Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oils Compositions
2.2. Methanol Extract Compositions and Contents of Total Polyphenols
2.3. Antioxidant Activity
2.4. Genotoxic and Antigenotoxic Activity
2.4.1. Genotoxic Activity
2.4.2. Antigenotoxic Activity
2.5. Cytotoxic Activity
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Essential Oil Isolation
3.4. Extraction Procedure
3.5. GC-MS Analysis of Essential Oils
3.6. LC-DAD-MS Analysis of Methanol Extracts
3.7. Total Phenols
3.8. Antioxidant Activity
3.8.1. DPPH Assay
3.8.2. FRAP Assay
3.9. Genotoxic and Antigenotoxic Activity
3.9.1. Genotoxic Activity Assay
3.9.2. Antigenotoxic Activity Assay
3.9.3. Comet Assay
3.10. Investigation of Cytotoxic Activity of Hyssop Herb
3.10.1. Cell Lines and Cultures
3.10.2. Extract Solutions
3.10.3. MTT Assay
3.10.4. Cytotoxicity Parameters
- The GI50 value is the concentration where 100 × (T − T0)/(C − T0) equals 50 and measures the growth inhibitory power of the examined extracts;
- The TGI value is the concentration of the tested extract where 100 × (T − T0)/(C − T0) equals 0 and measures the cytostatic effect;
- The LC50 value is the concentration of the drug where 100 × (T − T0)/T0 equals 50 and measures the cytotoxic effect of extracts.
3.11. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Džamić, A.; Soković, M.; Novaković, M.; Jadranin, M.; Ristić, M.; Tešević, V.; Marin, P. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crop. Prod. 2013, 51, 401–407. [Google Scholar] [CrossRef]
- Diklić, N. Hyssopus L. In Flora SR Srbije; Josifović, M., Ed.; SANU: Beograd, Serbia, 1974; pp. 472–474. [Google Scholar]
- World Checklist of Selected Plant Families. Copyright The Board of Trustees of the Royal Botanic Gardens, Kew. 2010. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 12 March 2021).
- Tucakov, J. Lečenje Biljem; Zapis: Beograd, Serbia, 2010. [Google Scholar]
- Venditti, A.; Bianco, A.; Frezza, C.; Conti, F.; Bini, L.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Damiano, S.; Lupidi, G.; et al. Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Ind. Crop. Prod. 2015, 77, 353–363. [Google Scholar] [CrossRef]
- Kišgeci, J. Lekovite i Aromatične Biljke; Partenon, Srpska Književna Zadruga: Novi Sad, Serbia, 2008. [Google Scholar]
- Judžentienė, A. Hyssop (Hyssopus officinalis L.) Oil. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V., Ed.; Elsevier, Academic Press: London, UK, 2016; pp. 471–479. [Google Scholar]
- ISO 9841 Standard. ISO 9841:2013—Essential oil of hyssop (Hyssopus officinalis L. ssp. officinalis). Available online: https://www.iso.org/standard/57475.html (accessed on 19 May 2018).
