Elderberries—A Source of Bioactive Compounds with Antiviral Action
Abstract
:1. Introduction
1.1. Origin and History
1.2. Botanical Description
1.3. Chemical Composition of Elderberries
1.4. Biopharmaceutical Properties of Elderberries
1.4.1. Influenza Virus
1.4.2. Coronavirus
1.4.3. Herpes Simplex Virus-Tip 1 (HSV-1)
1.4.4. Helicobacter Pylori
1.4.5. Human Immunodeficiency Virus (HIV)
1.5. Other Biological Activities
1.5.1. Antitumoral Activity
1.5.2. Metabolic Dysfunctions
1.5.3. Other Properties
1.6. Ways to Use Elderberries
- Fresh juice;
- Tincture;
- Powder;
- Syrup;
- Jams or fermentation wine.
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonelli, M.; Donelli, D.; Magginis, V.M.; Firenzuoli, F. Phytotherapic compounds against coronaviruses: Possible streams for future research. Phytother. Res. 2020, 34, 1469–1470. [Google Scholar] [CrossRef]
- Agbabiaka, T.B.; Guo, R.; Ernst, E. Pelargonium sidoides for acute bronchitis: A systematic review and meta-analysis. Phytomedicine 2008, 15, 378–385. [Google Scholar] [CrossRef]
- Hawkins, J.; Baker, C.; Cherry, L.; Dunne, E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement. Ther. Med. 2019, 42, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Kalus, U.; Grigorov, A.; Kadecki, O.; Jansen, J.-P.; Kiesewetter, H.; Radtke, H. Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract: A prospective, randomised, placebo-controlled clinical study. Antivir. Res. 2009, 84, 267–271. [Google Scholar] [CrossRef]
- Michaelis, M.; Doerr, H.W.; Cinatl, J. Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine 2011, 18, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.-R.; Lin, C.-S.; Lai, H.-C.; Lin, Y.-P.; Wang, C.-Y.; Tsai, Y.-C.; Wu, K.-C.; Huang, S.-H.; Lin, C.-W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019, 273, 197767. [Google Scholar] [CrossRef]
- Ulbricht, C.; Basch, E.; Cheung, L.; Goldberg, H.; Hammerness, P.; Isaac, R.; Khalsa, K.P.S.; Romm, A.; Rychlik, I.; Varghese, M.; et al. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2014, 11, 80–120. [Google Scholar] [CrossRef]
- Agustí, M. Libre Dels Secrets de Agricultura, Casa Rústica y Pastoril, Facsimile edition, 1988th ed.; Alta Fulla; Esteve Liberós: Barcelona, Spain, 1617. [Google Scholar]
- Vallès, J.; Bonet, M.À.; Agelet, A. Ethnobotany of Sambucus nigra L. in Catalonia (Iberian Peninsula): The integral exploitation of a natural resource in mountain regions. Econ. Bot. 2004, 58, 456–469. [Google Scholar] [CrossRef]
- Jarić, S.; Popović, Z.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Karadžić, B.; Pavlović, P. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Morag, A.M.; Mumcuoglu, M.; Baybikov, T.; Schelsinger, M.; Zakay-Rones, Z. Inhibition of sensitive and acyclovir-resistant HSV-1 strains by an elderberry extract in vitro. Xth International Congress of Virology Jerusalem, Israel; 11–16 August 1996. Z. Phytother. 1997, 25, 97–98. [Google Scholar]
- DStatisObst. Gemüse, Gartenbau; Statistisches Bundesamt: Wiesbaden, Germany, 2016. [Google Scholar]
- Atkinson, M.D.; Atkinson, E. Sambucus nigra L. Biological flora of the British Isles. J. Ecol. 2002, 90, 895–923. [Google Scholar] [CrossRef]
- Skidmore-Roth, L. Handbook of Herbs and Natural Supplements, 3rd ed.; Mosby: St. Louis, MO, USA, 2005; pp. 365–369. [Google Scholar]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J. Sci. Food Agric. 2017, 97, 2623–2632. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Moore, D.M.; Ball, P.W.; Chater, A.O.; Walters, S.M.; DeFilipps, R.A.; Webb, D.A.; et al. Flora Europaea; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Lennon, J.J.; Turner, J.R. Predicting the spatial distribution of climate: Temperature in Great Britain. J. Anim. Ecol. 1995, 64, 370. [Google Scholar] [CrossRef]
