0.14 ** | −0.14 ** | −0.14 ** | −0.54 ** | −0.03 | −0.07 ** | 1.23 ** | −5.97 ** | −0.02 ** | −0.08 ** | 2.50 ** | 8.53 ** | 0.003 * | 0.02 * | 6.19 ** | 4.10 ** |
P2 × P4 | 0.0003 | 0.15 ** | 0.27 ** | 0.13 ** | 0.27 ** | 0.28 ** | 0.07 ** | 0.01 | 2.22 ** | 1.88 ** | 0.02 ** | 0.02 | 0.42 | −8.59 ** | 0.015 ** | −0.03 ** | 2.49 * | 4.32 ** |
P2 × P5 | 0.02 | 0.10 ** | 0.20 ** | 0.17 ** | 0.22 ** | 0.27 ** | −0.03 | 0.02 | −1.82 ** | 0.83 ** | 0.01 | −0.01 | 0.81 | −1.49 | 0.0001 | −0.02 ** | 1.94 | 1.61 |
P2 × P6 | 0.03 | 0.11 ** | −0.07 ** | 0.07 ** | −0.04 | 0.18 ** | 0.004 | 0.01 | −6.41 ** | 1.09 ** | −0.02 ** | 0.01 | −1.61 | −3.80 ** | 0.002 | 0.00 | −7.97 ** | −7.97 ** |
P2 × P7 | −0.09 ** | 0.23 ** | −0.10 ** | 0.004 | −0.20 ** | 0.23 ** | −0.10 ** | 0.01 | 6.07 ** | 0.88 ** | −0.01 * | −0.04 | 2.83 ** | −4.93 ** | 0.011 ** | −0.03 ** | 3.14 ** | 3.07 * |
P2 × P8 | 0.001 | 0.06 ** | 0.15 ** | 0.03 ** | 0.15 ** | 0.09 ** | 0.01 | 0.02 | 4.34 ** | 4.40 ** | −0.01 | 0.003 | −1.50 | 6.77 ** | −0.008 ** | −0.05 ** | 0.20 | 4.36 ** |
P3 × P4 | −0.02 | 0.23 ** | 0.02 ** | 0.16 ** | 0.01 | 0.39 ** | −0.04 * | 0.02 | −0.11 | −0.83 ** | 0.02 ** | −0.07 ** | 1.72 | 2.47 * | −0.004 ** | −0.02 ** | −10.60 ** | −8.15 ** |
P3 × P5 | 0.03 | 0.21 ** | 0.15 ** | 0.14 ** | 0.18 ** | 0.35 ** | 0.08 ** | 0.03 * | 0.95 * | 1.37 ** | 0.03 ** | 0.12 ** | −4.44 ** | −5.35 ** | −0.007 ** | 0.01 | 2.64 * | −5.10 ** |
P3 × P6 | 0.04 * | 0.14 ** | −0.01 | −0.05 ** | 0.03 | 0.08 ** | −0.02 | −0.02 | 0.16 | 1.10 ** | 0.02 ** | −0.01 | −1.81 * | −3.38 ** | −0.016 ** | −0.03 ** | 2.74 * | 7.26 ** |
P3 × P7 | 0.05 * | −0.03 | −0.05 ** | 0.03 ** | 0.002 | 0.001 | 0.01 | 0.001 | 4.37 ** | 3.08 ** | −0.03 ** | 0.04 * | −2.40 ** | −7.97 ** | −0.001 | −0.03 ** | −1.43 | −0.10 |
P3 × P8 | 0.01 | 0.13 ** | 0.09 ** | 0.10 ** | 0.10 ** | 0.24 ** | 0.04 * | 0.03 * | 1.42 ** | 2.02 ** | 0.02 ** | 0.10 ** | 2.55 ** | 5.64 ** | 0.013 ** | 0.01 * | 1.63 | 2.75 * |
P4 × P5 | 0.02 | −0.21 ** | 0.12 ** | −0.04 ** | 0.13 ** | −0.25 ** | −0.07 ** | 0.02 | 4.98 ** | 3.47 ** | −0.01 * | 0.001 | −3.75 ** | 4.58 ** | −0.008 ** | −0.04 ** | 0.13 | 2.50 * |
