Impact of Heat Stress on Expression of Wheat Genes Responsive to Hessian Fly Infestation
Abstract
:1. Introduction
2. Results
2.1. Differentially Expressed Genes (DEGs) Due to Heat Stress and HF Infestation
2.2. Verification of the DEGs in Response to Heat, HF, and Heat Plus HF Treatments
2.3. Functional Annotation of DEGs Due to Heat Stress and the Combination of Heat Stress and HF Infestation
2.4. Impact of Heat Stress on Genes Upregulated by HF Infestation under Control Temperature
2.5. Impact of Heat Stress on Genes Regulated by HF under Heat Conditions
3. Discussion
3.1. Candidate Genes Potentially Contributing to Wheat Resistance to HF
3.2. Candidate Genes Potentially Contributing to Wheat Resistance and the Heat-Induced Loss of Wheat Resistance to HF Infestation
4. Materials and Methods
4.1. Plant Preparation and Infestation
4.2. Treatment and Experimental Design
4.3. Application of Heat Treatment and Sampling
4.4. RNA Extraction, Library Construction, and Sequencing
4.5. Quality Control, Sequencing Alignment, and Quantification of the Transcript Abundance
4.6. Differential Expression Analysis
4.7. GO and KEGG Enrichment Analysis
4.8. Blast to Annotate Transcripts
4.9. MapMan Analysis
4.10. RT qPCR Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Hessian fly |
DEGs | Differentially expressed genes |
GO | Gene ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Berzonsky, W.A.; Ding, H.; Haley, S.D.; Harris, M.O.; Lamb, R.J.; Mckenzie, R.; Ohm, H.W.; Patterson, F.; Peairs, F.; Porter, D.R. Breeding wheat for resistance to insects. Plant Breed. Rev. 2003, 22, 221–296. [Google Scholar]
- Harris, M.; Stuart, J.; Mohan, M.; Nair, S.; Lamb, R.; Rohfritsch, O. Grasses and gall midges: Plant defense and insect adaptation. Annu. Rev. Entomol. 2003, 48, 549–577. [Google Scholar] [CrossRef] [PubMed]
- Shukle, R.; Grover, P.; Foster, J. Feeding of Hessian fly (Diptera: Cecidomyiidae) larvae on resistant and susceptible wheat. Environ. Entomol. 1990, 19, 494–500. [Google Scholar] [CrossRef]
- Harris, M.; Freeman, T.; Rohfritsch, O.; Anderson, K.; Payne, S.; Moore, J. Virulent Hessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactions with wheat. Ann. Entomol. Soc. Am. 2006, 99, 305–316. [Google Scholar] [CrossRef]
- Patterson, F.; Maas, F.; Foster, J.; Ratcliffe, R.; Cambron, S.; Safranski, G.; Taylor, P.; Ohm, H. Registration of eight Hessian fly resistant common winter wheat germplasm lines (Carol; Erin; Flynn; Iris; Joy; Karen; Lola; and Molly). Crop Sci. 1994, 34, 315–316. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, R.; Hatchett, J. Biology and genetics of the Hessian fly and resistance in wheat. In New Developments in Entomology; Bondari, K., Ed.; Research Signpost; Scientific Information Guild: Trivandrum, India, 1997. [Google Scholar]
- Chen, M.-S.; Echegaray, E.; Whitworth, R.J.; Wang, H.; Sloderbeck, P.E.; Knutson, A.; Giles, K.L.; Royer, T.A. Virulence analysis of Hessian fly populations from Texas; Oklahoma; and Kansas. J. Econ. Entomol. 2009, 102, 774–780. [Google Scholar] [CrossRef]
