Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review
Abstract
:1. Introduction
2. Textiles and Microorganisms
3. Requirements, Modes of Antimicrobial Action of Antimicrobial Agents
4. Pre-Treatment and Processing of Biomass
4.1. Drying of Biomass
4.2. Choice of Solvents
- Phenols and polyphenols are obtained from acetone and ethanol solvent extractions which consist of C3 sidechain, hydroxyl groups and a phenol ring e.g., catechol, epicatechin, cinnamic acid that has antimicrobial, anthelmintic, and antidiarrheal activity. The mechanism of action of polyphenols binds to proteins (adhesins), inhibits enzyme-substrate deprivation, complexes with the cell wall, makes intestinal mucosa more resistant and reduces secretion, increases the supply of digestible proteins by animals by forming protein complexes in the rumen, and causes a decrease in gastrointestinal-tract metabolism [42,43].
- Ethanol and water mainly extract tannins which consist of polymeric phenols e.g., ellagitannin which has antimicrobial anthelmintic and antidiarrheal activities. The mechanism of action of tannins allows the binding of proteins (adhesins), inhibits enzyme-substrate deprivation, complexes with the cell wall, makes intestinal mucosa more resistant and reduces secretion, increases the supply of digestible proteins by animals by forming protein complexes in the rumen, and causes a decrease in gastrointestinal-tract metabolism [42,43].
- Chloroform solvents extract mainly flavonoids which consist of phenolic structure, a carbonyl group, hydroxylated phenols C3 –C5 unit linked to an aromatic ring, flavones and a +3-hydroxyl group that has antimicrobial, anthelmintic and antidiarrheal activity. The mechanism of action of flavonoids is complex with the cell wall, binds to proteins (adhesins), inhibits the secretion of autocoids and prostaglandins and inhibits contractions caused by spasms [42,43].
- Alkaloids can be extracted by ethanol and ether solvents which consist of heterocyclic nitrogen compounds e.g., berberine, piperine, palmatine and tetrahydropalmatine which has antimicrobial, anthelmintic and antidiarrheal activity. The mechanism of action of alkaloids inhibits the secretion of autocoids and prostaglandins and possesses anti-oxidating effects, thus reducing nitrate generation, which is useful for protein synthesis and suppresses the transfer of sucrose from the stomach to the small intestine. [42,43].
5. Microorganisms
5.1. Enterococcus faecium
5.2. Staphylococcus aureus
5.3. Klebsiella pneumonaie
5.4. Acinetobacter baumannii
5.5. Pseudomonas aeruginosa
5.6. Enterobacter spp.
5.7. Escherichia coli
5.8. Brief Description of the Biocide Agents on the Market
6. Extraction Methods for Studying Phytochemicals
6.1. Introduction
6.1.1. Cold Extraction
6.1.2. Plant Tissue Homogenization
6.1.3. Serial Exhaustive Extraction
6.1.4. Soxhlet Extraction
6.1.5. Maceration
6.1.6. Decoction
6.1.7. Infusion
6.1.8. Digestion
6.1.9. Percolation
6.1.10. Sonication
6.1.11. Enzymatic Extraction
6.1.12. Microwave-Assisted Extraction
6.1.13. Ultrasonic-Assisted Extraction
6.1.14. The Supercritical Fluid Extraction
6.1.15. Pressurised Liquid Extraction
6.2. Chromatography Techniques
6.2.1. Introduction
6.2.2. Paper Chromatography (PC)
6.2.3. Thin Layer Chromatography (TLC)
6.2.4. Gas Chromatography (GC)
6.2.5. High-Performance Liquid Chromatography (HPLC)
6.3. Qualitative and Quantitative Phytochemical Screening
6.3.1. Introduction
Detection of Alkaloids
Detection of Steroids
Detection of Terpenoids
Detection of Anthraquinones
Detection of Phenols
Detection of Saponins
Detection of Tannins
Detection of Carbohydrates
