Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus
Abstract
:1. Introduction
2. Results
2.1. Plant Extraction Yields
2.2. Cell Viability Assay
2.3. FACS Analysis
2.4. Live/Dead Staining by Confocal Laser Scanning Microscopy (CLSM)
2.5. Determination of Extracts Total Phenolic Content by Folin Ciocalteu (FC) Assay
2.6. DPPH Antioxidant Assay
2.7. ROS-Glo H2O2 Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material Collection
4.3. Plant Extraction
4.4. Cell Culture
4.5. Antiproliferative Assay: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium Bromide Reduction (MTT)
4.6. Fluorescence-Activated Cell Sorting (FACS) Analysis Using Fluorescein Diacetate and Propidium Iodide
- (1)
- vehicle control: 1% methanol in a cell culture medium.
- (2)
- non-treated, non-stained cell control was included in the experiment to gate the desired population and to calibrate the FACS.
- (3)
- non-treated cells stained with FD only to calibrate living cells.
- (4)
- non-treated cells that were fixed with 200 μL of ethanol for 10 min, and then stained with PI only to calibrate non-viable cells.
- (5)
- non-treated cells stained with both PI/FD to calibrate both stains.
4.7. Confocal Laser Scanning Microscopy (CLSM) Analysis Following Live/Dead Staining by Fluorescein Diacetate and Propidium Iodide
4.8. Total Phenolic Content by Folin Ciocalteu (FC) Assay
4.9. Acellular Antioxidant Activity: 1,1-Diphenyl-2-picrylhydrazyl (DPPH)
4.10. Cellular Antioxidant Activity: ROS-Glo H2O2 Assay with HaCaT Cells
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saadabi, A.M.A. Antifungal activity of some Saudi plants used in traditional medicine. Asian J. Plant Sci. 2006, 5, 907–909. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, M.; Al-Oqail, M.; Al-Sheddr, E.; Al-Rehaily, A.; Rahman, M. Diversity of medicinal plants in the flora of Saudi Arabia 3: An inventory of 15 plant families and their conservation management. Int. J. Environ. 2014, 3, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Al-Sodany, Y.M.; Bazaid, S.A.; Mosallam, H.A. Medicinal plants in Saudi Arabia: I. Sarrwat mountains at Taif. Acad. J. Plant Sci. 2013, 6, 134–145. [Google Scholar]
- Al-Laith, A.A.; Alkhuzai, J.; Freije, A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab. J. Chem. 2015, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tawaha, K.A. Cytotoxicity evaluation of Jordanian wild plants using brine shrimp lethality test. J. Appl. Sci. 2006, 8, 12–17. [Google Scholar]
- Almehdar, H.; Abdallah, H.M.; Osman, A.M.M.; Abdel-Sattar, E.A. In vitro cytotoxic screening of selected Saudi medicinal plants. J. Nat. Med. 2012, 66, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Gamal, E.E.G.; Khalifa, S.A.K.; Gameel, A.S.; Emad, M.A. Traditional medicinal plants indigenous to Al-Rass province, Saudi Arabia. J. Med. Plants Res. 2010, 4, 2680–2683. [Google Scholar] [CrossRef] [Green Version]
- Bnyan, I.A.; Abid, A.T.; Obied, H.N. Antibacterial Activity of Carvacrol against Different Types of Bacteria. J. Nat. Sci. Res. 2014, 7, 48–52. [Google Scholar]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.A.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol. 2014, 155, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Nehdi, I.A.; Sbihi, H.; Tan, C.P.; Al-Resayes, S.I. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chem. 2013, 136, 348–353. [Google Scholar] [CrossRef]
- Abdel-Hassan, I.A.; Abdel-Barry, J.A.; Tariq Mohammed, S. The hypoglycemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J. Ethnopharmacol. 2000, 71, 325–330. [Google Scholar] [CrossRef]
- Huseini, H.; Darvishzadeh, F.; Heshmat, R.; Jafariazar, Z.; Raza, M.; Larijani, B. The clinical investigation of citrullus colocynthis(L.) schrad fruit in treatment of Type II diabetic patients: A randomized, double blind, placebo-controlled clinical trial. Phytother. Res. 2009, 23, 1186–1189. [Google Scholar] [CrossRef]
- Al-Ghaithi, F.; El-Ridi, M.R.; Adeghate, E.; Amiri, M.H. Biochemical effects of Citrullus colocynthis in normal and diabetic rats. Mol. Cell. Biochem. 2004, 261, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, A.; Nabipour, I. The hypolipidemic effect of Citrullus colocynthis on patients with hyperlipidemia. Pak. J. Biol. Sci. 2010, 13, 1202–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.A.; Alian, A.; Elmahi, H.A. Phytochemical analysis of some chemical metabolites of colocynth plant (Citrullus colocynths l) and its activities as antimicrobial and antiplasmodial. J. Basic Appl. Sci. Res. 2013, 3, 228–236. [Google Scholar]