- Li, C.; Chen, M.; Chao, S.; Yu, J.; Bai, G. Identification of a novel gene; H34; in wheat using recombinant inbred lines and single nucleotide polymorphism markers. Theor. Appl. Genet. 2013, 126, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Abdelsalam, N.R.; Xu, Y.; Chen, M.-S.; Feng, Y.; Kong, L.; Bai, G. Identification of two novel Hessian fly resistance genes H35 and H36 in a hard winter wheat line SD06165. Theor. Appl. Genet. 2020, 133, 2343–2353. [Google Scholar] [CrossRef]
- Tyler, J.; Hatchett, J. Temperature influence on expression of resistance to Hessian fly (Diptera: Cecidomyiidae) in wheat derived from Triticum tauschii. J. Econ. Entomol. 1983, 76, 323–326. [Google Scholar] [CrossRef]
- Buntin, G.; Bruckner, P.; Johnson, J.; Foster, J. Effectiveness of selected genes for Hessian fly resistance in wheat. J. Agric. Entomol. 1990, 7, 283–291. [Google Scholar]
- Liu, X.; Khajuria, C.; Li, J.; Trick, H.N.; Huang, L.; Gill, B.S.; Reeck, G.R.; Antony, G.; White, F.F.; Chen, M.-S. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nat. Commun. 2013, 4, 2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.-S.; Wheeler, S.; Wang, H.; Whitworth, R.J. Impact of temperatures on Hessian fly (Diptera: Cecidomyiidae) resistance in selected wheat cultivars (Poales: Poaceae) in the Great Plains region. J. Econ. Entomol. 2014, 107, 1266–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Yuan, J.; O’neal, J.; Brown, D.; Chen, M.-S. Analyzing Molecular Basis of Heat-Induced Loss-of-Wheat Resistance to Hessian Fly (Diptera: Cecidomyiidae) Infestation Using RNA-Sequencing. J. Econ. Entomol. 2020, 113, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Chen, M.-S.; Zhu, L. 12-Oxo-phytodienoic acid enhances wheat resistance to hessian fly (Diptera: Cecidomyiidae) under heat stress. J. Econ. Entomol. 2018, 111, 917–922. [Google Scholar] [CrossRef]
- Currie, Y.; Chen, M.-S.; Nickolov, R.; Ba, G.; Zhu, L. Impact of Transient Heat Stress on Polar Lipid Metabolism in Seedlings of Wheat Near-Isogenic Lines Contrasting in Resistance to Hessian Fly (Cecidomyiidae) Infestation. J. Econ. Entomol. 2014, 107, 2196–2203. [Google Scholar] [CrossRef]
- Currie, Y.; Moch, J.; Underwood, J.; Kharabsheh, H.; Quesenberry, A.; Miyagi, R.; Thomas, C.; Boney, M.; Woods, S.; Chen, M.-S. Transient heat stress compromises the resistance of wheat (Poales: Poaceae) seedlings to Hessian fly (Diptera: Cecidomyiidae) Infestation. J. Econ. Entomol. 2014, 107, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Underwood, J.; Moch, J.; Chen, M.-S.; Zhu, L. Exogenous salicylic acid enhances the resistance of wheat seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation under heat stress. J. Econ. Entomol. 2014, 107, 2000–2004. [Google Scholar] [CrossRef]
- Kong, L.; Ohm, H.; Cambron, S.; Williams, C. Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breed. 2005, 124, 525–531. [Google Scholar] [CrossRef]
- Liu, X.; Brown-Guedira, G.; Hatchett, J.; Owuoche, J.; Chen, M.-S. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet. 2005, 111, 1308–1315. [Google Scholar] [CrossRef]
- Liu, X.; Fritz, A.; Reese, J.; Wilde, G.; Gill, B.; Chen, M.-S. H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet. 2005, 110, 1473–1480. [Google Scholar] [CrossRef]
- Liu, X.; Gill, B.; Chen, M.-S. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor. Appl. Genet. 2005, 111, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sardesai, N.; Nemacheck, J.A.; Subramanyam, S.; Williams, C. Identification and mapping of H32; a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet. 2005, 111, 1167–1173. [Google Scholar] [CrossRef]