6.3.2. Quantitative Phytochemical Analysis
Estimation of Total Alkaloids
Estimation of Total Flavonoids
Estimation of Total Phenols
6.4. Textiles Analysis
6.4.1. Biocidal Analysis
6.4.2. Durability Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ISO | International Standards Organization |
AATCC | American Association of Textile Chemists and Colourists |
JIS | Japanese Industrial Standards |
PC | Paper Chromatography |
TLC | Thin Layer Chromatography |
GC | Gas Chromatography |
HPLC | High-performance liquid chromatography |
QAC | Quaternary Ammonium Compounds |
mRNA | messenger Ribonucleic acid |
HAI | Health Associated Infections |
PPL | Priority Pathogen List |
WHO | World Health Organization |
RNA | Ribonucleic acid |
DNA | Deoxyribonucleic acid |
UTI | Urinary Tract Infection |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, Acinetobacter aerogenes |
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; The Review on Antimicrobial Resistance Chaired by Jim O’Neill; Wellcome Trust: London, UK, 2016. [Google Scholar]
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S.; de Kraker, M.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [Green Version]
- Bibi, R.; Tariq, A.; Mussarat, S.; Niaz Khan, S.; Rahman, H.; Fathi, E.; Allah, A.; Ullah, R.; Adnan, M. Ethnomedicinal, Phytochemical and Antibacterial Activities of Medicinal Flora of Pakistan Used against Pseudomonas Aeruginosa-A Review. Pak. J. Pharm. Sci 2017, 30, 2285–2300. [Google Scholar]
- Baydoun, S.; Chalak, L.; Dalleh, H.; Arnold, N. Ethnopharmacological Survey of Medicinal Plants Used in Traditional Medicine by the Communities of Mount Hermon, Lebanon. J. Ethnopharmacol. 2015, 173. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Nautiyal, M.C.; Kunwar, R.M.; Bussmann, R.W. Ethnomedicinal Plants Used by Local Inhabitants of Jakholi Block, Rudraprayag District, Western Himalaya, India. J. Ethnobiol. Ethnomedicine 2017, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restuati, M.; Diningrat, D.S. Antimicrobial Profile of Premna Pubescens. Blume and Centella Asiatica Extracts Against Bacteria and Fungi Pathogens. Int. J. Pharmacol. 2018, 14, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants 2017, 6, 16. [Google Scholar] [CrossRef]
- Kutama, R. Phytochemical Compositions in Some Nigerian Medicinal Plants and Their Pharmacological Properties: A Review. J. Anesthesiol. 2018, 6, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia Vera L. Variety Bronte Hull. Int. J. Mol. Sci. 2017, 18, 1212. [Google Scholar] [CrossRef] [Green Version]
- Bakal, S.N.; Bereswill, S.; Heimesaat, M.M. Finding Novel Antibiotic Substances from Medicinal Plants — Antimicrobial Properties of Nigella Sativa Directed against Multidrug Resistant Bacteria. Eur. J. Microbiol. Immunol. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Dube, P.; Meyer, S.; Marnewick, J.L. Antimicrobial and Antioxidant Activities of Different Solvent Extracts from Fermented and Green Honeybush (Cyclopia Intermedia) Plant Material. South Afr. J. Bot. 2017, 110, 184–193. [Google Scholar] [CrossRef]
- Alaribe, F.N.; Maepa, M.J.; Mkhumbeni, N.; Motaung, S.C. Possible Roles of Eucomis Autumnalis in Bone and Cartilage Regeneration: A Review. Trop. J. Pharm. Res. 2018, 17, 741. [Google Scholar] [CrossRef] [Green Version]
- Lediga, M.E.; Malatjie, T.S.; Olivier, D.K.; Ndinteh, D.T.; van Vuuren, S.F. Biosynthesis and Characterisation of Antimicrobial Silver Nanoparticles from a Selection of Fever-Reducing Medicinal Plants of South Africa. South Afr. J. Bot. 2018, 119, 172–180. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Jeyanthi, P.; Vijayalakshmi, S.; Devi, V. Phytochemcial Constituent of Aconitium Species—A Review. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 121–127. [Google Scholar]