- Charlebois, D.; Byers, P.L.; Finn, C.E.; Thomas, A.L. Elderberry: Botany, Horticulture, Potential. Hortic. Rev. 2010, 37, 213–280. [Google Scholar] [CrossRef]
- Divis, P.; Porizka, J.; Vespalcová, M.; Matejicek, A.; Kaplan, J. Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in The Czech Republic. J. Elem. 2015, 20, 549–557. [Google Scholar]
- Porter, R.S.; Bode, R.F. A Review of the Antiviral Properties of Black Elder (Sambucus nigra L.) Products. Phytother. Res. 2017, 31, 533–554. [Google Scholar] [CrossRef]
- Tejero, J.; Jiménez, P.; Quinto, E.J.; Cordoba-Diaz, D.; Garrosa, M.; Cordoba-Diaz, M.; Gayoso, M.J.; Girbés, T. Elderberries: A source of ribosome-inactivating proteins with lectin activity. Molecules 2015, 20, 2364–2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Finn, C.E. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J. Sci. Food Agric. 2007, 87, 2665–2675. [Google Scholar] [CrossRef] [Green Version]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Samoticha, J.; Eler, K.; Stampar, F.; Veberic, R. traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity. J. Agric. Food Chem. 2015, 63, 1477–1487. [Google Scholar] [CrossRef]
- Choi, E.J.; Park, J.B.; Yoon, K.D.; Bae, S.K. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry and raspberry ketones) commonly used as a herbal supplements to inhibit uridine diphosphoglucuronosyltransferase. Food Chem. Toxicol. 2014, 72, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kaack, K.; Fretté, X.C.; Christensen, L.P.; Landbo, A.-K.; Meyer, A.S. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of juice. Eur. Food Res. Technol. 2007, 226, 843–855. [Google Scholar] [CrossRef]
- Christensen, L.P.; Kaack, K.; Fretté, X.C. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur. Food Res. Technol. 2008, 227, 293–305. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Kaack, K.; Austed, T. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Mater. Veg. 1998, 52, 187–198. [Google Scholar] [CrossRef]
- Seabra, I.; Braga, M.E.M.; Batista, M.T.; De Sousa, H.C. Fractioned high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food Bioprocess Technol. 2010, 3, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Kaack, K. ‘Sampo’ and ‘Samdal’, elderberry cultivars for juice concentrates. Fruit Var. J. 1997, 51, 28–31. [Google Scholar]
- Bartak, M.; Lange, A.; Słonska, A.; Cymerys, J. Antiviral and healing potential of Sambucus nigra extracts. Bionatura 2020, 5, 1264–1270. [Google Scholar] [CrossRef]
- Nagai, T.; Miyaichi, Y.; Tomimori, T.; Suzuki, Y.; Yamada, H. Inhibition of influenza virus sialidase and anti-influenza virus activity by plant flavonoids. Chem. Pharm. Bull. 1990, 38, 1329–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018, 32, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E., Jr.; Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol. 1992, 43, 1167–1179. [Google Scholar] [CrossRef]
- Ho, G.T.; Ahmed, A.; Zou, Y.F.; Aslaksen, T.H.; Wangensteen, G.; Barsett, H. Structure—Activity relationship of immunomodlating pectings from elderberries. Carbohydr. Polym. 2015, 125, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Crujeiras, A.B.; Parra, M.D.; Rodríguez, M.C.; de Morentin, B.E.M.; Martínez, J.A. A role for fruit content in energy-restricted diets in improving antioxidant status in obese women during weight loss. Nutrition 2006, 22, 593–599. [Google Scholar] [CrossRef]
- Youdim, K.A.; Martin, A.; Joseph, J.A. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic. Biol. Med. 2000, 29, 51–60. [Google Scholar] [CrossRef]
- Hernández, N.E.; Tereschuk, M.L.; Abdala, L.R. Antimicrobial activity of flavonoids in medicinal plants from Tafí del Valle (Tucumán, Argentina). J. Ethnopharmacol. 2000, 73, 317–322. [Google Scholar] [CrossRef]