- Wang, T.; Xu, S.S.; Harris, M.O.; Hu, J.; Liu, L.; Cai, X. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor. Appl. Genet. 2006, 113, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Cambron, S.E.; Ohm, H.W. Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Molecular Breed. 2008, 21, 183–194. [Google Scholar] [CrossRef]
- Joshi, A. Map-Based Cloning of the Hessian Fly Resistance Gene H13 in Wheat; Kansas State University: Manhattan, KS, USA, 2018. [Google Scholar]
- Williams, C.E.; Collier, C.C.; Nemacheck, J.A.; Liang, C.; Cambron, S.E. A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 2002, 28, 1411–1428. [Google Scholar] [CrossRef]
- Liu, X.; Bai, J.; Huang, L.; Zhu, L.; Liu, X.; Weng, N.; Reese, J.C.; Harris, M.; Stuart, J.J.; Chen, M.-S. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 2007, 33, 2171–2194. [Google Scholar] [CrossRef]
- Kosma, D.K.; Nemacheck, J.A.; Jenks, M.A.; Williams, C.E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J. 2010, 63, 31–43. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wang, H.; Khajuria, C.; Reese, J.C.; Whitworth, R.J.; Welti, R.; Chen, M.S. Rapid mobilization of membrane lipids in wheat leaf sheaths during incompatible interactions with Hessian fly. Mol. Plant-Microbe Interact. 2012, 25, 920–930. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, C.; Wang, H.; Liu, X.; Wheeler, S.; Reese, J.C.; El Bouhssini, M.; Whitworth, R.J.; Chen, M.-S. Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genom. 2013, 14, 423. [Google Scholar] [CrossRef] [Green Version]
- Saltzmann, K.D.; Giovanini, M.P.; Zheng, C.; Williams, C.E. Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants. J. Chem. Ecol. 2008, 34, 1401–1410. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Liu, X.; Jeannotte, R.; Reese, J.C.; Harris, M.; Stuart, J.J.; Chen, M.-S. Hessian fly (Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat. Mol. Plant-Microbe Interact. 2008, 21, 70–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Liu, X.; Chen, M.-S. Differential accumulation of phytohormones in wheat seedlings attacked by avirulent and virulent Hessian fly (Diptera: Cecidomyiidae) larvae. J. Econ. Entomol. 2010, 103, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Giovanini, M.P.; Saltzmann, K.D.; Puthoff, D.P.; Gonzalo, M.; Ohm, H.W.; Williams, C.E. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 2007, 8, 69–82. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Whitworth, R.J.; Stuart, J.J.; Chen, M.-S. Unbalanced activation of glutathione metabolic pathways suggests potential involvement in plant defense against the gall midge Mayetiola destructor in wheat. Sci. Rep. 2015, 5, 8092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almagro, L.; Gómez Ros, L.; Belchi-Navarro, S.; Bru, R.; Ros Barceló, A.; Pedreño, M. Class III peroxidases in plant defence reactions. J. Exp. Bot. 2009, 60, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Davin, L.B.; Lewis, N.G. Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 2005, 16, 407–415. [Google Scholar] [CrossRef]
- Phukan, U.J.; Jeena, G.S.; Shukla, R.K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 2016, 7, 760. [Google Scholar] [CrossRef] [Green Version]