- Oguntibeju, O.O.; Aboua, Y.; Goboza, M. Vindoline—A Natural Product from Catharanthus Roseus Reduces Hyperlipidemia and Renal Pathophysiology in Experimental Type 2 Diabetes. Biomedicines 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Mordeniz, C. Introductory Chapter: Traditional and Complementary Medicine. In Traditional and Complementary Medicine; IntechOpen: London, UK, 2019. [Google Scholar]
- Rout, A.; Jenna, P.K.; Patrida, U.K.; Bindhani, B.K. Green Synthesis of Silver Nanoparticles Using Leaves Extract of Centella Asiatica L. for Studies against Human Pathogens. J. Pharma Bio Sci. 2013, 4, 661–674. [Google Scholar]
- Joubert, E.; Joubert, M.E.; Bester, C.; de Beer, D.; de Lange, J.H. Honeybush (Cyclopia spp.): From Local Cottage Industry to Global Markets—The Catalytic and Supporting Role of Research. South Afr. J. Bot. 2011, 77, 887–907. [Google Scholar] [CrossRef]
- Owira, P.M.O.; Ojewole, J.A.O. ‘African Potato’ (Hypoxis hemerocallidea Corm): A Plant-Medicine for Modern and 21st Century Diseases of Mankind?—A Review. Phytother. Res. 2009, 23, 147–152. [Google Scholar] [CrossRef]
- Elbagory, A.M.; Meyer, M.; Cupido, C.N.; Hussein, A.A. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. Nanomaterials 2017, 7, 417. [Google Scholar] [CrossRef] [Green Version]
- Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic Go to: Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Bhaumik, S. Antimicrobial Treatments for Textiles. Indian J. Fibre Text. Res. 2007, 32, 254–263. [Google Scholar]
- Chauhan, P.; Kumar, A. Development of a Microbial Coating for Cellulosic Surface Using Aloe Vera and Silane. Carbohydr. Polym. Technol. Appl. 2020, 1, 100015. [Google Scholar] [CrossRef]
- Gao, Y.; Cranston, R.; Yuan, G.; Cranston, R. Recent Advances in Antimicrobial Treatments of Textiles. Text. Res. J. 2008, 78, 60–72. [Google Scholar] [CrossRef]
- Tille, P. Section 3: Evaluation of Antimicrobial Activity. Chapter 11: Principles of Antimicrobial Action and Resistance. In Bailey’s and Scotts Diagnostic Microbiology; Elsevier: St. Louis, MO, USA, 2014; pp. 153–186. ISBN 978-0-323-08330-0. [Google Scholar]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial Textile: Recent Developments and Functional Perspective. Polym. Bull. 2021. [Google Scholar] [CrossRef]
- Vastrad, J.; Goudar, G.; Byadgi, S. Characterisation of Phenolic Compounds Eucalyptus Globulus and Cymbopogan Citratus Leaf Extracts. BioScan 2016, 11, 2153–2156. [Google Scholar]
- Safarzadeh Markhali, F. Roles of Drying, Size Reduction, and Blanching in Sustainable Extraction of Phenolics from Olive Leaves. Processes 2021, 9, 1662. [Google Scholar] [CrossRef]
- Pham, H.; Nguyen, V.; Vuong, Q.; Bowyer, M.; Scarlett, C. Effect of Extraction Solvents and Drying Methods on the Physicochemical and Antioxidant Properties of Helicteres Hirsuta Lour. Leaves. Technologies 2015, 3, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of Different Drying Methods on Extractable Phenolic Compounds and Antioxidant Properties from Lemon Myrtle Dried Leaves. Heliyon 2019, 5, e03044. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.K.; Ua-arak, T.; Adhikari, B.P.; Howes, T.; Bhandari, B.R. Glass Transition Behavior of Spray Dried Orange Juice Powder Measured by Differential Scanning Calorimetry (DSC) and Thermal Mechanical Compression Test (TMCT). Int. J. Food Prop. 2007, 10, 661–673. [Google Scholar] [CrossRef]