- Hristova, Y.R.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.A.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.; Silaghi-Dumitrescu, R.; Țilea, I. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Kreis, W.; Kaplan, M.; Freeman, J.; Sun, D.K.; Sarin, P. Inhibition of HIV replication by Hyssopus officinalis extracts. Antivir. Res. 1990, 14, 323–337. [Google Scholar] [CrossRef]
- Lim, W.C.; Seo, J.; Lee, C.I.; Pyo, H.B.; Lee, B.C. Stimulative and sedative effects of essential oils upon inhalation in mice. Arch. Pharmacal Res. 2005, 28, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Setorki, M. Effect of Hyssopus officinalis essential oil on chronic stress-induced memory and learning impairment in male mice. Bangladesh J. Pharmacol. 2017, 12, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Battinelli, L.; Daniele, C.; Melchioni, C.; Salvatore, G.; Mazzanti, G. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations. Planta Med. 2002, 68, 213–216. [Google Scholar] [CrossRef]
- Charles, D.J. Hyssop. In Antioxidant Properties of Spices, Herbs and Other Sources; Charles, D.J., Ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Păun, G.; Litescu, S.C.; Neagu, E.; Tache, A.; Radu, G.L. Evaluation of Geranium spp., Helleborus spp. and Hyssopus spp. polyphenolic extracts inhibitory activity against urease and α-chymotrypsin. J. Enzym. Inhib. Med. Chem. 2014, 29, 28–34. [Google Scholar] [CrossRef]
- Ma, X.; Ma, X.; Ma, Z.; Sun, Z.; Yu, W.; Wang, J.; Li, F.; Ding, J. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice. Evid. Based Complementary Altern. Med. 2014, 2014, 710870. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, H.; Matsuura, H.; Yanagiya, C.; Mizutani, J.; Tsuji, M.; Ishihara, C. Inhibitory effects of hyssop (Hyssopus officinalis) extracts on intestinal alpha-glucosidase activity and postprandial hyperglycemia. J. Nutr. Sci. Vitaminol. 2003, 49, 346–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitić, V.; Đorđević, S. Essential oil composition of Hyssopus officinalis L. cultivated in Serbia. Facta Univ. Ser. Phys. Chem. Technol. 2000, 2, 105–108. [Google Scholar]
- Gorunović, M.; Bogavac, P.M.; Chalchat, J.; Chabard, J.L. Essential Oil of Hyssopus officinalis L., Lamiaceae of Montenegro Origin. J. Essent. Oil Res. 1995, 7, 39–43. [Google Scholar] [CrossRef]
- Hajdari, A.; Giorgi, A.; Beretta, G.; Gelmini, F.; Buratti, S.; Benedetti, S.; Merkouri, A.; Mala, X.; Kabashi, S.; Pentimalli, D.; et al. Phytochemical and sensorial characterization of Hyssopus officinalis subsp. aristatus (Godr.) Nyman (Lamiaceae) by GC–MS, HPLC–UV–DAD, spectrophotometric assays and e-nose with aid of chemometric techniques. Eur. Food Res. Technol. 2018, 244, 1313–1327. [Google Scholar] [CrossRef]
- Tsankova, E.; Konaktchiev, A.N.; Génova, E. Chemical composition of the essential oils of two Hyssopus officinalis taxa. J. Essent. Oil Res. 1993, 5, 609–611. [Google Scholar] [CrossRef]
- Moro, A.; Zalacain, A.; Mendoza, J.H.; Carmona, M. Effects of agronomic practices on volatile composition of Hyssopus officinalis L. essential oils. Molecules 2011, 16, 4131–4139. [Google Scholar] [CrossRef] [Green Version]
- Marín, F.R.; Ortuño, A.; Benavente-García, O.; Río, J.D. Distribution of flavone glycoside diosmin in Hyssopus officinalis plants: Changes during growth. Planta Med. 1998, 64, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Pagano, E.; Formisano, C.; Piccolella, S.; Fiorentino, A.; Tenore, G.C.; Izzo, A.; Rigano, D.; Pacifico, S. Hyssopus officinalis subsp. aristatus: An unexploited wild-growing crop for new disclosed bioactives. Ind. Crop. Prod. 2019, 140, 111594. [Google Scholar] [CrossRef]