- Chern, M.; Canlas, P.E.; Fitzgerald, H.A.; Ronald, P.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J. 2005, 43, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Zeilmaker, T.; Ludwig, N.R.; Elberse, J.; Seidl, M.F.; Berke, L.; Van Doorn, A.; Schuurink, R.C.; Snel, B.; Van Den Ackerveken, G. DOWNY MILDEW RESISTANT 6 and DMR 6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 2015, 81, 210–222. [Google Scholar] [CrossRef]
- Davin, L.B.; Lewis, N.G. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000, 123, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, G.; Yuan, S.; Duan, W.; Wang, P.; Bai, J.; Zhang, F.; Gao, S.; Zhang, L.; Zhao, C. TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.). Biochem. Biophys. Res. Commun. 2016, 470, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Shen, L.; Chen, Y.; Bao, S.; Thong, Z.; Yu, H. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev. Cell 2014, 30, 437–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, R.A.; Gallun, R.L. Ability of the Hessian fly to stunt winter wheat. 1. Effect of larval feeding on elongation of leaves. J. Econ. Entomol. 1972, 65, 955–958. [Google Scholar] [CrossRef]
- Balla, K.; Karsai, I.; Bónis, P.; Kiss, T.; Berki, Z.; Horváth, Á.; Mayer, M.; Bencze, S.; Veisz, O. Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE 2019, 14, e0222639. [Google Scholar] [CrossRef]
- Qin, D.; Wu, H.; Peng, H.; Yao, Y.; Ni, Z.; Li, Z.; Zhou, C.; Sun, Q. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genom. 2008, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, H. Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels; revealed by RNA-seq in Brachypodium distachyon. Front. Plant Sci. 2017, 7, 2067. [Google Scholar] [CrossRef] [Green Version]
- Zogli, P.; Pingault, L.; Grover, S.; Louis, J. Ento(o)mics: The intersection of ‘omic’approaches to decipher plant defense against sap-sucking insect pests. Curr. Opin. Plant Biol. 2020, 56, 153–161. [Google Scholar] [CrossRef]
- Estravis-Barcala, M.; Heer, K.; Marchelli, P.; Ziegenhagen, B.; Arana, M.V.; Bellora, N. Deciphering the transcriptomic regulation of heat stress responses in Nothofagus pumilio. PLoS ONE 2021, 16, e0246615. [Google Scholar] [CrossRef]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L. The phenylpropanoid pathway and plant defence—A genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, H.; Geng, G.; Zhang, Q.; Zhang, S. Changes in defense-related enzymes and phenolics in resistant and susceptible common wheat cultivars under aphid stress. Acta Physiol. Plant. 2021, 43, 36. [Google Scholar] [CrossRef]
- Subramanyam, S.; Nemacheck, J.A.; Hargarten, A.M.; Sardesai, N.; Schemerhorn, B.J.; Williams, C.E. Multiple molecular defense strategies in Brachypodium distachyon surmount hessian fly (Mayetiola destructor) larvae-induced susceptibility for plant survival. Sci. Rep. 2019, 9, 2596. [Google Scholar] [CrossRef] [PubMed]