- Nóbrega, E.M.; Oliveira, E.L.; Genovese, M.I.; Correia, R.T.P. The Impact of Hot Air Drying on the Physical-Chemical Characteristics, Bioactive Compounds and Antioxidant Activity of Acerola (Alphigia emarginata) Residue. J. Food Processing Preserv. 2015, 39, 131–141. [Google Scholar] [CrossRef]
- Nadi, F. Bioactive Compound Retention in Echium Amoenum Fisch. & C. A. Mey. Petals: Effect of Fluidized Bed Drying Conditions. Int. J. Food Prop. 2017, 20, 2249–2260. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; van Vuong, Q.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Effects of Different Drying Methods on Bioactive Compound Yield and Antioxidant Capacity of Phyllanthus amarus. Dry. Technol. 2015, 33, 1006–1017. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Barrajón-Catalán, E.; Micol, V.; Mulet, A.; García-Pérez, J.V. Influence of Freezing and Dehydration of Olive Leaves (Var. Serrana) on Extract Composition and Antioxidant Potential. Food Res. Int. 2013, 50, 189–196. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of Leaf Drying: Mechanism and Influencing Parameters, Drying Methods, Nutrient Preservation, and Mathematical Models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Afaneh, I.; Yateem, H.; Al-Rimawi, F. Effect of Olive Leaves Drying on the Content of Oleuropein. Am. J. Anal. Chem. 2015, 6, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Orphanides, A.; Goulas, V.; Gekas, V. Effect of Drying Method on the Phenolic Content and Antioxidant Capacity of Spearmint. Czech J. Food Sci. 2013, 31, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Harnkarnsujarit, N.; Kawai, K.; Watanabe, M.; Suzuki, T. Effects of Freezing on Microstructure and Rehydration Properties of Freeze-Dried Soybean Curd. J. Food Eng. 2016, 184, 10–20. [Google Scholar] [CrossRef]
- Ghelichkhani, G.; Modaresi, M.H.; Rashidi, L.; Shariatifar, N.; Homapour, M.; Arabameri, M. Effect of the Spray and Freeze Dryers on the Bioactive Compounds of Olive Leaf Aqueous Extract by Chemometrics of HCA and PCA. J. Food Meas. Charact. 2019, 13, 2751–2763. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, Isolation and Characterization of Bioactive Compounds from Plants Extracts. Afr. J. Tradit. Complementary Altern. Med. 2011, 8, 1–10. [Google Scholar]
- Cowan, M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical Screening and Extraction: A Review. Int. Sci. Pharm. 2011, 1, 99–106. [Google Scholar]
- Velavan, S. Phytochemicals Techniques—A Review. World J. Sci. Res. 2015, 1, 80–91. [Google Scholar]
- Das, K.; Shrivastava, D.; Tiwari, R. Techniques for Evaluation of Medicinal Plant Products as Antimicrobial Agents: Current Methods and Future Trends. J. Med. Plants Res. 2010, 4, 104–111. [Google Scholar] [CrossRef]
- Kumar, D. Herbal Bio-Actives and Food Fortification: Extraction and Formulation; Taylor and Francis: Abingdon, UK, 2015; Volume 79, ISBN 9781482253634. [Google Scholar]
- FAO/WHO Joint FAO/WHO Expert Committee on Food Additives. Summary and Conclusions; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Bhatia, P.; Sharma, A.; George, A.J.; Anvitha, D.; Kumar, P.; Dwivedi, V.P.; Chandra, N.S. Antibacterial Activity of Medicinal Plants against ESKAPE: An Update. Heliyon 2021, 7, e06310. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- Ghareeb, M.A.; Refahy, L.A.; Saad, A.M.; Osman, N.S.; Abdel-Aziz, M.S.; El-Shazly, M.A.; Mohamed, A.S. In Vitro Antimicrobial Activity of Five Egyptian Plant Species. J. Appl. Pharm. Sci. 2015, 5, 45–49. [Google Scholar] [CrossRef]
