Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Biosynthesis and Characterization of AgNPs
2.2. Cytotoxic Effects of Biosynthesized AgNPs and Plant Extract on MCF-7 and HUVEC Cells
2.3. Genotoxic Effect of Biosynthesized AgNPs and Plant Extract on MCF-7 and HUVEC Cells
3. Discussion
4. Materials and Methods
4.1. Preparation of Bio-Synthesized Silver Nanoparticles
4.2. Characterization of Bio-Synthesized Nanoparticles
4.3. Cell Culture
4.4. MTT Test
4.5. Comet Test
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patra, J.K.; Baek, K.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 2014, 417305. [Google Scholar] [CrossRef] [Green Version]
- Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 2011, 15, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xie, J.; Lee, J.; Ting, Y.; Chen, J.P. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 2005, 109, 15256–15263. [Google Scholar] [CrossRef] [PubMed]
- Moodley, J.S.; Krishna, S.B.N.; Pillay, K.; Govender, P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 015011. [Google Scholar] [CrossRef] [Green Version]
- Das, V.L.; Thomas, R.; Varghese, R.T.; Soniya, E.; Mathew, J.; Radhakrishnan, E. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 2014, 4, 121–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.A.; Uchida, T.; Mizuki, T.; Nakajima, Y.; Katsube, Y.; Hanajiri, T.; Maekawa, T. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod). Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015002. [Google Scholar] [CrossRef]
- Christensen, L.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. Lett. 2011, 2, 429–434. [Google Scholar] [CrossRef]
- Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.; Shamsi, S.; Mehta, B.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces 2010, 81, 81–86. [Google Scholar] [CrossRef]
- Malapermal, V.; Botha, I.; Krishna, S.B.N.; Mbatha, J.N. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J. Biol. Sci. 2017, 24, 1294–1305. [Google Scholar] [CrossRef]
- Yallappa, S.; Manjanna, J.; Peethambar, S.; Rajeshwara, A.; Satyanarayan, N. Green synthesis of silver nanoparticles using Acacia farnesiana (Sweet Acacia) seed extract under microwave irradiation and their biological assessment. J. Clust. Sci. 2013, 24, 1081–1092. [Google Scholar] [CrossRef]
- Vidhu, V.; Aromal, S.A.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 83, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Geethalakshmi, R.; Sarada, D. Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. Int. J. Nanomed. 2012, 7, 5375–5384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Jain, D.; Daima, H.K.; Kachhwaha, S.; Kothari, S. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig. J. Nanomater. Biostruct. 2009, 4, 557–563. [Google Scholar]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Pagnossa, J.P.; Blasi, F.; Cossignani, L.; Piccoli, R.H.; Zengin, G.; Montesano, D.; Cocconcelli, P.S.; Lucini, L. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res. Int. 2020, 127, 108712. [Google Scholar] [CrossRef]
- Valenga, M.G.P.; Boschen, N.L.; Rodrigues, P.R.P.; Maia, G.A.R. Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Ind. Crops Prod. 2019, 128, 331–337. [Google Scholar] [CrossRef]
- Sengev, A.I.; Abu, J.O.; Gernah, D.I. Effect of Moringa oleifera leaf powder supplementation on some quality characteristics of wheat bread. Food Nutr. Sci. 2013, 4, 270–275. [Google Scholar]