P4 × P6 | 0.01 | −0.27 ** | 0.18 ** | 0.02 * | 0.19 ** | −0.25 ** | 0.02 | 0.02 | −3.17 ** | −2.63 ** | −0.002 | 0.12 ** | −4.17 ** | −5.67 ** | −0.008 ** | 0.02 ** | 2.66 * | −5.42 ** |
P4 × P7 | 0.02 | −0.21 ** | 0.15 ** | −0.17 ** | 0.18 ** | −0.38 ** | 0.01 | −0.06 ** | −0.73 | −1.44 ** | −0.004 | −0.11 ** | 2.29 * | 1.61 | −0.002 | 0.01 | −2.04 | 3.34 ** |
P4 × P8 | 0.005 | 0.20 ** | −0.06 ** | −0.06 ** | −0.06 * | 0.14 ** | −0.02 | 0.06 ** | 2.44 ** | 1.33 ** | 0.01 | 0.09 ** | −0.05 | −5.76 ** | −0.003 * | −0.02 * | 0.51 | −3.44 ** |
P5 × P6 | 0.05 * | 0.11 ** | −0.001 | 0.17 ** | 0.05 * | 0.28 ** | 0.01 | 0.03 * | −1.74 ** | 3.69 ** | −0.002 | 0.05 * | 0.21 | −8.23 ** | −0.006 ** | −0.04 ** | 2.68 * | 1.16 |
P5 × P7 | −0.18 ** | −0.23 ** | −0.16 ** | −0.19 ** | −0.34 ** | −0.42 ** | −0.03 | 0.02 | −10.18 ** | 0.57 | −0.01 * | −0.09 ** | 0.63 | 7.02 ** | 0.01 ** | 0.02 ** | −0.99 | 5.58 ** |
P5 × P8 | 0.03 | −0.11 ** | −0.18 ** | −0.30 ** | −0.14 ** | −0.40 ** | −0.02 | −0.06 ** | 2.33 ** | −2.13 ** | −0.01 | 0.07 ** | 3.35 ** | 0.39 | −0.009 ** | −0.02 * | −4.45 ** | −3.84 ** |
P6 × P7 | 0.10 ** | 0.18 ** | 0.13 ** | 0.18 ** | 0.23 ** | 0.36 ** | 0.01 | 0.02 | 2.85 ** | 1.70 ** | 0.01 | 0.02 | −1.81 * | 11.90 ** | 0.001 | −0.02 ** | 6.03 ** | −5.38 ** |
P6 × P8 | −0.12 ** | −0.37 ** | −0.17 ** | 0.01 | −0.28 ** | −0.36 ** | −0.04 ** | −0.03 * | 2.04 ** | −0.61 | 0.01 | −0.08 ** | −0.11 | 0.09 | −0.011 ** | 0.02 ** | 5.62 ** | 4.09 ** |
P7 × P8 | 0.02 | 0.09 ** | −0.08 ** | 0.14 ** | −0.06 * | 0.23 ** | −0.02 | 0.01 | 3.07 ** | −4.87 ** | 0.002 | 0.01 | −5.22 ** | −0.49 | −0.026 ** | −0.03 ** | −7.73 ** | −5.55 ** |
LSD Sij 0.05 | 0.04 | 0.04 | 0.02 | 0.02 | 0.05 | 0.04 | 0.03 | 0.03 | 0.75 | 0.62 | 0.01 | 0.04 | 1.78 | 2.07 | 0.003 | 0.01 | 2.32 | 2.48 |
LSD Sij 0.01 | 0.06 | 0.05 | 0.02 | 0.03 | 0.06 | 0.05 | 0.04 | 0.04 | 0.99 | 0.82 | 0.01 | 0.05 | 2.36 | 2.75 | 0.004 | 0.02 | 3.08 | 3.29 |
Cross | Plant Height (cm) | Spike Length (cm) | Number of Grains/Spike | 1000-Grain Weight (g) | Grain Yield/Plant (g) | Carbohydrate Content (%) | Grain Protein Content (%) | Wet Gluten (%) | Dry Gluten (%) | |||||||||
Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | Well- Watered | Water Deficit | |