- Ugwoke, E.; Aisida, S.O.; Mirbahar, A.A.; Arshad, M.; Ahmad, I.; Zhao, T.; Ezema, F.I. Concentration Induced Properties of Silver Nanoparticles and Their Antibacterial Study. Surf. Interfaces 2020, 18, 100419. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural Products: A Continuing Source of Novel Drug Leads. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Madubuonu, N.; Aisida, S.O.; Ali, A.; Ahmad, I.; Zhao, T.; Botha, S.; Maaza, M.; Ezema, F.I. Biosynthesis of Iron Oxide Nanoparticles via a Composite of Psidium guavaja-Moringa oleifera and Their Antibacterial and Photocatalytic Study. J. Photochem. Photobiol. B: Biol. 2019, 199, 111601. [Google Scholar] [CrossRef]
- Aisida, S.O.; Batool, A.; Khan, F.M.; Rahman, L.; Mahmood, A.; Ahmad, I.; Zhao, T.; Maaza, M.; Ezema, F.I. Calcination Induced PEG-Ni-ZnO Nanorod Composite and Its Biomedical Applications. Mater. Chem. Phys. 2020, 255, 123603. [Google Scholar] [CrossRef]
- Kandemir, F.M.; Yıldırım, S.; Kucukler, S.; Caglayan, C.; Darendelioğlu, E.; Dortbudak, M.B. Protective Effects of Morin against Acrylamide-Induced Hepatotoxicity and Nephrotoxicity: A Multi-Biomarker Approach. Food Chem. Toxicol. 2020, 138, 111190. [Google Scholar] [CrossRef]
- Ginting, B.; Maulana, I.; Karnila, I. Biosynthesis Copper Nanoparticles Using Blumea Balsamifera Leaf Extracts: Characterization of Its Antioxidant and Cytotoxicity Activities. Surf. Interfaces 2020, 21, 100799. [Google Scholar] [CrossRef]
- Aisida, S.O.; Ugwu, K.; Akpa, P.A.; Nwanya, A.C.; Ejikeme, P.M.; Botha, S.; Ahmad, I.; Maaza, M.; Ezema, F.I. Biogenic Synthesis and Antibacterial Activity of Controlled Silver Nanoparticles Using an Extract of Gongronema Latifolium. Mater. Chem. Phys. 2019, 237, 121859. [Google Scholar] [CrossRef]
- Lebreton, F.; van Schaik, W.; Manson McGuire, A.; Godfrey, P.; Griggs, A.; Mazumdar, V.; Corander, J.; Cheng, L.; Saif, S.; Young, S.; et al. Emergence of Epidemic Multidrug-Resistant Enterococcus Faecium from Animal and Commensal Strains. mBio 2013, 4, e00534-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical Relevance of the ESKAPE Pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Increase in Antimicrobial Resistance and Emergence of Major International High-Risk Clonal Lineages in Dogs and Cats with Urinary Tract Infection: 16 Year Retrospective Study. J. Antimicrob. Chemother. 2018, 73, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Taur, Y.; Jenq, R.R.; Equinda, M.J.; Son, T.; Samstein, M.; Viale, A.; Socci, N.D.; van den Brink, M.R.M.; Kamboj, M.; et al. Vancomycin-Resistant Enterococcus Domination of Intestinal Microbiota Is Enabled by Antibiotic Treatment in Mice and Precedes Bloodstream Invasion in Humans. J. Clin. Investig. 2010, 120, 4332–4341. [Google Scholar] [CrossRef]
- Prasad, P.; Sun, J.; Danner, R.L.; Natanson, C. Excess Deaths Associated With Tigecycline After Approval Based on Noninferiority Trials. Clin. Infect. Dis. 2012, 54, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F. Community-Associated Meticillin-Resistant Staphylococcus aureus. Lancet 2010, 375, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Price, L.S.; Weinstein, R.A. Acinetobacter Infection. New Engl. J. Med. 2008, 358, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. New Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLoS ONE 2015, 10, e0139836. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.; McGlynn, K.; Taffner, S.; Fine, L.; Tesini, B.; Wang, J.; Mostafa, H.; Petry, S.; Perkins, A.; Graman, P.; et al. Next-Generation-Sequencing-Based Hospital Outbreak Investigation Yields Insight into Klebsiella Aerogenes Population Structure and Determinants of Carbapenem Resistance and Pathogenicity. Antimicrob. Agents Chemother. 2019, 63, e02577-18. [Google Scholar] [CrossRef] [Green Version]
