New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytotoxicity Assay
2.2. Statistical Analysis
2.3. Plant Growth in Contaminated Soil
2.4. Determination of Photosynthetic Pigments in Plants
2.5. Sample Digestion and Metal Content Determination
2.6. Evaluation of Phytoremediation Performances
3. Results
3.1. Phytotoxicity Test
3.1.1. Cadmium and Lead Effects on Brassica napus L. Seeds Germination
3.1.2. Cadmium and Lead Effects on Brassica napus L. Plant Growth
3.2. Plant Growth in Contaminated Soil
3.2.1. Lead and Cadmium Effects on the Contents of Photosynthetic Pigments
3.2.2. Lead and Cadmium Accumulation in Root and Shoot of Brassica napus L.
3.2.3. Phytoremediation Potential of Brassica napus L.
4. Discussion
4.1. Lead and Cadmium Induced Phytotoxic Effects
4.2. Phytoremediation Potential
5. Conclusions
- The first negative effects of metal stress on Brassica napus L. were seen during the germination test performed in Petri dishes: at the highest concentration of the lead and cadmium treatment (with solutions of 300 mg/L), B. napus L. performed the lowest germination degree (a GD% of 56.67% and 43.33%, respectively) compared to the control sample;
- At concentrations of Cd(II) in the solution between 25 and 300 mg/L, the plant radicle and hypocotyl lengths of the seedlings are significantly shorter than those of the control sample, whereas, in the case of the lead treatments, it was observed that, at lower concentrations, the mean of the radicle and hypocotyl lengths are higher than the mean of the control sample, and start to decrease at concentrations of treating solutions- higher than 100 mg/L Pb(II);
- In soil pot experiments, the length of the plant was not significantly affected under the stress of metals. However, when testing lead and cadmium effects on the contents of photosynthetic pigments, we observed that important changes in the chlorophyll a/chlorophyll b ratio, total chlorophyll and carotenoids content appeared. We also observed a slight decrease in the chlorophyll pigment content and a good tolerance of lead ions by rapeseed plants. This was not the same in the case of the cadmium treatment, since a more evident quantitative decrease in the chlorophyll and carotenoid pigments with an increase in the concentration of the contaminant was obtained. It seems that cadmium is more toxic to the plant compared to lead;
- The accumulation of Pb and Cd in Brassica napus L. roots and shoots increased, along with the increase in their concentration in soil. The accumulated concentration of lead and cadmium was higher in roots compared to shoots;
- For both metals and for each treatment, a TF < 1 indicates an ineffective metal transfer from root to shoot. This means that, under tested conditions, Brassica napus L. is not a metal hyperaccumulator and thus is not suitable for phytoextraction. However, rapeseed can be considered a tolerant plant and a good candidate for Pb and Cd accumulation and the phytostabilization of contaminated soil. The results are valid for the soil considered and under the experimental conditions adopted.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus Annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Ijah, U.J.J.; Abioye, O.P. Phytoremediation of lead polluted soil by Glycine Max L. Appl. Environ. Soil Sci. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ungureanu, T.; Iancu, G.O.; Pintilei, M.; Chicoș, M.M. Spatial distribution and geochemistry of heavy metals in soils: A case study from the NE area of Vaslui county, Romania. J. Geochem. Explor. 2017, 176, 20–32. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Szatmári, G.; Pásztor, L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 2016, 565, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Velea, T.; Gherghe, L.; Predica, V.; Krebs, R. Heavy metal contamination in the vicinity of an industrial area near Bucharest. Environ. Sci. Pollut. Res. 2009, 16, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.; Ray, S.; Kim, K.-H.; Yoon, H.-O.; Jeon, E.-C.; Kim, Y.S.; Cho, Y.-S.; Yun, S.-T.; Brown, R.J.C. Current status of trace metal pollution in soils affected by industrial activities. Sci. World J. 2012, 2012, 916705. [Google Scholar] [CrossRef] [Green Version]