- Shomirzoeva, O.; Li, J.; Numonov, S.; Mamat, N.; Shataer, D.; Lu, X.; Aisa, H.A. Chemical components of Hyssopus seravshanicus: Antioxidant activity, activations of melanogenesis and tyrosinase, and quantitative determination by UPLC-DAD. Nat. Prod. Res. 2019, 33, 866–870. [Google Scholar] [CrossRef]
- Hatipoğlu, G.; Sökmen, M.; Bektaş, E.; Daferera, D.; Sökmen, A.; Demir, E.; Şahin, H. Automated and standard extraction of antioxidant phenolic compounds of Hyssopus officinalis L. ssp. angustifolius. Ind. Crop. Prod. 2013, 43, 427–433. [Google Scholar] [CrossRef]
- Fathiazad, F.; Mazandarani, M.; Hamedeyazdan, S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. From Iran. Adv. Pharm. Bull. 2011, 1, 63–67. [Google Scholar] [PubMed]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Čomić, L.; Kocić, B.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Toda, S.; Shirataki, Y.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Biskup, I.; Golonka, I.; Gamian, A.; Sroka, Z. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postepy Hig. Med. Dosw. 2013, 67, 958–963. [Google Scholar] [CrossRef]
- Adomakobonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. Vitr. 2017, 40, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Adımcılar, V.; Kalaycıoğlu, Z.; Aydoğdu, N.; Dirmenci, T.; Kahraman, A.; Erim, F.B. Rosmarinic and carnosic acid contents and correlated antioxidant and antidiabetic activities of 14 Salvia species from Anatolia. J. Pharm. Biomed. Anal. 2019, 175, 112763. [Google Scholar] [CrossRef]
- Benedec, D.; Hanganu, D.; Oniga, I.; Tiperciuc, B.; Olah, N.; Raita, O.; Bischin, C.; Silaghi-Dumitrescu, R.; Vlase, L. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential. Pak. J. Pharm. Sci. 2015, 28, 2297–2303. [Google Scholar]
- Abraham, S.K.; Schupp, N.; Schmid, U.; Stopper, H. Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Mol. Nutr. Food Res. 2007, 51, 880–887. [Google Scholar] [CrossRef]
- De Oliveira, N.C.; Sarmento, M.S.; Nunes, E.A.; Porto, C.M.; Rosa, D.P.; Bona, S.R.; da Silva, J. Rosmarinic acid as a protective agent against genotoxicity of ethanol in mice. Food Chem. Toxicol. 2012, 50, 1208–1214. [Google Scholar] [CrossRef]
- Choi, Y.K.; Cho, G.; Hwang, S.; Kim, B.; Lim, J.H.; Lee, J.; Kim, H.; Kim, W.; Kim, Y. Methyleugenol reduces cerebral ischemic injury by suppression of oxidative injury and inflammation. Free Radic. Res. 2010, 44, 925–935. [Google Scholar] [CrossRef]
- Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yıldız, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health 2011, 27, 447–453. [Google Scholar] [CrossRef]
- Chari, R.V. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Seca, A.; Pinto, D. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Boyd, M.R. The NCI Human Tumor Cell Line (60-Cell) Screen. In Anticancer Drug Development Guide. Cancer Drug Discovery and Development; Teicher, B.A., Andrews, P.A., Eds.; Humana Press: Totowa, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Moon, A.; Agrawa, T.; Gupta, P.; Kondlekar, N.; Taksande, A. Anti-cancer therapy: Chlorogenic acid, gallic acid and ellagic acid in synergism. IOSR J. Pharm. Biol. Sci. 2017, 12, 48–52. [Google Scholar] [CrossRef]
- Hossan, M.S.; Rahman, S.; Bashar, A.B.M.A.; Rahmatullah, M. Rosmarinic acid: A review of its anticancer action. World J. Pharm. Pharm. Sci. 2014, 3, 57–70. [Google Scholar]
- DeFilipps, R.A. Hyssopus L. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1972; Volume 3, pp. 170–171. [Google Scholar]
- Savezni Zavod za Zdravstvenu Zaštitu. Pharmacopoea Jugoslavica, 4th ed.; Savezni Zavod za Zdravstvenu Zaštitu: Beograd, Serbia, 1984. [Google Scholar]
- McLafferty, F.W. The Wiley Registry of Mass Spectral Data, 7th ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- NIST Mass Spectrometry Data Center. NIST Mass Spectral Library ver. 05; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2005.