- Reza, A.; Sutton, J.M.; Rahman, K.M. Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteria. Antibiotics 2019, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Morais, D.; Guedes, R.; Lopes, M. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. [Google Scholar] [CrossRef]
- Li, P.; Xu, G.; Li, S.-P.; Wang, Y.-T.; Fan, T.-P.; Zhao, Q.-S.; Zhang, Q.-W. Optimizing Ultraperformance Liquid Chromatographic Analysis of 10 Diterpenoid Compounds in Salvia Miltiorrhiza Using Central Composite Design. J. Agric. Food Chem. 2008, 56, 1164–1171. [Google Scholar] [CrossRef]
- Mordeniz, C. Integration of Traditional and Complementary Medicine into Evidence-Based Clinical Practice. In Traditional and Complementary Medicine; IntechOpen: London, UK, 2019. [Google Scholar]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Harborne, J.B. Phytochemical Methods—A Guide to Modern Techniques of Plant Analysis, 3rd ed.; Chapman and Hall: London, UK, 1998. [Google Scholar]
- Handa, S.; Khanuja, S.; Longo, G.; Rakesh, D. Extraction Technologies for Medicinal and Aromatic Plants; International Centre for Science and High Technology: Trieste, Italy, 2008; pp. 21–25. [Google Scholar]
- Patel, K.; Panchal, N.; Ingle, P. Review of Extraction Techniques Extraction Methods: Microwave, Ultrasonic, Pressurized Fluid, Soxhlet Extraction, Etc. Int. J. Adv. Res. Chem. Sci. 2019, 6, 6–21. [Google Scholar] [CrossRef]
- Lu, M.; Ho, C.T.; Huang, Q. Extraction, Bioavailability, and Bioefficacy of Capsaicinoids. J. Food Drug Anal. 2017, 25, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Coskun, O. Separation Techniques: Chromatography. North. Clin. Istanb. 2016, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Foye, W.O.; Lemke, T.L.; Williams, D.A. Foye’s Principals of Medicinal Chemistry, 6th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Natural Product Drug Discovery in the Next Millennium. Pharm. Biol. 2001, 39. [Google Scholar] [CrossRef] [Green Version]
- Santhi, K.; Sengottuvel, R. Qualitative and Quantitative Phytochemical Analysis of Moringa concanensis Nimmo. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 633–640. [Google Scholar] [CrossRef]
- Trease, G.E.; Evans, W.C. Trease and Evans Pharmacognosy. In Pharmacognosy; Bailliere Tindall Limited: London, UK, 1989; pp. 376–480. [Google Scholar]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 0412255502. [Google Scholar]
- Behary, N.; Smet, D.D.; Campagne, C.; Vanneste, M. Antibacterial and Multifunctional Polyester Textile Using Plant-Based Cinnamaldehyde. J. Text. Sci. Technol. 2020, 4, 1–11. [Google Scholar]
Plant Name | Phytochemicals | Applications |
---|---|---|
Sutherlandia fructecens | Saponins, pinitols, flavonoids, triterpenoids, Cannavanine, cycloartane glycosides, flavonol glycosides, and aminobutyric acid [11]. | Wound treatment, cancer treatment, diabetes, skin diseases, rheumatism, urinary tract infection, fever, gonorrhoea, kidney, and liver problems [11]. |
Eucomis autumnalis | Homoisoflavanones, terpenoids, and diben-α-pyrones [12]. | Reducing fever, urinary diseases, stomach, lower backaches, and syphilis. Eucomisautumnalis issometimes used to induce labour [12]. |
Plumbago auriculata | Tannins, phenols, alkaloids, saponins, flavonoids, plumbagin, α-amyrin, capensisone, and diomuscinone [13]. | Treating headaches, warts, skin infections, wounds, and fractures [13]. |
Catharanthus roseus | Vinblastine, deoxyvinblastin, vincoline, cathanranthamine, rosicine, leurosine, vindoline and vincristine [14]. | Treating rheumatism, venereal diseases, skin infections, high blood pressure, and diabetes [15]. |
Aspalathus linearis | Spalathin, orientin, isoquercitrin, and luteolinhyperoside [15]. | Treat insomnia, stomach cramps, allergies, and digestive problems as well as improve appetite [16]. |