- Sobariu, D.L.; Fertu, D.I.T.; Diaconu, M.; Pavel, L.V.; Hlihor, R.-M.; Drăgoi, E.N.; Curteanu, S.; Lenz, M.; Corvini, P.F.-X.; Gavrilescu, M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol. 2017, 39, 125–134. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Islam, E.; Yang, X.; Li, T.; Liu, D.; Jin, X.; Meng, F. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 2007, 147, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Hlihor, R.-M.; Apostol, L.C.; Smaranda, C.; Simion, I.M.; Fortuna, M.E.; Diaconu, M.; Bulgariu, L.; Gavrilescu, M. Target Compounds and Pollutants, Biosorbents and Bioaccumulators. In Biosorption and Bioaccumulation: Principles and Applications in Environmental Bioremediation; Gavrilescu, M., Ed.; Politehnium Publishing House: Iasi, Romania, 2016. [Google Scholar]
- IARC. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry; Centre International de Recherche sur le Cancer, Ed.; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1993; ISBN 978-92-832-1258-4. [Google Scholar]
- World Health Organization. Exposure to cadmium: A major public health concern. In Preventing Disease through Healthy Environments; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Steenland, K.; Boffetta, P. Lead and Cancer in Humans: Where Are We Now? Am. J. Ind. Med. 2000, 38, 295–299. [Google Scholar] [CrossRef]
- ATSDR. What Is the Substance Priority List (SPL)? Agency for Toxic Substances and Disease Registry, ATSDR: Atlanta, GA, USA, 2019. [Google Scholar]
- Hou, J.; Liu, G.-N.; Xue, W.; Fu, W.-J.; Liang, B.-C.; Liu, X.-H. Seed Germination, Root Elongation, Root-Tip Mitosis, and Micronucleus Induction of Five Crop Plants Exposed to Chromium in Fluvo-Aquic Soil: Phytotoxicity Effect of Chromium on Crop Plants. Environ. Toxicol. Chem. 2014, 33, 671–676. [Google Scholar] [CrossRef]
- Benáková, M.; Ahmadi, H.; Dučaiová, Z.; Tylová, E.; Clemens, S.; Tůma, J. Effects of Cd and Zn on Physiological and Anatomical Properties of Hydroponically Grown Brassica Napus Plants. Environ. Sci. Pollut. Res. 2017, 24, 20705–20716. [Google Scholar] [CrossRef]
- Becze, A.; Vincze, É.-B.; Varga, H.-M.; Gyöngyvér, M. Effect of Plant Growth Promoting Rhizobacteria. Environ. Eng. Manag. J. 2021, 20, 547–557. [Google Scholar]
- Landis, W.; Sofield, R.; Yu, M.-H.; Landis, W.G.; Yu, M.-H. Introduction to Environmental Toxicology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-1-4200-5658-7. [Google Scholar]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Jamil, A. Effect of Cadmium on Seed Germination and Seedling Growth of Four Wheat (Triticum Aestivum L.) Cultivars. Pak. J. Bot. 2012, 44, 1569–1574. [Google Scholar]
- Cozma, P.; Asiminicesei, D.-M.; Hlihor, R.-M.; Rosca, M.; Gavrilescu, M. Influence of Cadmium and Lead Ions Toxicity on Lettuce Seeds Germination: A Preliminary Analysis. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; Institute of Electrical and Electronics Engineers (IEEE): Iasi, Romania, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Kuramshina, Z.M.; Smirnova, Y.V.; Khairullin, R.M. Cadmium and Nickel Toxicity for Sinapis Alba Plants Inoculated with Endophytic Strains of Bacillus Subtilis. Russ. J. Plant Physiol. 2018, 65, 269–277. [Google Scholar] [CrossRef]
- Guo, H.; Hong, C.; Chen, X.; Xu, Y.; Liu, Y.; Jiang, D.; Zheng, B. Different Growth and Physiological Responses to Cadmium of the Three Miscanthus Species. PLoS ONE 2016, 11, e0153475. [Google Scholar] [CrossRef] [Green Version]