- Sarowar, S.; Kim, Y.J.; Kim, E.N.; Kim, K.D.; Hwang, B.K.; Islam, R.; Shin, J.S. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 2005, 24, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Bahramnejad, B.; Goodwin, P.H.; Zhang, J.; Atnaseo, C.; Erickson, L.R. A comparison of two class 10 pathogenesis-related genes from alfalfa and their activation by multiple stresses and stress-related signaling molecules. Plant Cell Rep. 2010, 29, 1235–1250. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-W.; Wang, H.-W.; Yang, Z.-D.; Kong, L.-R. Expression comparisons of pathogenesis-related (PR) genes in wheat in response to infection/infestation by Fusarium; Yellow dwarf virus (YDV) aphid-transmitted and hessian fly. J. Integr. Agric. 2014, 13, 926–936. [Google Scholar] [CrossRef]
- Lian, J.; Nelson, R.; Lehner, R. Carboxylesterases in lipid metabolism: From mouse to human. Protein Cell 2018, 9, 178–195. [Google Scholar] [CrossRef]
- Poh, S.E.; Goh, J.P.; Fan, C.; Chua, W.; Gan, S.Q.; Lim, P.L.K.; Sharma, B.; Leavesley, D.I.; Dawson, T.L., Jr.; Li, H. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front. Cell. Infect. Microbiol. 2020, 10, 148. [Google Scholar] [CrossRef]
- Bakshi, M.; Oelmüller, R. WRKY transcription factors: Jack of many trades in plants. Plant Signal. Behav. 2014, 9, e27700. [Google Scholar] [CrossRef] [Green Version]
- Gasper, R.; Effenberger, I.; Kolesinski, P.; Terlecka, B.; Hofmann, E.; Schaller, A. Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiol. 2016, 172, 2165–2175. [Google Scholar] [CrossRef] [Green Version]
- Subramanyam, S.; Smith, D.F.; Clemens, J.C.; Webb, M.A.; Sardesai, N.; Williams, C.E. Functional characterization of HFR1; a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. Plant Physiol. 2008, 147, 1412–1426. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [Green Version]
- Usadel, B.; Poree, F.; Nagel, A.; Lohse, M.; Czedik-Eysenberg, A.; Stitt, M. A guide to using MapMan to visualize and compare Omics data in plants: A case study in the crop species; Maize. Plant Cell Environ. 2009, 32, 1211–1229. [Google Scholar] [CrossRef]
- Lohse, M.; Nagel, A.; Herter, T.; May, P.; Schroda, M.; Zrenner, R.; Tohge, T.; Fernie, A.R.; Stitt, M.; Usadel, B. Mercator: A fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2014, 37, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Gene Runner for Windows. Available online: www.generunner.net (accessed on 22 May 2022).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Heat vs. CK | HF + Heat vs. HF | HF vs. CK | HF + Heat vs. Heat | HF + Heat vs. CK | |
---|---|---|---|---|---|
Total DEGs | 4197 | 11,675 | 21 | 155 | 7164 |
Upregulated | 1892 | 5238 | 18 | 151 | 3793 |
Downregulated DEGS | 2305 | 6437 | 3 | 4 | 3371 |
Primer Name | Gene ID | Gene Name | Oligo Sequence |
---|---|---|---|
HSP2_F1 | TRIAE_CS42_3AS_TGACv1_213275_AA0706340 | HSP2 | TGAGGTTCTTCGACACGCTGGCCCT |
HSP2_R1 | TRIAE_CS42_3AS_TGACv1_213275_AA0706340 | HSP2 | TCCTCCTCCACCTCCACCTTGACCTCC |
HSP2_F2 | TRIAE_CS42_3AS_TGACv1_213275_AA0706340 | HSP2 | CATCTTCTGCACCACGGCGTCCAGC |
HSP2_R2 | TRIAE_CS42_3AS_TGACv1_213275_AA0706340 | HSP2 | AGCACCTTGCCGTCCTCCTCCACCT |
PAL1_F1 | TRIAE_CS42_1BS_TGACv1_049914_AA0164150 | PAL1 | GCGTCAAGGAGAGCAGCGACTGGGTCA |
PAL1_R1 | TRIAE_CS42_1BS_TGACv1_049914_AA0164150 | PAL1 | AGCGCCGCCCTCCTTGGTCCTCC |
PAL1_F2 | TRIAE_CS42_1BS_TGACv1_049914_AA0164150 | PAL1 | GGAGGACCAAGGAGGGCGGCGCT |
PAL1_R2 | TRIAE_CS42_1BS_TGACv1_049914_AA0164150 | PAL1 | CGGCAGGCATGGTGTCACGTTGGC |
JAZ_F1 | TRIAE_CS42_5AL_TGACv1_379331_AA1256080 | JAZ | AGCAGCAGCCTCGTTCAGCAGAGCCCT |