P1 × P2 | 4.22 * | 4.39 * | −0.20 | −0.27 | −12.81 ** | −9.46 ** | 1.61 | 1.20 | 2.38 * | 1.01 | 4.29 ** | 3.08 ** | −1.67 ** | −2.72 ** | −8.28 ** | −8.95 ** | −1.88 ** | −1.81 ** |
P1 × P3 | −6.07 ** | −6.06 ** | −0.72 ** | −0.31 | 0.44 | 7.54 ** | 1.47 | 2.70 ** | −1.87 | 0.18 | 2.22 ** | 0.63 | −0.84 ** | −0.29 | −4.27 ** | −4.19 ** | 0.70 * | 1.65 ** |
P1 × P4 | −11.64 ** | −10.29 ** | −0.19 | −0.44 | 2.70 | 0.56 | −4.99 ** | −3.97 ** | 0.36 | 0.84 | −2.93 ** | −0.86 * | 2.40 ** | 1.67 ** | −3.72 ** | −3.72 ** | 0.81 * | 0.67 |
P1 × P5 | 1.97 | 1.95 | −0.52 * | −0.52 | 0.39 | 0.44 | 0.84 | 0.26 | 3.17 ** | 1.93 | 2.59 ** | 1.01 ** | −2.40 ** | −1.14 ** | 0.32 | −0.17 | 1.61 ** | 1.09 ** |
P1 × P6 | −8.85 ** | −8.13 ** | 0.08 | 0.39 | 2.50 | 4.13 ** | −1.39 | −2.07 * | −1.33 | −0.16 | 0.11 | 0.15 | 0.37 | 1.44 ** | 2.95 ** | 1.84 ** | 1.30 ** | 1.92 ** |
P1 × P7 | −8.78 ** | −9.73 ** | −0.60 * | −0.59 | 4.14 ** | −4.65 ** | −5.43 ** | −4.10 ** | −2.66 * | −3.00 ** | 0.17 | −0.71 * | −0.42 | 1.13 ** | 6.22 ** | 5.84 ** | 0.51 | 0.50 |
P1 × P8 | 5.26 ** | 6.19 ** | 0.74 ** | 0.60 | 14.43 ** | 4.43 ** | 2.41 * | 0.73 | 2.32 * | −1.03 | 1.59 ** | −1.62 ** | −0.93 ** | −1.35 ** | 6.15 ** | 6.68 ** | 0.22 | 0.70 * |
P2 × P3 | −6.61 ** | −10.79 ** | −1.17 ** | −1.76 ** | 2.80 | −4.90 ** | −2.66 ** | −5.07 ** | −5.03 ** | −6.89 ** | −0.46 | −2.08 ** | 0.52 * | 1.34 ** | 9.36 ** | 9.66 ** | 2.76 ** | 1.43 ** |
P2 × P4 | 9.78 ** | 5.13 ** | 0.21 | 0.35 | 6.15 ** | 7.56 ** | 3.54 ** | −0.74 | 4.67 ** | 2.30 * | 0.45 | −0.24 | 0.15 | 0.74 ** | 2.34 ** | 1.24 ** | 0.91 ** | 1.18 ** |
P2 × P5 | 1.15 | 6.68 ** | 0.08 | 0.51 | −3.68 * | −2.53 | 9.04 ** | 4.83 ** | 1.25 | 0.39 | 0.01 | −0.33 | 1.20 ** | 1.32 ** | −4.71 ** | −5.99 ** | −4.20 ** | −3.71 ** |
P2 × P6 | −8.08 ** | −8.77 ** | −0.49 | 0.51 | 8.94 ** | −5.54 ** | −2.53 ** | 1.16 | −1.65 | −0.90 | 0.89 ** | 0.04 | 1.00 ** | 1.35 ** | 1.27 ** | 4.56 ** | −1.31 ** | −1.01 ** |
P2 × P7 | −3.95 * | −4.04 * | 0.67 * | −0.09 | 3.57 * | 11.60 ** | −0.23 | 1.46 | −2.38 * | −0.21 | −2.28 ** | −0.35 | 0.30 | −0.95 ** | −7.83 ** | −5.38 ** | −1.06 ** | −1.78 ** |