- Rascio, N.; Navari-Izzo, F. Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Gao, Q.; Du, H.; Zhao, Q.; Ren, J. Growing, Physiological Responses and Cd Uptake of Corn (Zea Mays L.) under Different Cd Supply. Chem. Speciat. Bioavailab. 2017, 29, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Molnárová, M.; Fargašová, A. Relationship between Various Physiological and Biochemical Parameters Activated by Cadmium in Sinapis Alba L. and Hordeum Vulgare L. Ecol. Eng. 2012, 49, 65–72. [Google Scholar] [CrossRef]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Effect of Cadmium and Lead on Growth, Biochemical Parameters and Uptake in Lemna Polyrrhiza L. Plant Soil Environ. 2008, 54, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-19112-1. [Google Scholar]
- Hlihor, R.M.; Roşca, M.; Tavares, T.; Gavrilescu, M. The Role of Arthrobacter Viscosus in the Removal of Pb(II) from Aqueous Solutions. Water Sci. Technol. 2017, 76, 1726–1738. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 1–31. [Google Scholar] [CrossRef]
- Talebi, S.; Kalat, S.M.N.; Darban, A.L.S. The Study Effects of Heavy Metals on Germination Characteristics and Proline Content of Triticale. Int. J. Farming Allied Sci. 2014, 3, 1080–1087. [Google Scholar]
- Lee, K.K.; Cho, H.S.; Moon, Y.C.; Ban, S.J.; Kim, J.Y. Cadmium and Lead Uptake Capacity of Energy Crops and Distribution of Metals within the Plant Structures. KSCE J. Civ. Eng. 2013, 17, 44–50. [Google Scholar] [CrossRef]
- Cozma, P.; Hlihor, R.-M.; Apostol, L.C.; Gavrilescu, M. Chapter 7. Biosystems and Bioreactors for Biosorption and Bioaccumulation. In Biosorption and Bioaccumulation: Principles and Applications in Environmental Bioremediation; Gavrilescu, M., Ed.; Politehnium Publishing House: Iasi, Romania, 2016. [Google Scholar]
- Visioli, G.; Conti, F.D.; Gardi, C.; Menta, C. Germination and Root Elongation Bioassays in Six Different Plant Species for Testing Ni Contamination in Soil. Bull. Environ. Contam. Toxicol. 2014, 92, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, Q.; Sun, T.; Ma, L.Q.; Wang, S. Growth Responses of Three Ornamental Plants to Cd and Cd–Pb Stress and Their Metal Accumulation Characteristics. J. Hazard. Mater. 2008, 151, 261–267. [Google Scholar] [CrossRef]
- Szczygłowska, M.; Piekarska, A.; Konieczka, P.; Namieśnik, J. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes. Int. J. Mol. Sci. 2011, 12, 7760–7771. [Google Scholar] [CrossRef] [Green Version]
- Drab, M.; Greinert, A.; Kostecki, J. Seed Germination of Selected Plants under the Influence of Heavy Metals. Civ. Environ. Eng. Rep. 2011, 7, 47–57. [Google Scholar]
- El Rasafi, T.; Nouri, M.; Bouda, S.; Haddioui, A. The Effect of Cd, Zn and Fe on Seed Germination and Early Seedling Growth of Wheat and Bean. Ekológia Bratisl. 2016, 35, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ. Eng. Manag. J. 2008, 7, 547–558. [Google Scholar] [CrossRef]
- Angelova, V.R.; Ivanova, R.I.; Todorov, J.M.; Ivanov, K.I. Potential of Rapeseed (Brassica Napus L.) for Phytoremediation of Soils Contaminated with Heavy Metals. J. Environ. Prot. Ecol. 2017, 18, 468–478. [Google Scholar]
- Romih, N.; Grabner, B.; Lakota, M.; Ribarič-Lasnik, C. Distribution of Cd, Pb, Zn, Mo, and s in juvenile and mature Brassica napus L. var. napus. Int. J. Phytoremediat. 2012, 14, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, P.; Gusiatin, Z.M.; Cretescu, I. Phytoextraction of Cd and Zn as Single or Mixed Pollutants from Soil by Rape (Brassica napus). Environ. Sci. Pollut. Res. 2016, 23, 10693–10701. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiecka, A.; Zamorska-Wojdyła, D. The Bioaccumulation of Heavy Metals in Brassica Napus L. in the Area around Turów Power Station, Poland. E3S Web Conf. 2017, 17, 00065. [Google Scholar] [CrossRef] [Green Version]