Centella asiatica | Triterpenoids, centellose, medacassoside, triaponosides, flavonoid quercetin, rutin, kaempferol, patuletin, apigenin, polyacetylenes, phenolic acids, sterols [17]. | Treating fever, leprosy, syphilis, tuberculosis, leprosy, asthma, epilepsy, mental disorder, and minor wounds. Consumed as a vegetable and used as a spice [17]. |
Sclerocarya birrea | Glucosides, steroids, glycosides, flavonoids, fatty oils, alkaloids, phenols, resins, calcium, and phosphorus [18]. | Treating dysentery, rheumatism, malaria, and diarrhoea [18]. |
Hypoxis hemerocallidea | Rooperol, β-sitosterol [19]. | Immune booster, purgative, and laxative tonic. Treat tuberculosis, urinary tract infection, infertility, cancer, diabetes, and wounds [19]. |
Galenia africana | Trihydroxyflavanone, trihydroxychalcone, dihydroxychalcone, trihydroxy-3-methoxychalcone [20]. | Treat venereal sores, eye infections, asthma, tuberculosis, cough, wounds, skin infections and relieve toothache [20]. |
Antimicrobial Class | Mechanism of Action | Activity Spectrum |
---|---|---|
β-lactams | They inhibit cell wall synthesis by binding enzymes in peptidoglycan production | Gram-negative bacteria and gram-positive bacteria could differ with individual antibiotic |
Aminoglycosides | Hinders the protein synthesis by binding 30S ribosomal subunits | Gram-negative bacteria and Gram-positive bacteria |
Chloramphenicol | Inhibits the protein synthesis by binding 50S ribosomal subunits | Gram-negative bacteria and Gram-positive bacteria |
Fluoroquinolones | Inhibits DNA synthesis by binding the DNA gyrase topoisomerase IV | Gram-negative bacteria and gram-positive bacteria, but it could differ with individual antibiotic |
Glycylglycines | Inhibits the protein synthesis by binding 50S ribosomal units | A wide spectrum of gram-negative bacteria and gram-positive species |
Ketolides | Inhibits protein synthesis by binding 50S ribosomal subunits | Gram-positive cocci including certain macrolide resistance strains and Gram-negative strains |
Lipopeptides | Binding and disruption of cell membrane | Gram-positive bacteria including β-lactams and glycopeptides |
Nitrofurantoin | The mechanism is unknown and may have bacterial enzyme targets and damaging DNA | Gram-negative bacteria and gram-positive bacteria |
Oxazolidinones | Hinders the initiation of protein synthesis by binding 50S ribosomal subunits | Wide variety of Gram-positive bacteria including those resistant antimicrobial classes |
Polymyxins | Disrupts cell membrane c | Poor activity against most Gram-positive bacteria. Gram-negative bacteria |
Rifampin | Hinders RNA synthesis by binding DNA dependent, RNA polymerase | Gram-positive and certain Gram-negative bacteria |
Streptogramins | Hinders the protein synthesis by binding two separate sites on the 50S ribosomal subunit | Gram-positive bacteria |
Tetracycline | Inhibits protein synthesis by binding of 30S ribosomal subunit | Gram-negative bacteria and gram-positive bacteria and several intracellular bacterial pathogens |
Sulfonamides | Hinders the folic acid pathway, binding the enzyme dihydropteroate synthase | Gram-negative bacteria and gram-positive bacteria |
Trimethoprim | Hinders with the folic acid pathway by binding the enzyme dihydrofolate reductase | Gram-negative bacteria and gram-positive bacteria |
Product Name | Company | Description |
---|---|---|
Agion® | Sciessent, Beverly, MA, USA | Silver and zeolite-based additive |
AlphaSan® | Milliken Chemical, Spartanburg, SC, USA | Silver-based additive |