P2 × P8 | −5.60 ** | −7.33 ** | 0.60 * | 0.54 | −6.17 ** | −4.11 ** | −3.06 ** | 0.30 | 0.40 | 0.29 | 2.83 ** | 2.81 ** | −3.03 ** | −1.43 ** | 6.29 ** | 5.86 ** | −0.62 | −0.79 * |
P3 × P4 | −11.58 ** | −9.27 ** | −0.61 * | −0.91 * | −6.73 ** | −15.22 ** | 1.07 | 3.10 ** | −4.03 ** | −1.66 | 0.40 | 0.18 | −0.67 ** | 0.19 | 1.38 ** | 1.00 ** | −0.82 * | −0.22 |
P3 × P5 | 7.51 ** | 3.20 | 1.19 ** | 1.48 ** | 8.77 ** | 7.14 ** | 0.24 | −0.34 | 3.06 ** | 3.77 ** | −0.14 | 0.75 * | −0.26 | 1.11 ** | 0.94 * | 0.57 | −2.86 ** | −3.07 ** |
P3 × P6 | −8.45 ** | −6.67 ** | 1.53 ** | −0.06 | −6.84 ** | −5.67 ** | −2.66 ** | −1.67 | 0.38 | −0.13 | −0.71 * | −0.01 | 0.21 | −1.27 ** | −4.82 ** | −3.38 ** | −1.59 ** | −1.73 ** |
P3 × P7 | −0.77 | 0.90 | 0.14 | 0.69 | −2.30 | −5.94 ** | 2.64 ** | 4.30 ** | 3.53 ** | −0.28 | 2.35 ** | 2.20 ** | −2.19 ** | −2.02 ** | 1.90 ** | 1.25 ** | 1.96 ** | 2.59 ** |
P3 × P8 | −2.13 | 2.22 | 0.72 ** | 1.32 ** | 10.30 ** | 10.10 ** | 4.81 ** | 4.80 ** | 3.93 ** | 5.00 ** | 1.61 ** | 0.86 * | 0.16 | −0.34 | −2.04 ** | −1.88 ** | −0.12 | −0.28 |
P4 × P5 | −5.25 ** | −10.98 ** | 0.36 | 0.47 | 4.13 * | 4.97 ** | −0.89 | 3.66 ** | 1.43 | −0.31 | 2.27 ** | 0.76 * | −2.67 ** | −1.37 ** | −4.78 ** | −3.04 ** | −1.00 ** | −0.67 |
P4 × P6 | −2.93 | −3.01 | 0.46 | 0.81 * | −2.30 | 2.17 | −2.46 * | 0.33 | −0.05 | 0.13 | 0.79 * | 2.07 ** | 0.25 | −1.00 ** | 5.08 ** | 4.34 ** | 1.43 ** | 1.35 ** |
P4 × P7 | 2.15 | 7.91 ** | 0.52 * | 0.43 | 0.19 | −0.10 | 1.17 | 1.63 | −0.97 | −1.38 | 1.99 ** | −2.02 ** | 1.01 ** | 1.07 ** | −1.50 ** | −2.10 ** | −0.56 | −0.96 ** |
P4 × P8 | −1.50 | −1.13 | 0.14 | 0.29 | −3.08 | 3.14 * | −2.66 ** | −1.54 | 0.52 | 3.70 ** | 0.09 | 2.00 ** | −0.17 | −0.32 | 0.40 | 0.61 | −0.25 | −1.17 ** |
P5 × P6 | −0.82 | 3.62 | 1.12 ** | 1.06 ** | 9.03 ** | 7.03 ** | −0.29 | 1.90 * | 1.77 | 3.69 ** | −1.99 ** | −0.86 * | −2.72 ** | −2.28 ** | 3.41 ** | 3.94 ** | 1.62 ** | 1.47 ** |
P5 × P7 | −7.14 ** | −8.82 ** | −0.56 * | −0.21 | −9.24 ** | −12.91 ** | −6.66 ** | −4.47 ** | −4.89 ** | −2.48 * | −2.00 ** | −0.45 | 0.79 ** | 0.79 ** | 5.02 ** | 5.21 ** | 0.86 ** | 0.99 ** |
P5 × P8 | −2.68 | 2.04 | −0.07 | −0.66 | 2.07 | 6.78 ** | −2.83 ** | −0.97 | 1.77 | −0.21 | −0.82 * | −1.13 ** | 2.18 ** | 1.73 ** | 0.17 | 0.01 | 0.24 | −0.75 * |