- Turan, M.; Esringü, A. Phytoremediation Based on Canola (Brassica Napus L.) and Indian Mustard (Brassica Juncea L.) Planted on Spiked Soil by Aliquot Amount of Cd, Cu, Pb, and Zn. Plant Soil Environ. 2008, 53, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.H.; Luo, Y.M.; Xing, X.R.; Christie, P. EDTA-Enhanced Phytoremediation of Heavy Metal Contaminated Soil with Indian Mustard and Associated Potential Leaching Risk. Agric. Ecosyst. Environ. 2004, 102, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bai, J.; Wang, J.; Le, S.; Wang, M.; Zhao, Y. Variations in Cadmium Accumulation and Distribution among Different Oilseed Rape Cultivars in Chengdu Plain in China. Environ. Sci. Pollut. Res. 2019, 26, 3415–3427. [Google Scholar] [CrossRef] [PubMed]
- Mourato, M.; Moreira, I.; Leitão, I.; Pinto, F.; Sales, J.; Martins, L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Szulc, P.M.; Kobierski, M.; Majtkowski, W. Evaluation of the Use of Spring Rapeseed in Phytoremediation of Soils Contaminated with Trace Elements and Their Effect on Yield Parameters. Plant Breed. Seed Sci. 2014, 69, 81–95. [Google Scholar] [CrossRef]
- Ministry Order (MO). No. 756 from 3 November 1997 for Approval of Regulation Concerning Environmental Pollution Assessment. 1997. (In Romanian). Available online: http://legislatie.just.ro/Public/DetaliiDocument/13572 (accessed on 20 May 2021).
- Ministry of the Environment Government Decree on the Assessment of Soil Contamination and Remediation Needs 214/2007. 2007. Available online: https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf (accessed on 20 September 2021).
- WHO. Permissible Limits of Heavy Metals in Soil and Plants 1996; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Cai, K.; Yu, Y.; Zhang, M.; Kim, K. Concentration, Source, and Total Health Risks of Cadmium in Multiple Media in Densely Populated Areas, China. Int. J. Environ. Res. Public. Health 2019, 16, 2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munteanu, L.S.; Borcean, I.; Roman, G.V.; Axinte, M. Phytotechnics; “Ion Ionescu de la Brad” University Publishing House: Iasi, Romania, 2003. (In Romanian) [Google Scholar]
- Drozdova, I.; Alekseeva-Popova, N.; Dorofeyev, V.; Bech, J.; Belyaeva, A.; Roca, N. A Comparative Study of the Accumulation of Trace Elements in Brassicaceae Plant Species with Phytoremediation Potential. Appl. Geochem. 2019, 108, 104377. [Google Scholar] [CrossRef]
- Ginneken, L.V.; Meers, E.; Guisson, R.; Ruttens, A.; Elst, K.; Tack, F.M.G.; Vangronsveld, J.; Diels, L.; Dejonghe, W. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J. Environ. Eng. Landsc. Manag. 2007, 15, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Arnold Tatu, G.L.; Vladut, N.V.; Voicea, I.; Vanghele, N.A.; Pruteanu, M.A. Removal of Heavy Metals from a Contaminated Soil Using Phytoremediation. MATEC Web Conf. 2020, 305, 00061. [Google Scholar] [CrossRef]
- Damian, F.; Jelea, S.-G.; Lăcătușu, R.; Mihali, C. The treatment of soil polluted with heavy metals using the Sinapis alba L. and organo zeolitic amendment. Carpathian J. Earth Environ. Sci. 2019, 14, 409–422. [Google Scholar] [CrossRef]
- Stancu Pancu, T. Geochemical Studies and Mineralogical Transformations Results from Secondary Processes of Mining and Remediation Technologies Areas Polluted with Heavy and/or Rare Metals in Zlatna Area. Ph.D. Thesis, Faculty of Geology and Geophysics, The University of Bucharest, Bucharest, Romania, 2013. (In Romanian). [Google Scholar]