- Hassan, F.A.; Bayoumi, H.M.; El-Gawad, M.; Enab, A.; Youssef, Y. Utilization of Moringa oleifera leaves powder in production of yoghurt. Int. J. Dairy Sci. 2016, 11, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Ndong, M.; Uehara, M.; Katsumata, S.; Sato, S.; Suzuki, K. Preventive effects of Moringa oleifera (Lam) on hyperlipidemia and hepatocyte ultrastructural changes in iron deficient rats. Biosci. Biotech. Biochem. 2007, 71, 1826–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwamarah, J.U.; Otitoju, O.; Otitoju, G.T. Effects of Moringa oleifera Lam. aqueous leaf extracts on follicle stimulating hormone and serum cholesterol in Wistar rats. Afr. J. Biotech. 2015, 14, 181–186. [Google Scholar] [CrossRef]
- Popescu, M.; Velea, A.; Lőrinczi, A. Biogenic production of nanoparticles. Dig. J. Nanomater. Biostruct. 2010, 5, 1035–1040. [Google Scholar]
- Allafchian, A.; Mirahmadi-Zare, S.; Jalali, S.; Hashemi, S.; Vahabi, M. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostruct. Chem. 2016, 6, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Comşa, S.; Cîmpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar] [PubMed]
- Grossini, E.; Garhwal, D. The Potential Role of Peripheral Oxidative Stress on the Neurovascular Unit in Amyotrophic Lateral Sclerosis Pathogenesis: A Preliminary Report from Human and In Vitro Evaluations. Biomedicines 2022, 10, 691. [Google Scholar] [CrossRef]
- Mbailao, M.; Mianpereum, T.; Albert, N. Proximal and elemental composition of Moringa oleifera (Lam) leaves from three regions of Chad. J. Food Res. Sci. 2014, 3, 12–20. [Google Scholar] [CrossRef]
- Govindappa, M.; Farheen, H.; Chandrappa, C.; Rai, R.V.; Raghavendra, V.B. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035014. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.M.; Berenjian, A.; Ghasemi, Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015018. [Google Scholar] [CrossRef]
- Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 310–315. [Google Scholar] [CrossRef]
- Sathyavathi, R.; Krishna, M.; Rao, D.N. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting. J. Nanosci. Nanotechnol. 2011, 11, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- Shousha, W.G.; Aboulthana, W.M.; Salama, A.H.; Saleh, M.H.; Essawy, E.A. Evaluation of the biological activity of Moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bull. Nat. Res. Cent. 2019, 43, 212. [Google Scholar] [CrossRef] [Green Version]
- Vivek, R.; Thangam, R.; Muthuchelian, K.; Gunasekaran, P.; Kaveri, K.; Kannan, S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012, 47, 2405–2410. [Google Scholar] [CrossRef]
- Sadat Shandiz, S.A.; Shafiee Ardestani, M.; Shahbazzadeh, D.; Assadi, A.; Ahangari Cohan, R.; Asgary, V.; Salehi, S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Sriram, M.I.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 2010, 5, 753–762. [Google Scholar]
- Liang, J.; Zeng, F.; Zhang, M.; Pan, Z.; Chen, Y.; Zeng, Y.; Xu, Y.; Xu, Q.; Huang, Y. Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Adv. 2015, 5, 43733–43740. [Google Scholar] [CrossRef]
- Kaygisiz, S.Y.; Ciğerci, I.H. Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicol. Ind. Health 2017, 33, 802–809. [Google Scholar] [CrossRef]