P6 × P7 | 8.37 ** | 8.15 ** | 0.59 * | 1.29 ** | 4.99 ** | 6.40 ** | 2.77 ** | 3.86 ** | 3.62 ** | 6.16 ** | 1.11 ** | 2.99 ** | −0.05 | 0.28 | 1.30 ** | 1.08 ** | −0.55 | −1.60 ** |
P6 × P8 | 0.16 | −4.52 * | −1.28 ** | −1.86 ** | −13.64 ** | −7.86 ** | 2.94 ** | −1.30 | −4.21 ** | −6.94 ** | −0.84 * | −1.22 ** | 1.55 ** | 1.80 ** | 0.00 | −0.61 | 0.86 ** | 1.51 ** |
P7 × P8 | 1.12 | −4.80 * | −0.20 | −0.54 | −8.38 ** | −13.41 ** | 4.24 ** | −3.00 ** | 0.44 | 1.75 | −3.53 ** | −2.91 ** | 1.57 ** | 1.40 ** | 1.55 ** | 1.79 ** | 0.54 | 0.78 * |
LSD Sij 0.05 | 3.93 | 3.68 | 0.51 | 0.73 | 3.11 | 2.93 | 1.89 | 1.71 | 2.12 | 2.00 | 0.64 | 0.68 | 0.43 | 0.39 | 0.83 | 0.75 | 0.63 | 0.68 |
LSD Sij 0.01 | 5.21 | 4.88 | 0.68 | 0.96 | 4.13 | 3.89 | 2.51 | 2.27 | 2.81 | 2.65 | 0.85 | 0.90 | 0.57 | 0.52 | 1.10 | 0.99 | 0.84 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamara, M.M.; Rehan, M.; Mohamed, A.M.; El Mantawy, R.F.; Kheir, A.M.S.; Abd El-Moneim, D.; Safhi, F.A.; ALshamrani, S.M.; Hafez, E.M.; Behiry, S.I.; et al. Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions. Plants 2022, 11, 952. https://doi.org/10.3390/plants11070952
Kamara MM, Rehan M, Mohamed AM, El Mantawy RF, Kheir AMS, Abd El-Moneim D, Safhi FA, ALshamrani SM, Hafez EM, Behiry SI, et al. Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions. Plants. 2022; 11(7):952. https://doi.org/10.3390/plants11070952
Chicago/Turabian StyleKamara, Mohamed M., Medhat Rehan, Amany M. Mohamed, Rania F. El Mantawy, Ahmed M. S. Kheir, Diaa Abd El-Moneim, Fatmah Ahmed Safhi, Salha M. ALshamrani, Emad M. Hafez, Said I. Behiry, and et al. 2022. "Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions" Plants 11, no. 7: 952. https://doi.org/10.3390/plants11070952
APA StyleKamara, M. M., Rehan, M., Mohamed, A. M., El Mantawy, R. F., Kheir, A. M. S., Abd El-Moneim, D., Safhi, F. A., ALshamrani, S. M., Hafez, E. M., Behiry, S. I., Ali, M. M. A., & Mansour, E. (2022). Genetic Potential and Inheritance Patterns of Physiological, Agronomic and Quality Traits in Bread Wheat under Normal and Water Deficit Conditions. Plants, 11(7), 952. https://doi.org/10.3390/plants11070952