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Business Media: Carol Stream, IL, USA, 2012. [Google Scholar]
- International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1); ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Kukić, J.; Petrović, S.; Niketić, M. Antioxidant activity of four endemic Stachys taxa. Biol. Pharm. Bull. 2006, 29, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.Y.; Kim, H.; Kang, S.W.; Cho, H.; Kim, E.J.; Park, S.H.; Park, K.M. Antioxidant and Anti-Melanogenic Activities of Hyssopus officinalis Extracts. J. Soc. Cosmet. Sci. Korea 2016, 42, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Di Sotto, A.; Mazzanti, G.; Carbone, F.; Hrelia, P.; Maffei, F. Genotoxicity of lavender oil, linalyl acetate, and linalool on human lymphocytes in vitro. Environ. Mol. Mutagen. 2011, 52, 69–71. [Google Scholar] [CrossRef]
- Živković, L.; Čabarkapa, A.; Marčetić, M.; Kovačević, N.; Bajić, V.; Jovičić, S.; Spremo-Potparević, B. Evaluation of genotoxic and antigenotoxic properties of essential oils of Seseli rigidum Waldst. & Kit. (Apiaceae). Arch. Biol. Sci. 2016, 68, 135–144. [Google Scholar]
- Živković, L.; Bajić, V.; Dekanski, D.; Čabarkapa-Pirković, A.; Giampieri, F.; Gasparrini, M.; Mazzoni, L.; Potparević, B.S. Manuka honey attenuates oxidative damage induced by H2O2 in human whole blood in vitro. Food Chem. Toxicol. 2018, 119, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Yu, T.-W.; Phillips, B.; Schmezer, P. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutat. Res. Mol. Mech. Mutagen. 1994, 307, 261–271. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol. 2005, 101, 95–99. [Google Scholar] [CrossRef]
Sample | Plant Material Origin | Site of Collection | Geographic Coordinates | Altitude (m) | Habitat | Collection Date (dd/mm/yyyy) | Voucher Specimen | Essential Oil (EO) Yield (mL/100 g) a | MeOH Extract (E) Yield (% w/w) |
---|---|---|---|---|---|---|---|---|---|
1 | Commercial sample (Serbia) | Southeastern Serbia | N/A | N/A | N/A | N/A | N/A | 1.00 | 12.02 |
2 | Wild-growing (Montenegro) | Kuči | N 42°31′55′′ E 19°24′07′′ | 870 | rocky | 13/09/2018 | 1420263 | 0.40 | 9.48 |
3 | Wild-growing (Montenegro) | Šavnik | N 42°57′16′′ E 19°05′59′′ | 880 | rocky pasture | 19/09/2018 | 1420261 | 0.54 | 10.24 |
4 | Wild-growing (Montenegro) | Piva | N 43°9′25′′ E 18°50′46′′ | 750 | rocky | 14/09/2018 | 1420162 | 0.65 | 9.05 |
5 | Wild-growing (Montenegro) | Piperi | N 42°34′23′′ E 19°16′0.8′′ | 800 | rocky pasture | 07/09/2018 | 1420259 | 0.79 | 10.21 |
6 | Wild-growing (Montenegro) | Cuce | N 42°35′19′′ E 18°47′40′′ | 820 | rocky | 12/09/2018 | 1420260 | 0.48 | 9.64 |
Amount (%) | ||||||||
---|---|---|---|---|---|---|---|---|
tR [min] | AI * | Compound | 1EO | 2EO | 3EO | 4EO | 5EO | 6EO |
