Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae)
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Preparation of Ethanolic Extract from Cyperus articulatus L.
2.3. Chromatographic Analysis of EECA
2.4. Mice
2.5. Murine Macrophages
2.6. Chemicals and Reagents
2.7. Analysis of Cell Viability
2.8. Arginase Activity
2.9. Antiproliferative Assay
2.10. Statistical Analysis
3. Results
3.1. Analysis of Chemical Composition of Volatile Compounds of EECA
3.2. ECCA Induces Proliferation of Peritoneal Macrophages
3.3. Arginase Acttivity (Murine Macrophages)
3.4. In Vitro Antiproliferative Activity (Human Tumor Cell Lines)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de la Cruz, M.G.; Malpartida, S.B.; Santiago, H.B.; Jullian, V.; Bourdy, G. Hot and cold: Medicinal plant uses in Quechua speaking communities in the high Andes (Callejón de Huaylas, Ancash, Perú). J. Ethnopharmacol. 2014, 155, 1093–1117. [Google Scholar] [CrossRef] [PubMed]
- Assis, F.F.V.; Silva, N.C.; Moraes, W.P.; Barata, L.E.S.; Minervino, A.H.H. Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue. Pathogens 2020, 9, 889. [Google Scholar] [CrossRef]
- De Almeida, R.N.; Agra, M.D.F.; Maior, F.N.S.; de Sousa, D. Essential Oils and Their Constituents: Anticonvulsant Activity. Molecules 2011, 16, 2726–2742. [Google Scholar] [CrossRef] [PubMed]
- Kreuger, M.R.O.; Grootjans, S.; Biavatti, M.W.; Vandenabeele, P.; D’Herde, K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: Focus on parthenolide. Anti-Cancer Drugs 2012, 23, 883–896. [Google Scholar] [CrossRef]
- Peranzoni, E.; Marigo, I.; Dolcetti, L.; Ugel, S.; Sonda, N.; Taschin, E.; Mantelli, B.; Bronte, V.; Zanovello, P. Role of arginine metabolism in immunity and immunopathology. Immunobiology 2008, 212, 795–812. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev. 2009, 8, 313–331. [Google Scholar] [CrossRef]
- Potiguara, R.; Zoghbi, M. Priprioca. Um Recurso Aromático Do Pará Museu Paraense Emílio Goeldi. Museu Paraense Emílio Goeldi. 2008. Available online: https://www.museu-goeldi.br/assuntos/publicacao/catalogo-de-publicacoes/priprioca-um-recurso-aromatico-do-para (accessed on 20 May 2021).
- Bum, E.N.; Rakotonirina, A.; Rakotonirina, S.V.; Herrling, P. Effects of Cyperus articulatus compared to effects of anticonvulsant compounds on the cortical wedge. J. Ethnopharmacol. 2003, 87, 27–34. [Google Scholar] [CrossRef]
- Rakotonirina, V.S.; Bum, E.N.; Rakotonirina, A.; Bopelet, M. Sedative properties of the decoction of the rhizome of Cyperus articulatus. Fitoterapia 2001, 72, 22–29. [Google Scholar] [CrossRef]
- Zoghbi, M.D.G.B.; Andrade, E.H.D.A.; Carreira, L.M.M.; Rocha, E.A.S. Comparison of the Main Components of the Essential Oils of “priprioca”: Cyperus articulatusvar articulates L., C. articulatusvar nodosus L., C. prolixus Kunth and C. rotundus L. J. Essent. Oil Res. 2008, 20, 42–45. [Google Scholar] [CrossRef]
- Kasper, A.A.M.; Nunes, K.M.; Barata, L.E.S. Etnofarmacologia, Propriedades Químicas e Biológicas e Importância Econômica da Priprioca Para o Estado do Pará. In Sociedade, Natureza e Desenvolvimento Na Amazônia; Minervino, A.H.H., Brasileiro, T.S.A., Eds.; Santarém Universidade Federal do Oeste do: Santarém, Brazil, 2019; Volume I, pp. 52–65. [Google Scholar]
- ANVISA. Brazilian Pharmacopoeia, 10th ed.; Brazilian Helth Surveillance Agency (ANVISA), Ed.; Brazilian Helth Surveillance Agency (ANVISA): Brasília, Brazil, 2010. Available online: www.anvisa.gov.br (accessed on 5 September 2021).