- Choi, O.; Yahiro, K.; Morinaga, N.; Miyazaki, M.; Noda, M. Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal α-toxin. Microb. Pathog. 2007, 42, 215–224. [Google Scholar] [CrossRef]
- May, S.; Parry, C.; Parry, L. Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. Food Front. 2020, 1, 260–275. [Google Scholar] [CrossRef]
- Chrubasik, C.; Maier, T.; Dawid, C.; Torda, T.; Schieber, A.; Hofmann, T.; Chrubasik, S. An observational study and quantification of the actives in a supplement with Sambucus nigra and Asparagus officinalis used for weight reduction. Phytother. Res. 2008, 22, 913–918. [Google Scholar] [CrossRef]
- Millar, C.L.; Norris, G.H.; Jiang, C.; Kry, J.; Vitols, A.; Garcia, C.; Park, Y.K.; Lee, J.Y.; Blesso, C.N. Long-Term Supplementation of Black Elderberries Promotes Hyperlipidemia, but Reduces Liver Inflammation and Improves HDL Function and Atherosclerotic Plaque Stability in Apolipoprotein E-Knockout Mice. Mol. Nutr. Food Res. 2018, 62, e1800404. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br. J. Nutr. 2006, 96, 357–364. [Google Scholar] [CrossRef]
- Kang, T.H.; Hur, J.Y.; Kim, H.B.; Ryu, J.H.; Kim, S.Y. Neuroprotective effects of the cyanidin-3-O-beta-Dglucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 2006, 391, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am. J. Med. 2006, 119, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opris, R.; Tatomir, C.; Olteanu, D.; Moldovan, R.; Moldovan, B.; David, L.; Nagy, A.; Decea, N.; Kiss, M.L.; Filip, G.A. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf. B Biointerfaces 2017, 150, 192–200. [Google Scholar] [CrossRef]
- Harnett, J.; Oakes, K.; Carè, J.; Leach, M.; Brown, D.; Cramer, H.; Pinder, T.-A.; Steel, A.; Anheyer, D. The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Adv. Integr. Med. 2020, 7, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Amoros, M.; Simõs, C.M.O.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. comparison with the antiviral activity of propolis. J. Nat. Prod. 1992, 55, 1732–1740. [Google Scholar] [CrossRef]
- Mahmood, N.; Pizza, C.; Aquino, R.; De Tommasi, N.; Piacente, S.; Colman, S.; Burke, A.; Hay, A.J. Inhibition of HIV infection by flavanoids. Antivir. Res. 1993, 22, 189–199. [Google Scholar] [CrossRef]
- González-Segovia, R.; Quintanar, J.L.; Salinas, E.; Ceballos-Salazar, R.; Aviles-Jiménez, F.; Torres-López, J. Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. J. Gastroenterol. 2008, 43, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.R.; Kim, J.R.; Kim, Y.R. Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells. Arch. Pharm. Res. 2010, 33, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Girbes, T.; Citores, L.; De Benito, F.M.; Inglesias, R.; Ferreras, J.M. A non-toxic two-chain ribosome-inactivating protein co-exists with a structure-related monomeric lectin (SNA III) in elder (Sambucus nigra) fruits. Biochem. J. 1996, 315, 343–344. [Google Scholar] [CrossRef] [PubMed]
- van Damme, E.J.; Barre, A.; Rougé, P.; Van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of Sambucus nigra agglutinin V (nigrin b), a GalNAc-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 1996, 237, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; De Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Jiménez, P.; Argüeso, P.; Farias, G.; Méndez, E.; Girbés, T. Isolation and characterization of a new non-toxic two-chain ribosomeinactivating protein from fruits of elder (Sambucus nigra L.). J. Exp. Bot. 1996, 47, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- van Damme, E.J.; Roy, S.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosomeinactivating protein. Plant J. 1997, 12, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Girbes, T.; Ferreras, J.M.; Arias, F.J.; Muñoz, R.; Iglesias, R.; Jimenez, P.; Rojo, M.A.; Arias, Y.; Perez, Y.; Benitez, J.; et al. Non-toxic type 2 ribosome-inactivating proteins (RIPs) from Sambucus: Occurrence, cellular and molecular activities and potential uses. Cell. Mol. Biol. (Noisy-le-Grand) 2003, 49, 537–545. [Google Scholar]
- Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell Mol. Life Sci. 2006, 63, 1850–1866. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Zou, Y.-F.; Aslaksen, T.H.; Wangensteen, H.; Barsett, H. Structural characterization of bioactive pectic polysaccharides from elderflowers (Sambuci flos). Carbohydr. Polym. 2016, 135, 128–137. [Google Scholar] [CrossRef]
- Roschek, B., Jr.; Fink, R.C.; McMichael, M.D.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 2009, 70, 1255–1261. [Google Scholar] [CrossRef]
- Rogers, G.N.; Paulson, J.C.; Daniels, R.S.; Skehel, J.J.; Wilson, I.A.; Wiley, D.C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 1983, 304, 76–78. [Google Scholar] [CrossRef]
- Rogers, G.N.; D’Souza, B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989, 173, 317–322. [Google Scholar] [CrossRef]
- Rogers, G.N.; Paulson, J.C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983, 127, 361–373. [Google Scholar] [CrossRef]
- Connor, R.J.; Kawaoka, Y.; Webster, R.G.; Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 1994, 205, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Gambaryan, A.S.; Tuzikov, A.B.; Piskarev, V.E.; Yamnikova, S.S.; Lvov, D.K.; Robertson, J.S.; Bovin, N.V.; Matrosovich, M.N. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: Non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-Sialyl(N-acetyllactosamine). Virology 1997, 232, 345–350. [Google Scholar] [CrossRef]
- Brinkman-Van der Linden, E.C.M.; Sonnenburg, J.L.; Varki, A. Effects of sialic acid substitutions on recognition by Sambucus nigra agglutinin and Maackia amurensis hemagglutinin. Anal. Biochem. 2002, 303, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Matrosovich, M.; Klenk, H.-D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev. Med. Virol. 2002, 12, 159–166. [Google Scholar] [CrossRef]
- Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Avian flu: Influenza virus receptors in the human airway. Nature 2006, 440, 435–436. [Google Scholar] [CrossRef]
- Yamada, S.; Suzuki, Y.; Suzuki, T.; Le, M.Q.; Nidom, C.A.; Sakai-Tagawa, Y.; Muramoto, Y.; Ito, M.; Kiso, M.; Horimoto, T.; et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006, 444, 378–382. [Google Scholar] [CrossRef]
- Gamblin, S.J.; Skehel, J.J. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J. Biol. Chem. 2010, 285, 28403–28409. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, E.; Hayashi, K.; Katayama, H.; Hayashi, T.; Obata, A. Anti-influenza virus effects of elderberry juice and its frac-tions. Biosci. Biotechnol. Biochem. 2012, 76, 1633–1638. [Google Scholar] [CrossRef]
- Torabian, G.; Valtchev, P.; Adil, Q.; Dehghani, F. Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Wyganowska-Swiatkowska, M.; Nohawica, M.; Grocholewicz, K.; Nowak, G. Influence of herbal medicines on HMGB1 release, SARS-CoV-2 viral attachment, acute respiratory failure, and sepsis. A literature review. Int. J. Mol. Sci. 2020, 21, 4639. [Google Scholar] [CrossRef] [PubMed]
- Boroduske, A.; Jekabsons, K.; Riekstina, U.; Muceniece, R.; Rostoks, N.; Nakurte, I. Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro. Ind. Crops Prod. 2021, 165, 113438. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.R.; Gochenaur, K.E. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol. 2006, 100, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- Agalar, H.G. Nonvitamin and Nonmineral Nutritional Supplements; Chapter 3.14; Academic Press: Cambridge, MA, USA; pp. 211–213.