5.517 | 925 | α-Thujene | 0.00 | 0.51 | 0.00 | 1.05 | 1.44 | 0.00 |
5.706 | 932 | α-Pinene | 2.08 | 4.13 | 1.12 | 0.53 | 0.79 | 1.03 |
6.762 | 972 | Sabinene | 1.86 | 1.24 | 0.57 | 0.47 | 0.54 | 0.56 |
6.872 | 976 | β-Pinene | 6.73 | 9.13 | 16.33 | 15.79 | 9.69 | 5.48 |
7.238 | 990 | β-Myrcene | 0.93 | 0.46 | 0.46 | 0.00 | 0.43 | 0.36 |
8.343 | 1024 | p-Cymene | 0.27 | 1.92 | 0.00 | 0.00 | 0.00 | 0.28 |
8.482 | 1028 | Limonene | 7.99 | 7.99 | 16.11 | 23.81 | 21.77 | 15.43 |
8.569 | 1030 | 1,8-Cineole | 67.10 | 42.07 | 9.77 | 1.42 | 38.19 | 56.08 |
8.765 | 1036 | Z-β-Ocimene | 3.57 | 2.94 | 2.06 | 1.88 | 3.11 | 3.06 |
9.142 | 1046 | E-β-Ocimene | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
9.531 | 1057 | γ-Terpinene | 0.31 | 0.58 | 0.00 | 0.00 | 0.00 | 0.00 |
12.592 | 1138 | trans-Pinocarveol | 0.23 | 2.26 | 0.83 | 0.54 | 0.00 | 0.61 |
13.463 | 1159 | trans-Pinocamphone | 0.00 | 1.84 | 3.34 | 8.34 | 4.72 | 0.00 |
13.556 | 1162 | Pinocarvone | 0.00 | 1.20 | 3.99 | 1.67 | 0.00 | 0.41 |
14.027 | 1173 | cis-Pinocamphone | 1.15 | 5.61 | 22.75 | 14.72 | 14.54 | 0.00 |
14.961 | 1196 | Myrtenal | 0.32 | 3.71 | 1.02 | 0.66 | 0.69 | 0.80 |
20.403 | 1325 | Myrtenyl acetate | 0.00 | 1.25 | 0.00 | 0.00 | 0.00 | 0.00 |
22.856 | 1384 | β-Bourbonene | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.31 |
23.758 | 1406 | Methyl eugenol | 5.43 | 0.00 | 19.24 | 28.33 | 3.52 | 13.70 |
24.265 | 1418 | E-β-Caryophyllene | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
26.771 | 1480 | Germacrene D | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 |
Monoterpene hydrocarbons | 24.01 | 28.9 | 36.65 | 43.53 | 37.77 | 26.2 | ||
Oxygenated monoterpenes | 68.8 | 57.94 | 41.7 | 27.35 | 58.14 | 57.9 | ||
Sesquiterpene hydrocarbons | 0.87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 | ||
Phenylpropanoids | 5.43 | 0.00 | 19.24 | 28.33 | 3.52 | 13.70 | ||
Total identified | 99.11 | 86.84 | 97.59 | 99.21 | 99.43 | 98.47 |
Peak No. | tr (min) | UV λmax (nm) | ESI-MS Data (m/z) | Assignment |
---|---|---|---|---|
1 | 4.255 | 280 | 395.1 [2M-H]−, 197 [M-H]−, 153.1 | Syringic acid b |
2 | 9.107 | 218, 240, 298 sh, 326 | 707.1 [2M-H]−, 353.1 [M-H]−, 191 | Chlorogenic acid (5-O-caffeoylquinic acid) a |
3 | 10.954 | 218, 238, 298 sh, 328 | 623.1 [2M-H]−, 311.1 [M-H]−, 134.1 | Caffeoyl pentoside b |
4 | 12.087 | 218, 238, 296 sh, 326 | 735.2 [2M-H]−, 367.1 [M-H]−, 173.1 | Feruloylquinic acid b |
5 | 15.339 | 256, 266 sh, 356 | 463.1 [M-H]−, 300.1 | Quercetin O-hexoside b |
6 | 17.215 | 252, 266, 348 | 607.2 [M-H]−, 299.1, 284 | Diosmetin O-deoxyhexosyl-hexoside b |
7 | 18.461 | 286 sh, 328 | 719.1 [2M-H]−, 359 [M-H]−, 197, 161.1 | Rosmarinic acid a |
Sample | Total Phenols (mg GAE/g) | Chlorogenic Acid (mg/g) | Rosmarinic Acid (mg/g) |
---|---|---|---|
1E | 74.7 ± 0.8 c | 23.35 ± 0.2 a | 13.71 ± 0.19 d |