- Ciğerci, I.H.; Liman, R.; Özgül, E.; Konuk, M. Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 2015, 67, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Liman, R.; Ali, M.M.; Istifi, E.S.; Ciğerci, I.H.; Bonciu, E. Genotoxic and cytotoxic efects of pethoxamid herbicide on Allium cepa cells and its molecular docking studies to unravel genotoxicity mechanism. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Ali, M.M.; Cigerci, I.H. Anti-cancerous efficacy of alcoholic and aqueous extracts from an endemic plant Thermopsis turcica on Liver Carcinoma. Br. J. Pharm. Res. 2017, 16, 1–5. [Google Scholar] [CrossRef]
- Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Bin-Jumah, M.; Monera, A.A.; Albasher, G.; Alarifi, S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int. J. Nanomed. 2020, 15, 1537–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.; Jain, J.; Rajwade, J.; Paknikar, K. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett. 2008, 179, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Torres, M. Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 2002, 166 (Suppl. 1), S4–S8. [Google Scholar] [CrossRef]
- Ali, K.; Iqbal, A.; Bukhari, S.; Safdar, S.; Raiz, A.; Ali, W.; Hussain, A.; Javid, A.; Hussain, M.; Ali, M. Amelioration potential of Moringa oleifera extracts against sodium arsenate induced embryotoxicity and genotoxicity in mouse (Mus musculus). Braz. J. Biol. 2021, 83, e248022. [Google Scholar] [CrossRef]
- Yumnamcha, T.; Nongthomba, U.; Devi, M.D. Phytochemical screening and evaluation of genotoxicity and acute toxicity of aqueous extract of Croton tiglium L. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 2013, 13, 212. [Google Scholar] [CrossRef] [Green Version]
- Pamok, S.; Vinitketkumnuen, S.S.U.; Saenphet, K. Antiproliferative effect of Moringa oleifera Lam. and Pseuderanthemum palatiferum (Nees) Radlk extracts on the colon cancer cells. J. Med. Plants Res. 2012, 6, 139–145. [Google Scholar]
- Sreelatha, S.; Jeyachitra, A.; Padma, P. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 2011, 49, 1270–1275. [Google Scholar] [CrossRef]
- Aydın, Ç.; Pehlivanoğlu, S. Synthesis of Silver Nanoparticles using Rosmarinus officinalis and Cytotoxic Effect on MCF-7 Human Breast Cancer Cells. SDU J. Health Sci. Inst. 2019, 10, 172–176. [Google Scholar]
- Abdel-Aziz, M.S.; Shaheen, M.S.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 2014, 18, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Aboulthana, W.; Sayed, H. How to use green technology to enhance antioxidant efficiency of plant extracts: A novel strategy. J. Appl. Pharm. 2018, 10, 264–267. [Google Scholar]
- Nartop, P. Use of biosynthetic silver nanoparticles in the surface sterilization of Pyracantha coccinea stem explants. Pamukkale Univ. J. Eng. Sci. 2016, 23, 759–761. [Google Scholar] [CrossRef] [Green Version]
- Nartop, P. Use of herbal drug extracts as reducing agents for green synthesis of silver nanoparticles. Eskiseh. Technol. Univ. J. Sci. Technol. C-Life Sci. Biotechnol. 2019, 8, 50–60. [Google Scholar]
- Günay, K.; Leblebici, Z.; Koca, F.D. Çinko nanopartiküllerinin (ZnO NP) biyosentezi, karakterizasyonu ve anti-bakteriyel etkisinin incelenmesi. Nevşehir Bilim ve Teknol. Derg. 2021, 10, 56–66. [Google Scholar]
- Acar, Ç.A.; Pehlivanoglu, S. Biosynthesis of silver nanoparticles using Rosa canina extract and its anti-cancer and anti-metastatic activity on human colon adenocarcinoma cell line HT29. Mehmet Akif Ersoy University. J. Health Sci. Inst. 2019, 7, 124–131. [Google Scholar]