BioGaurd® | AEGI Microbe Shield, Huntersville, NC, USA | Finishing agent based on 3-trimethoxysilylpropyldimethyloctadecylammonium chloride |
Biozac ZS | Zschimmer & Schwarz Mohsdorf GmbH, Burgstadt, Germany | PHMB-based finishing agent |
Cosmocil CQ™ | Lonza, Basel, Germany | Polyaminopropyl biguanide- based additive |
Eosy® | Unitika, Osaka, Japan | Finishing agent based on chitosan |
Irgaurd® 1000 | BASF, Ludwigshafen, Germany | Finishing agent based on triclosan |
Irgasan | Sigma Aldrich, St. Louis, MO, USA | Finishing agent based on triclosan |
Microban® | Microban International, Huntersville, NC, USA | Triclosan-based agent |
Reputex™ | Lonza, Basel, Germany | PHMB-based finishing agent |
Sanigard KC | L. N. Chemical Industries, Maharashtra, India | Finishing agent belonging to the QAC group |
Saniguard Nano-ZN | L. N. Chemical Industries, Maharashtra, India | Finishing solution based on aqueous nano-dispersion of zinc oxide |
Sanitised® | SANITIZED AG, Burgdorf, Germany | Finishing agent based on 3-trimethoxysilylpropyldimethyloctadecylammonium chloride |
Silpure® | Thomson Research Associates, Toronto, ON, Canada | Silver particles-based finishing agent |
Silvadur™ | The Dow Chemical Company, Midland, MI, USA | Interpenetrating polymer network with silver ions |
SmartSilver® | Nanohorizon Inc., Philadelphia, PA, USA | Silver nanoparticles-based agent |
Silverion 2400 | Pure Bioscience, Inc., El Cajon, CA, USA | Stabilised silver complex-based agent |
Method | Solvent | Temperature | Pressure | Time | Volume Consumed | The Polarity of Natural Products |
---|---|---|---|---|---|---|
Maceration | Water, Aqueous and non-aqueous solvents | Room temperature | Atmospheric | Long | Large | Dependent on extracting solvent |
Percolation | Water, Aqueous and non-aqueous solvents | Room temperature, occasional heat | Atmospheric | Long | Large | Dependent on extracting solvent |
Decoction | Water | Under heat | Atmospheric | Moderate | None | Polar compounds |
Reflux extraction | Aqueous and non-aqueous solvents | Under heat | Atmospheric | Moderate | Moderate | Dependent on the extracting solvents |
Soxhlet extraction | Organic solvents | Under heat | Atmospheric | Long | Moderate | Dependent on extracting solvent |
Pressurised liquid extraction | Water, aqueous and non-aqueous solvents | Under heat | High | Short | Small | Dependent on extracting solvent |
Supercritical fluid extraction | CO2 | Near room temperatures | High | Short | None or small | Non-polar to moderate compounds |
Ultrasound-assisted extraction | Water, aqueous and non-aqueous solvents | Room temperature or under heat | Atmospheric | Short | Moderate | Dependent on extracting solvent |
Microwave-assisted extraction | Water, aqueous and non-aqueous solvents | Room temperature | Atmospheric | Short | Moderate | Dependent on extracting solvent |
Pulsed electric field extraction | Water, aqueous and non-aqueous solvents | Room temperature or under heat | Atmospheric | Short | Moderate | Dependent on extracting solvent |
Enzyme assisted extraction | Water, aqueous and non-aqueous solvents | Room temperature or heated after enzyme treatment | Atmospheric | Moderate | Moderate | Dependent on extracting solvent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants 2022, 11, 2011. https://doi.org/10.3390/plants11152011
Nortjie E, Basitere M, Moyo D, Nyamukamba P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants. 2022; 11(15):2011. https://doi.org/10.3390/plants11152011
Chicago/Turabian StyleNortjie, Elvino, Moses Basitere, Doice Moyo, and Pardon Nyamukamba. 2022. "Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review" Plants 11, no. 15: 2011. https://doi.org/10.3390/plants11152011