Phytotherapeutic Principle | Quantity (%) [20] | Quantity (%) [16] |
---|---|---|
Pectin | 0.16 | |
Total sugars (glucose and fructose) | 7.5 | 7.86–11.5 |
Total protein | 2.7–2.9 | |
Organic acids (citric acid, malic acid, shikimic acid, fumaric acid) Total minerals | 1.0–1.3 0.90–1.55 | |
Quantity (mg) | Quantity (mg) | |
Potassium | 288–305 | 295–549 |
Phosphorus | 73.5–134 | |
Calcium | 57–153 | |
Magnesium | 40–74 | |
B2 vitamin | 65 | |
B6 vitamin | 0.25 | |
C vitamin | 18–26 | |
Folic acid | 17 | |
Biotin | 1.8 | |
Beta-carotene | 0.36 | |
Pantothenic acid | 0.18 | |
Nicotinamide | 1.48 |
Anthocyanis | Proanthocyanide/Flavonols | Phenolic Acids | Organic Acids | Vitamins | Sugars | Lectine |
---|---|---|---|---|---|---|
Cyanidin-3-sambubioside, Chrysanthemin, Cyanidin-3,5-diglucoside, Cyanidin-3-sambubioside-5-glucoside, Antirrhinin, Callistephin, Tulipanin, Pelargonidin-3-sambubioside, Peonidin-3-glucoside, Peonidin-3-sambubioside, Peonidin monoglucuronide, Chrysanthemin monoglucuronide | Epicatechin, Rutin, Isoquercetin, Kaempferol-3-O-rutinoside, Isorhamnetin-3-O-rutinoside, Quercetin, Astragalin, 5,7,3′,4′-tetra-O-methylquercetin, unidentified quercetin acetylhexosides, unidentified quercetin hexoside pentosides | caffeoylquinic acid, feruloylquinic acid, coumaroylquinic acid | shikimic acid, fumaric acid, citric acid, malic acid, tartric acid, valeric acid | ascorbic acid, retinol | fructose, sucrose | SNA-IV (Sambucus nigra agglutinin-IV), SNA-V (Sambucus nigra agglutinin-V) |
Compound | Content in Fruit | Content in Flowers | Source |
---|---|---|---|
Total polyphenolics | [23,24,25,26] | ||
mg GAE/100 g FW | 364–582 | 1021.7 | |
mg GAE/100 g DW extract | 4917–8974 | ||
mg CAE/100 g FW | 2684–4480 | 3702–5333 | |
mg CE/100 g FW | 622–672 | ||
3-caffeoylquinicacid (neochlorogenic acid) | [23,25,27,28] | ||
mg ChAE/100 g FW | 0.7–4.4 | ||
mg/kg FW | 510.6 | ||
mg ChAE/g DW | 0.05–0.40 | ||
mg/g DW | 0.8–2.4 | ||
4-caffeoylquinicacid (cryptochlorogenic acid) | [23,25,28] | ||
mg ChAE/100 g FW | 1.2–2.5 | ||
mg/kg FW | 31.4 | ||
mg/g DW | 0.6–1.5 | ||
5-caffeoylquinicacid (chlorogenic acid) | [23,27,28] | ||
mg ChAE/100 g FW | 26.4–35.9 | ||
mg ChAE/g DW | 0.53–1.22 | ||
mg/g DW | 10.1–20.7 | ||
Kaempferol-3-rutinoside | [23,25,28] | ||
mg rutin/100 g FW | 0.7–1.2 | 0.64 | |
mg/g DW | 0.2–3.0 | ||
Kaempferol-3-glucoside | [25,29] | ||
g/100 g extract | 1.05–1.79 | 1.28–2.50 | |
mg/kg FW | 3.5 | ||