- Yin, D.; Wakimoto, N.; Xing, H.; Lu, D.; Huynh, T.; Wang, X.; Black, K.L.; Koeffler, H.P. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int. J. Cancer 2008, 123, 1364–1375. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patil, S.D. Effects of alkaloid rich extract of Citrullus colocynthis fruits on Artemia Salina and human cancerous (MCF-7 and HEPG-2) cells. J. PharmaSciTech 2012, 1, 15–19. [Google Scholar]
- Kumar, S.; Kumar, D.; Jusha, M.; Saroha, K.; Singh, N.; Vashishta, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008, 58, 215–221. [Google Scholar] [CrossRef]
- Volpato, G.; Kourková, P.; Zelený, V. Healing war wounds and perfuming exile: The use of vegetal, animal, and mineral products for perfumes, cosmetics, and skin healing among Sahrawi refugees of Western Sahara. J. Ethnobiol. Ethnomed. 2012, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Christian, A.G.; Akanimo, E.G.; Ahunna, A.G.; Nwakaego, E.M.; Chimsorom, C.K. Antimalarial potency of the methanol leaf extract of Maerua crassifolia Forssk (Capparaceae). Asian Pac. J. Trop. Dis. 2014, 4, 35–39. [Google Scholar] [CrossRef]
- Christian, A.G.; Uwaezuoke, N.J.; Nwadike, K.I. Analgesic, anti-inflammatory and antipyretic activities of methanolic leaf extract of Maerua crassifolia. J. Coast. Life Med. 2016, 4, 225–230. [Google Scholar]
- Ckilaka, K.C.; Akuodor, G.C.; Akpan, J.L.; Ogiji, E.D.; Eze, C.O.; Ezeokpo, B.C. Antibacterial and antioxidant activities of methanolic leaf extract of Maerua crassifolia. J. Appl. Pharm. Sci. 2015, 5, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Chaib, F.; Sahki, R.; Sabaou, N.; Rached, W.; Bennaceur, M. Phytochemical investigation and biological activities of some Saharan plants from Hoggar. J. Agric. Sci. 2015, 7, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.H.; Bashir, A.K.; Tanira, M.O.M.; Medvedev, A.E.; Jarrett, N.; Sandler, M.; Glover, V. Effect of extract of Rhazya stricta, a traditional medicinal plant, on rat brain tribulin. Pharmacol. Biochem. Behav. 1998, 59, 671–675. [Google Scholar] [CrossRef]
- Baeshen, M.N.; Al-Attas, S.G.; Ahmed, M.M.; Hanafy, A.A.E.M.E.; Anwar, Y.; Alotibi, I.A.; Baeshen, N.A. The effect of Rhazya stricta aqueous leaves extract on MRSA genotypes in Jeddah province. Biotechnol. Biotechnol. Equip. 2016, 30, 368–374. [Google Scholar] [CrossRef]
- Marwat, S.K.; Rehman, F.; Usman, K.; Shah, S.S.; Anwar, N.; Ullah, I. A review of phytochemistry, bioactivities and ethno medicinal uses of Rhazya stricta Decsne (Apocynaceae). Afr. J. Microbiol. Res. 2012, 6, 1629–1641. [Google Scholar]
- Tanira, M.O.M.; Ali, B.H.; Bashir, A.K.; Chandranath, I. Some pharmacologic and toxicologic studies on Rhazya stricta Decne in rats, mice and rabbits. Gen. Pharmacol. 1996, 27, 1261–1267. [Google Scholar] [CrossRef]
- Abadi, F.J.R.; Abdulaziz, A.M.; Hadhoud, A.A.; Baeshin, N.A.; Qari, S.H.; Alhejin, A.M. An epidemiological survey and evaluation of the antimicrobial growth effect of Rhazya stricta (Decne) leaves extract on different genotypes of Neisseria meningitides. Egypt. J. Med Microbiol. 2011, 20, 77–86. [Google Scholar]
- Khan, S.; Khan, G.M. In vitro antifungal activity of Rhazya stricta. Pak. J. Pharm. Sci. 2007, 20, 279–284. [Google Scholar]
- Ksiksi, T.; Palakkott, A.R.; Ppoyil, S.B.T. Tribulus arabicus and Tribulus macropterus are comparable to Tribulus terrestris: An antioxidant assessment. Curr. Bioact. Compd. 2017, 13, 82–87. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Abdel-Sattar, E.; Harraz, F.M.; Ghareib, S.A. Antihyperglycemic and antihyperlipidemic effects of the methanol extracts of Cleome ramosissima Parl., Barleria bispinosa (Forssk.) Vahl. and Tribulus macropterus Boiss. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hameed, E.S.; El-Nahas, H.A.; El-Wakil, E.A.; Ahmed, W.S. Cytotoxic cholestane and pregnane glycosides from Tribulus macropterus. Z. Nat. Sect. C J. Biosci. 2007, 62, 319–325. [Google Scholar] [CrossRef]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- O’Donovan, M. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis 2012, 27, 615–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noipa, T.; Srijaranai, S.; Tuntulani, T.; Ngeontae, W. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food Res. Int. 2011, 44, 798–806. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K. Adenophora remotiflora protects human skin keratinocytes against UVB-induced photo-damage by regulating antioxidative activity and MMP-1 expression. Nutr. Res. Pract. 2016, 10, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuete, V.; Fankam, A.G.; Wiench, B.; Efferth, T. Cytotoxicity and modes of action of the methanol extracts of six Cameroonian medicinal plants against multidrug-resistant tumor cells. Evid.-Based Complementary Altern. Med. 2013, 2013, 285903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind. Crop. Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Bukhari, N.A.; Al-Otaibi, R.A.; Ibhrahim, M.M. Phytochemical and taxonomic evaluation of Rhazya stricta in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Long, L.H.; Hoi, A.; Halliwell, B. Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch. Biochem. Biophys. 2010, 501, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Tse, W.P.; Che, C.T.; Liu, K.; Lin, Z.X. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J. Ethnopharmacol. 2006, 108, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Sandjo, L.P.; Wiench, B.; Efferth, T. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J. Ethnopharmacol. 2013, 149, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, B.; De Kock, M.; Klaasen, J.; Rahiman, F. In vitro comparison of the anti-proliferative effects of Galenia africana on human skin cell lines. Sci. Pharm. 2021, 89, 12. [Google Scholar] [CrossRef]
- Masuda, T.; Oyama, Y.; Yonemori, S.; Takeda, Y.; Yamazaki, Y.; Mizuguchi, S.; Nakata, M.; Tanaka, T.; Chikahisa, L.; Inaba, Y.; et al. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: Isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin. Phytother. Res. 2002, 16, 353–358. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Wang, C.Z.; Mehendale, S.R.; Yuan, S. Commonly used antioxidant botanicals: Active constituents and their potential role in cardiovascular illness. Am. J. Chin. Med. 2007, 35, 543–558. [Google Scholar] [CrossRef]
- Moldovan, Z.; Buleandrǎ, M.; Oprea, E.; Mnea, Z. Studies on chemical composition and antioxidant activity of Rudbeckia triloba. J. Anal. Methods Chem. 2017, 3407312, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T.R. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Liu, Y.; Peterson, D.A.; Kimura, H.; Schubert, D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 2002, 69, 581–593. [Google Scholar] [CrossRef]
- Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. [Google Scholar] [CrossRef]
- Jones, K.H.; Senft, J.A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 1985, 33, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.M. Improved Topical Therapeutic Systems Based on Co-Drugs. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2008. [Google Scholar]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Varricchio, C.; Beirne, K.; Heard, C.; Newland, B.; Rozanowska, M.; Brancale, A.; Votruba, M. The ying and yang of idebenone: Not too little, not too much - cell death in NQO1 deficient cells and the mouse retina. Free Radic. Biol. Med. 2020, 152, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Flattery-O’Brien, J.A.; Dawes, I.W. Hydrogen Peroxide Causes RAD9—Dependent Cell Cycle Arrest in G 2 in Saccharomyces cerevisiae whereas Menadione Causes G 1 Arrest Independent of RAD9 Function. J. Biol. Chem. 1998, 273, 8564–8571. [Google Scholar]
- Loor, G.; Kondapalli, J.; Schriewer, J.; Chandel, N.; Vanden Hoek, T.; Schumacker, P. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic. Biol. Med. 2010, 49, 1925–1936. [Google Scholar] [CrossRef] [Green Version]
Extract | Yield |
---|---|
Aizoon canariense | 5.59% |
Citrullus colocynthis | 8.65% |
Maerua crassifolia | 4.43% |
Rhazya stricta | 12.18% |
Tribulus macropterus | 5.26% |
Plant Extract | IC50 µg/mL | |
---|---|---|
Day 5 | Day 7 | |
Aizoon canariense | IC50 > 200 | IC50 > 200 |
Citrullus colocynthis | 17.32 | 16.91 |
Maerua crassifolia | IC50 > 200 | IC50 > 200 |
Rhazya stricta | 175 | 105.3 |
Tribulus macropterus | IC50 > 200 | IC50 > 200 |
Extract | TPC (mg GAE/g Dry Extract) |
---|---|
Aizoon canariense | 7.85 ± 2.48 |
Citrullus colocynthis | 37 ± 1.55 |
Maerua crassifolia | 24.89 ± 1.06 |
Rhazya stricta | 64.04 ± 2.84 |
Tribulus macropterus | 21.97 ± 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yonbawi, A.R.; Abdallah, H.M.; Alkhilaiwi, F.A.; Koshak, A.E.; Heard, C.M. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. Plants 2021, 10, 2073. https://doi.org/10.3390/plants10102073
Yonbawi AR, Abdallah HM, Alkhilaiwi FA, Koshak AE, Heard CM. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. Plants. 2021; 10(10):2073. https://doi.org/10.3390/plants10102073
Chicago/Turabian StyleYonbawi, Ahmed R., Hossam M. Abdallah, Faris A. Alkhilaiwi, Abdulrahman E. Koshak, and Charles M. Heard. 2021. "Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus" Plants 10, no. 10: 2073. https://doi.org/10.3390/plants10102073
APA StyleYonbawi, A. R., Abdallah, H. M., Alkhilaiwi, F. A., Koshak, A. E., & Heard, C. M. (2021). Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. Plants, 10(10), 2073. https://doi.org/10.3390/plants10102073