- Oh, Y.-C.; Jeong, Y.H.; Cho, W.-K.; Hwang, Y.-H.; Ma, J.Y. Inhibitory effects of Dianthi Herba ethanolic extract on inflammatory and nociceptive responses in murine macrophages and mouse models of abdominal writhing and ear edema. J. Ethnopharmacol. 2018, 211, 375–383. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Corraliza, I.; Campo, M.L.; Soler, G.; Modolell, M. Determination of arginase activity in macrophages: A micromethod. J. Immunol. Methods 1994, 174, 231–235. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Zoghbi, M.D.G.B.; Andrade, E.H.A.; Oliveira, J.; Carreira, L.M.M.; Guilhon, G.M.S. Yield and Chemical Composition of the Essential Oil of the Stems and Rhizomes ofCyperus articulatusL. Cultivated in the State of Pará, Brazil. J. Essent. Oil Res. 2006, 18, 10–12. [Google Scholar] [CrossRef]
- Nyasse, B.; Ghogomu, R.; Sondengam, T.B.L.; Martin, M.T.; Bodo, B. Mandassidione and other sesquiterpenic ketones from Cyperus articulatus. Phytochemistry 1988, 27, 3319–3321. [Google Scholar] [CrossRef]
- Sonwa, M.M. Isolation and Structure Elucidation of Essential Oil Constituents: Comparative Study of the Oils of Cyperus Alopecurides, Cyperus Papyrus and Cyperus Rotundus. 2000. Available online: https://ediss.sub.uni-hamburg.de/handle/ediss/2156 (accessed on 20 May 2021).
- Sonwa, M.M.; König, W.A. Chemical study of the essential oil of Cyperus rotundus. Phytochemistry 2001, 58, 799–810. [Google Scholar] [CrossRef]
- Rukunga, G.M.; Muregi, F.W.; Omar, S.A.; Gathirwa, J.W.; Muthaura, C.N.; Peter, M.G.; Heydenreich, M.; Mungai, G.M. Anti-plasmodial activity of the extracts and two sesquiterpenes from Cyperus articulatus. Fitoterapia 2008, 79, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Metuge, J.A.; Nyongbela, K.D.; A Mbah, J.; Samje, M.; Fotso, G.; Babiaka, S.B.; Cho-Ngwa, F. Anti-Onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L. BMC Complement. Altern. Med. 2014, 14, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaza Correa, J.M.; Vasco Gutiérrez, C.M.; Velásquez Lopera, M.M. Arginina y cáncer: Implicaciones en la regulación de la respuesta antitumoral. Iatreia 2014, 27, 63–72. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932014000100007&lng=en&nrm=iso&tlng=es (accessed on 20 May 2021).
- Zea, A.H.; Rodriguez, P.C.; Atkins, M.B.; Hernandez, C.; Signoretti, S.; Zabaleta, J.; McDermott, D.; Quiceno, D.; Youmans, A.; O’Neill, A.; et al. Arginase-Producing Myeloid Suppressor Cells in Renal Cell Carcinoma Patients: A Mechanism of Tumor Evasion. Cancer Res. 2005, 65, 3044–3048. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, P.C.; Quiceno, D.G.; Ochoa, A.C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 2006, 109, 1568–1573. [Google Scholar] [CrossRef] [Green Version]
- HogenEsch, H.; Nikitin, A.Y. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. J. Control. Release 2012, 164, 183–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, T.; Hara, A.; Inoue, M.; Honda, J.; Imai, Y.; Oizumi, K.; Yokoyama, M.M. Flow cytometric measurement of NK cell cytotoxicity. J. Clin. Lab. Immunol. 1991, 36, 39–43. Available online: https://pubmed.ncbi.nlm.nih.gov/1668860/ (accessed on 24 June 2021). [PubMed]
- Chaudhary, A.; Sharma, U.; Vig, A.P.; Singh, B.; Arora, S. Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem. 2014, 148, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Michalkova, R.; Mirossay, L.; Gazdova, M.; Kello, M.; Mojzis, J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers 2021, 13, 2730. [Google Scholar] [CrossRef] [PubMed]