Quercetin | [30,31] | ||
mg CGE/100 g FW | 2.7–4.5 | ||
mg/100 g FW | 29–60 | ||
Quercetin-3-rutinoside (rutin) | [23,25,27,28,29,31,32] | ||
mg rutin/100 g FW | 42.6–95.6 | ||
mg rutin/g DW | 6–14 | 11.6–42.3 | |
g/100 g extract | 10.86–15.39 | 132.69–202.08 | |
mg CGE/100 g FW | 35.59–52.02 | ||
mg/kg FW | 3265.1 | ||
Quercetin-3-glucoside (isoquercitrin) | [23,24,26,27,28,29] | ||
mg rutin/100 g FW | 3.9–14.9 | ||
g/100 g extract | 1.79–3.01 | ||
mg CGE/100 g FW | 6.4–26.5 | 5.37–9.67 | |
mg rutin/g DW | 0.11–1.08 | 0.4–1.9 | |
mg/kg FW | 20.2 | ||
Isorhamnetin-3-rutinoside | [23,25,28] | ||
mg rutin/100 g FW | 0.3–2.2 | ||
mg/kg FW | 888.0 | ||
mg/g DW | 2.0–7.5 | ||
Isorhamnetin-3-glucoside | [23,25,28] | ||
mg rutin/100 g FW | 0.1–0.3 | ||
mg/kg FW | 61.6 | ||
mg/g DW | 0.2–1.0 | ||
Catechin | [25] | ||
mg/kg FW | 10.7 | 6.8 | |
Epicatechin | [25] | ||
mg/kg FW | 81.3 | 254.3 | |
Total anthocyanins | [23,24,27,29,30,31,32,33] | ||
mg CGE/100 g FW | 170–343 | ||
518–1028 | |||
664–1816 | |||
602.9–1265.3 | |||
mg CGE/100 g DW | 408.6–1066.6 | ||
39–153 | |||
mg CGE/100 g extract | 285–1326 | ||
mg CSE/g DW | 8.33–101.40 | ||
g CSE/kg FW | 1.9–20.2 | ||
g/100 g extract | 48.46–52.89 | ||
mg/100 g FW | 254–841 | ||
Cyanidin-3-sambubioside-5-glucoside | [23,27,30,31] | ||
mg CGE/100 g FW | 16.0–59.2 | ||
14–47 | |||
19.52–53.49 | |||
mg CSE/g DW | 0.86–11.50 | ||
Cyanidin-3,5-diglucoside | [23,27,30,31] | ||
mg CGE/100 g FW | 8.2–19.5 | ||
5–36 | |||
7.41–23.29 | |||
mg CSE/g DW | 0.12–5.22 | ||
Cyanidin-3-sambubioside | [23,27,30] | ||
mg CGE/100 g FW | 122.2–269.1 | ||
269–656 | |||
mg CSE/g DW | 270.8–630.8 | ||
Cyanidin-3-glucoside | [23,24,27,29,30,32] | ||
mg CGE/100 g FW | 204.6–481.4 | ||
361–1266 | |||
221.4–586.4 | |||
mg CSE/g DW | 2.74–49.50 | ||
g/100g extract | 21.41–25.18 | ||
mg CGE/g DW | 14–78 | ||
Cyanidin-3-rutinoside | [23] | ||
mg CGE/100 g FW | 1.49–9.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, M.L.; Amariei, S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. Plants 2022, 11, 740. https://doi.org/10.3390/plants11060740
Mocanu ML, Amariei S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. Plants. 2022; 11(6):740. https://doi.org/10.3390/plants11060740
Chicago/Turabian StyleMocanu, Mirela Lăcrămioara, and Sonia Amariei. 2022. "Elderberries—A Source of Bioactive Compounds with Antiviral Action" Plants 11, no. 6: 740. https://doi.org/10.3390/plants11060740