2E | 68.2 ± 0.8 b | 30.94 ± 0.11 d | 5.35 ± 0.02 b |
3E | 64.1 ± 1.3 a | 24.12 ± 0.11 b | 3.53 ± 0.03 a |
4E | 112.0 ± 1.6 e | 33.46 ± 0.08 e | 17.98 ± 0.25 e |
5E | 81.8 ± 0.8 d | 33.17 ± 0.1 e | 4.97 ± 0.12 b |
6E | 69.0 ± 0.3 b | 30.19 ± 0.1 c | 8.13 ± 0.04 c |
Sample | DPPH-IC50 (μg/mL) | FRAP mmol Fe2+/g |
---|---|---|
1E | 88.42 ± 3.48 d | 0.815 ± 0.012 b |
2E | 175.41 ± 2.92 e | 0.781 ± 0.012 a,b |
3E | 199.89 ± 0.60 f | 0.667 ± 0.004 a |
4E | 56.04 ± 0.19 b | 0.959 ± 0.003 c |
5E | 79.37 ± 1.51 c | 0.877 ± 0.007 b,c |
6E | 87.90 ± 0.67 d | 0.736 ± 0.023 a,b |
Rutin | 4.67 ± 1.41 a | 4.111 ± 0.0253 d |
Ascorbic acid | - | 8.181 ± 0.136 e |
HeLa | 1E | 2E | 3E | 4E | 5E | 6E | |
---|---|---|---|---|---|---|---|
IC50 | 24 h | >100 | >100 | >100 | >100 | >100 | >100 |
48 h | 22.72 ± 3.53 | 16.97 ± 2.10 | 44.38 ± 1.96 | 16.74 ± 1.43 | 25.90 ± 4.60 | 25.32 ± 7.80 | |
72 h | 19.53 ± 1.03 | 15.15 ± 1.72 | 33.43 ± 1.36 | 14.97 ± 0.78 | 18.73 ± 0.53 | 20.04 ± 5.10 | |
SI | 24 h | 0.97 | 1.52 | 1.71 | 1.31 | 1.10 | 3.61 |
48 h | 14.19 | 20.14 | 12.08 | 19.61 | 8.34 | 11.87 | |
72 h | 12.17 | 13.87 | 8.30 | 15.04 | 11.31 | 7.82 | |
GI50 | 24 h | 6.95 ±0.95 | 6.00 ± 0.34 | 98.09 ± 11.08 | 5.56 ± 0.18 | 7.67 ± 1.45 | 7.46 ± 0.99 |
48 h | 4.91 ± 0.84 | 3.49 ± 0.46 | 65.64 ± 3.66 | 2.54 ± 0.45 | 5.61 ± 1.22 | 5.75 ± 0.68 | |
72 h | 0.86 ± 0.51 | <0.3 | 59.38 ± 1.85 | <0.3 | 4.97 ± 0.54 | 4.76 ± 0.52 | |
TGI | 24 h | 16.90 ± 4.96 | 14.67 ± 0.58 | >100 | 12.91 ± 0.44 | 47.25 ± 5.66 | 27.55 ± 1.89 |
48 h | 13.60 ± 1.75 | 11.00 ± 0.56 | >100 | 9.18 ± 0.59 | 19.90 ± 4.38 | 16.77 ± 1.52 | |
72 h | 13.27 ± 1.33 | 1.69 ± 0.36 | >100 | <0.3 | 18.42 ± 3.57 | 13.63 ± 1.26 | |
LC50 | 24 h | >100 | >100 | >100 | >100 | >100 | >100 |
48 h | 61.09 ± 16.15 | 35.65 ± 1.16 | >100 | 27.07 ± 1.56 | 63.66 ± 2.30 | 41.15 ± 6.75 | |
72 h | 43.19 ± 10.03 | 26.02 ± 2.88 | >100 | 20.28 ± 1.10 | 60.65 ± 1.59 | 31.20 ± 5.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mićović, T.; Topalović, D.; Živković, L.; Spremo-Potparević, B.; Jakovljević, V.; Matić, S.; Popović, S.; Baskić, D.; Stešević, D.; Samardžić, S.; et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants 2021, 10, 711. https://doi.org/10.3390/plants10040711
Mićović T, Topalović D, Živković L, Spremo-Potparević B, Jakovljević V, Matić S, Popović S, Baskić D, Stešević D, Samardžić S, et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants. 2021; 10(4):711. https://doi.org/10.3390/plants10040711
Chicago/Turabian StyleMićović, Tijana, Dijana Topalović, Lada Živković, Biljana Spremo-Potparević, Vladimir Jakovljević, Sanja Matić, Suzana Popović, Dejan Baskić, Danijela Stešević, Stevan Samardžić, and et al. 2021. "Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae)" Plants 10, no. 4: 711. https://doi.org/10.3390/plants10040711