- Cappadone, C.; Mandrone, M.; Chiocchio, I.; Sanna, C.; Malucelli, E.; Bassi, V.; Picone, G.; Poli, F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. Plants 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Kaigongi, M.M.; Lukhoba, C.W.; Yaouba, S.; Makunga, N.P.; Githiomi, J.; Yenesew, A. In Vitro Antimicrobial and Antiproliferative Activities of the Root Bark Extract and Isolated Chemical Constituents of Zanthoxylum paracanthum Kokwaro (Rutaceae). Plants 2020, 9, 920. [Google Scholar] [CrossRef]
- Vladić, J.; Ćebović, T.; Vidović, S.; Jokić, S. Evaluation of Anticancer Activity of Satureja montana Supercritical and Spray-Dried Extracts on Ehrlich’s Ascites Carcinoma Bearing Mice. Plants 2020, 9, 1532. [Google Scholar] [CrossRef]
- Tylińska, B.; Wiatrak, B. Bioactive Olivacine Derivatives—Potential Application in Cancer Therapy. Biology 2021, 10, 564. [Google Scholar] [CrossRef]
- Mazzio, E.A.; Soliman, K.F.A. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother. Res. 2008, 23, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Riva, D.; Barison, A.; Stefanello, M.E.A.; Poliquesi, C.B.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Salvador, M.J. Estudo químico de Sinningia allagophylla guiado por testes de atividade antiproliferativa. Química Nova 2012, 35, 974–977. [Google Scholar] [CrossRef] [Green Version]
tR (min) | Identification | % * |
---|---|---|
24.22 | Isocorimbolone | 25.38 |
19.88 | Mustakone | 23.89 |
21.43 | 7-isopropenil-1,4a-dimetil-4,4a,5,6,7,8-hexahidro-2(3H)-naftalenona | 18.40 |
23.56 | Corimbolone | 10.86 |
20.53 | Aristolone | 6.69 |
22.51 | Mandassidione | 5.76 |
20.30 | Cyperontundone | 5.48 |
6.29 | Undecan | 3.54 |
Cell Lines | EECA GI50 (µg/mL) | EECA TGI (µg/mL) |
---|---|---|
U251 (human tumor cell lines) | 37.29 | 627 |
MCF7 (human breast adenocarcinoma) | 36.78 | 100 |
NCI-H460 (human lung carcinoma) | 41.51 | 135 |
HaCat (human normal skin cell) | 26.72 | >250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, É.B.S.d.; Barata, L.E.S.; Arévalo, M.R.; Vieira, L.Q.; Castro, W.; Ruiz, A.L.T.G.; Torre, A.D.; Castro, K.C.F.; Sartoratto, A.; Baratto, L.C.; et al. Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae). Plants 2021, 10, 2084. https://doi.org/10.3390/plants10102084
Silva ÉBSd, Barata LES, Arévalo MR, Vieira LQ, Castro W, Ruiz ALTG, Torre AD, Castro KCF, Sartoratto A, Baratto LC, et al. Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae). Plants. 2021; 10(10):2084. https://doi.org/10.3390/plants10102084
Chicago/Turabian StyleSilva, Éden Bruno Sousa da, Lauro Euclides Soares Barata, Michelly Rios Arévalo, Leda Quercia Vieira, Waldionê Castro, Ana Lúcia Tasca Gois Ruiz, Adriana Della Torre, Kelly Christina Ferreira Castro, Adilson Sartoratto, Leopoldo C. Baratto, and et al. 2021. "Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae)" Plants 10, no. 10: 2084. https://doi.org/10.3390/plants10102084
APA StyleSilva, É. B. S. d., Barata, L. E. S., Arévalo, M. R., Vieira, L. Q., Castro, W., Ruiz, A. L. T. G., Torre, A. D., Castro, K. C. F., Sartoratto, A., Baratto, L. C., de Santana, M. B., Minervino, A. H. H., & Moraes, W. P. (2021). Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae). Plants, 10(10), 2084. https://doi.org/10.3390/plants10102084