JAZ_R1 | TRIAE_CS42_5AL_TGACv1_379331_AA1256080 | JAZ | GCCCAGCCCGAGCCAGGAGTTGTCA |
JAZ_F2 | TRIAE_CS42_5AL_TGACv1_379331_AA1256080 | JAZ | TCCCCCTCGAGAAATCTAGTGTTGGCCAG |
JAZ_R2 | TRIAE_CS42_5AL_TGACv1_379331_AA1256080 | JAZ | AGGGCTCTGCTGAACGAGGCTGCTGCT |
Wh_Act_F1 | Traes_1AS_A8AD3BE99.2 | Actin7 | TACAATGAGCTCCGTGTGGCACCTGAGG |
Wh_Act_F2 | Traes_1AS_A8AD3BE99.3 | Actin7 | CGGTATCGTAAGCAACTGGGATGACATGGAG |
Wh_Act_R1 | Traes_1AS_A8AD3BE99.4 | Actin7 | CTCGGTGAGGATCTTCATGAGGGAGTCCG |
Wh_Act_R2 | Traes_1AS_A8AD3BE99.5 | Actin7 | ACAATTTCCCGCTCGGCTGAGGTTGTG |
Function Group | Number | Mean | Maximum | Minimum |
---|---|---|---|---|
Secondary metabolism | 10 | 14.9 | 45.9 | 3.0 |
Hormone metabolism | 5 | 7.0 | 14.4 | 2.6 |
Stress: Biotic | 15 | 10.8 | 20.6 | 2.6 |
Stress: Abiotic heat shock protein | 3 | 0.24 | 0.16 | 0.33 |
RNA regulation of transcription | 20 | 41.5 | 246.4 | 2.3 |
Protein: post-translational modification/degradation | 13 | 34.9 | 150.1 | 3.0 |
Signaling | 11 | 22.4 | 67.0 | 2.9 |
Development | 7 | 8.1 | 12.1 | 5.2 |
Transport | 5 | 9.0 | 15.4 | 3.6 |
Gene Id | Gene Description |
---|---|
Candidate genes potentially contribute to wheat resistance to HF infestation | |
5BL_v1_408228_AA1362380 | Phenylalanine ammonia lyase |
2AL_v1_109444_AA0328580 | Pathogenesis-related protein 1 |
2AL_v1_094607_AA0300380 | Pathogenesis-related protein 1 |
Candidate genes potentially contribute to wheat resistance to HF infestation and the heat-induced loss of wheat resistance | |
1BS_v1_049914_AA0164150 | Phenylalanine ammonia lyase |
7DL_v1_603712_AA1987770 | Aspartyl protease family protein |
7DS_v1_622332_AA2037800 | Carboxylesterase |
3as_tgacv1_210681_aa0677000 | 16.9 kDa class I heat shock protein 1-like |
4dl_tgacv1_342934_aa1125640 | 17.9 kDa class I heat shock protein |
5bl_tgacv1_404396_aa1298380 | 16.9 kDa class I heat shock protein 1-like |
5al_tgacv1_373966_aa1185670 | WRKY transcription factor WRKY76-like |
5bl_tgacv1_407645_aa1358580 | WRKY transcription factor WRKY76 |
5dl_tgacv1_436840_aa1463530 | WRKY transcription factor WRKY76 |
5dl_tgacv1_432937_aa1395210 | WRKY transcription factor WRKY76 |
1bl_tgacv1_034437_aa0144510 | NRR repressor homolog 1 |
2al_tgacv1_093272_aa0276390 | DMR6-LIKE OXYGENASE 1 (flavonoids metabolism) |
2ds_tgacv1_177854_aa0586060 | Dirigent protein 21-like |
7ds_tgacv1_621992_aa2030750 | Hessian fly response gene 1 protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; O’Neal, J.; Brown, D.; Zhu, L. Impact of Heat Stress on Expression of Wheat Genes Responsive to Hessian Fly Infestation. Plants 2022, 11, 1402. https://doi.org/10.3390/plants11111402
Yuan J, O’Neal J, Brown D, Zhu L. Impact of Heat Stress on Expression of Wheat Genes Responsive to Hessian Fly Infestation. Plants. 2022; 11(11):1402. https://doi.org/10.3390/plants11111402
Chicago/Turabian StyleYuan, Jiazheng, Jordan O’Neal, Daria Brown, and Lieceng Zhu. 2022. "Impact of Heat Stress on Expression of Wheat Genes Responsive to Hessian Fly Infestation" Plants 11, no. 11: 1402. https://doi.org/10.3390/plants11111402
APA StyleYuan, J., O’Neal, J., Brown, D., & Zhu, L. (2022). Impact of Heat Stress on Expression of Wheat Genes Responsive to Hessian Fly Infestation. Plants, 11(11), 1402. https://doi.org/10.3390/plants11111402