- Dağlıoğlu, C. Using inorganic nanoparticle-based drug delivery systems against human colon cancer cells: Effect of particle size on anticancer activity. J. Polytec-Politek Derg. 2020, 23, 171–179. [Google Scholar]
- Ali, M.M.; Ciğerci, İ.H. Genotoxic Evaluation of an Endemic Plant Thermopsis turcica Extracts on Liver Cancer Cell Line. Pak. J. Zool. 2019, 51, 355–357. [Google Scholar] [CrossRef]
- Liman, R.; Acikbas, Y.; Ciğerci, İ.H.; Ali, M.M.; Kars, M.D. Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by allium and comet tests. Bull Environ. Contam. Toxicol. 2020, 104, 215–221. [Google Scholar] [CrossRef]
- Liman, R.; Ali, M.M.; Ciğerci, İ.H.; İstifli, E.S.; Sarıkurkcu, C. Cytotoxic and genotoxic evaluation of copper oxychloride through Allium test and molecular docking studies. Environ. Sci. Pollut. Res. 2021, 28, 44998–45008. [Google Scholar] [CrossRef]
- Liman, R.; Başbuğ, B.; Ali, M.M.; Acikbas, Y.; Ciğerci, İ.H. Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays. J. Appl. Genet. 2021, 62, 85–92. [Google Scholar] [CrossRef] [PubMed]
Groups | Concentrations (µg/mL) | DNA Damage (Arbitrary Unit) Mean ± Standard Deviation (SD) | ||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
Control | - | 48.67 ± 5.03 a | 50.33 ± 5.51 a | 53.33 ± 5.86 a |
Cisplatin | 119 | 53.67 ± 5.51 ab | 63.33 ± 11.55 ab | 67.67 ± 12.42 ab |
MOE | 100 | 66 ± 4.58 b | 107.33 ± 8.08 c | 122.67 ± 6.43 f |
10 | 59.33 ± 8.08 ab | 85 ± 11.36 d | 99.67 ± 19.4 e | |
1 | 59.67 ± 3.51 ab | 85 ± 7.94 d | 97 ± 12.12 de | |
AgNPs | 10 | 61.33 ± 10.07 ab | 77.67 ± 4.51 bd | 103.67 ± 6.03 ef |
5 | 52 ± 11.14 a | 74.33 ± 7.64 bd | 90.33 ± 14.05 cde | |
2.5 | 55.67 ± 9.07 ab | 73 ± 5.2 bd | 79 ± 9.54 bcd | |
1.25 | 48.33 ± 2.52 a | 67.33 ± 2.08 b | 71.33 ± 11.02 abc |
Groups | Concentrations (µg/mL) | DNA Damage (Arbitrary Unit) Mean ± Standard Deviation (SD) | ||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
Control | - | 9.67 ± 2.08 a | 9 ± 1 a | 9 ± 1.73 a |
Cisplatin | 34 | 23.17 ± 2.51 ab | 33.13 ± 21.12 ab | 37.67 ± 11.12 ab |
MOE | 100 | 9.33 ± 0.58 a | 7 ± 1.73 b | 8 ± 1 ab |
10 | 9.67 ± 1.15 a | 7 ± 1 b | 7.33 ± 1.53 ab | |
1 | 7.67 ± 2.08 a | 6.33 ± 0.58 b | 7 ± 1 ab | |
AgNPs | 10 | 8.67 ± 2.08 a | 6.67 ± 0.58 b | 7.33 ± 0.58 ab |
5 | 9.67 ± 2.08 a | 7 ± 1 b | 6.67 ± 0.58 ab | |
2.5 | 9.33 ± 0.58 a | 6.33 ± 1.53 b | 6 ± 1 b | |
1.25 | 8.33 ± 0.58 a | 6 b | 6.33 ± 0.58 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkan, H.; Ciğerci, İ.H.; Ali, M.M.; Hazman, O.; Liman, R.; Colă, F.; Bonciu, E. Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines. Plants 2022, 11, 1293. https://doi.org/10.3390/plants11101293
Alkan H, Ciğerci İH, Ali MM, Hazman O, Liman R, Colă F, Bonciu E. Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines. Plants. 2022; 11(10):1293. https://doi.org/10.3390/plants11101293
Chicago/Turabian StyleAlkan, Hatice, İbrahim Hakkı Ciğerci, Muhammad Muddassir Ali, Omer Hazman, Recep Liman, Florica Colă, and Elena Bonciu. 2022. "Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines" Plants 11, no. 10: 1293. https://doi.org/10.3390/plants11101293
APA StyleAlkan, H., Ciğerci, İ. H., Ali, M. M., Hazman, O., Liman, R., Colă, F., & Bonciu, E. (2022). Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines. Plants, 11(10), 1293. https://doi.org/10.3390/plants11101293