- Diaconu, M.; Pavel, L.V.; Hlihor, R.-M.; Rosca, M.; Fertu, D.I.; Lenz, M.; Corvini, P.X.; Gavrilescu, M. Characterization of Heavy Metal Toxicity in Some Plants and Microorganisms—A Preliminary Approach for Environmental Bioremediation. New Biotechnol. 2020, 56, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Tenea, A.G.; Vasile, G.G.; Dinu, C.; Gheorghe, S.; Pascu, L.F.; Mureseanu, M.; Ene, C. Behavior of Cd Accumulation in Sinapis Alba L. in the Presence of Essential Elements (Ca, Mg, Fe, Zn, Mn, Cu, Ni). Rev. Chim. 2020, 71, 378–389. [Google Scholar] [CrossRef]
- Russo, V.M.; Bruton, B.D.; Sams, C.E. Classification of Temperature Response in Germination of Brassicas. Ind. Crops Prod. 2010, 31, 48–51. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology. Plant Cell Membranes; Elsevier-Academic Press: New York, NY, USA, 1987; Volume 148, pp. 350–382. ISBN 978-0-12-182048-0. [Google Scholar]
- Siaka, M.; Owens, C.M.; Birch, G.F. Evaluation of Some Digestion Methods for the Determination of Heavy Metals in Sediment Samples by Flame-AAS. Anal. Lett. 1998, 31, 703–718. [Google Scholar] [CrossRef]
- Zand, A.D.; Darabi, H.; Ghafouri, L.; Talari, A. Trace Elements Extraction from Metal Contaminated Soils—Implication for Reclamation of Gold Mine Areas. Environ. Eng. Manag. J. 2019, 18, 1927–1936. [Google Scholar] [CrossRef]
- Pachura, P.; Ociepa-Kubicka, A.; Skowron-Grabowska, B. Assessment of the Availability of Heavy Metals to Plants Based on the Translocation Index and the Bioaccumulation Factor. Desalination Water Treat. 2016, 57, 1469–1477. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The Assessment of Cadmium, Chromium, Copper, and Nickel Tolerance and Bioaccumulation by Shrub Plant Tetraena Qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [Green Version]
- Amin, H.; Arain, B.A.; Jahangir, T.M.; Abbasi, M.S.; Amin, F. Accumulation and Distribution of Lead (Pb) in Plant Tissues of Guar (Cyamopsis Tetragonoloba L.) and Sesame (Sesamum Indicum L.): Profitable Phytoremediation with Biofuel Crops. Geol. Ecol. Landsc. 2018, 2, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.M. Accumulators and Excluders-strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Losfeld, G.; L’Huillier, L.; Fogliani, B.; Coy, S.M.; Grison, C.; Jaffré, T. Leaf-Age and Soil-Plant Relationships: Key Factors for Reporting Trace-Elements Hyperaccumulation by Plants and Design Applications. Environ. Sci. Pollut. Res. 2015, 22, 5620–5632. [Google Scholar] [CrossRef] [PubMed]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Minitab® 18 Support. Available online: https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/anova/how-to/one-way-anova/interpret-the-results/all-statistics-and-graphs/pairwise-comparisons/ (accessed on 25 May 2021).
- Ferreyroa, G.V.; Lagorio, M.G.; Trinelli, M.A.; Lavado, R.S.; Molina, F.V. Lead Effects on Brassica Napus Photosynthetic Organs. Ecotoxicol. Environ. Saf. 2017, 140, 123–130. [Google Scholar] [CrossRef]
- Tian, T.; Ali, B.; Qin, Y.; Malik, Z.; Gill, R.A.; Ali, S.; Zhou, W. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape. BioMed Res. Int. 2014, 2014, 530642-11. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef] [PubMed]
- Fargašová, A.; Molnárová, M. Assessment of Cr and Ni Phytotoxicity from Cutlery-Washing Waste-Waters Using Biomass and Chlorophyll Production Tests on Mustard Sinapis Alba L. Seedlings. Environ. Sci. Pollut. Res. 2010, 17, 187–194. [Google Scholar] [CrossRef]
- An, Y.-J. Soil Ecotoxicity Assessment Using Cadmium Sensitive Plants. Environ. Pollut. 2004, 127, 21–26. [Google Scholar] [CrossRef]
- Blum, W.H. Cadmium Uptake by Higher Plants; University of California: Berkeley, CA, USA, 1997. [Google Scholar]
- Deswal, M.; Laura, J.S. Effect of heavy metals cadmium, nickel and lead on the seed germination and early seedling growth of Pisum sativum. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2018, 4, 368–383. [Google Scholar] [CrossRef]
- Chandra, R.; Kang, H. Mixed Heavy Metal Stress on Photosynthesis, Transpiration Rate, and Chlorophyll Content in Poplar Hybrids. For. Sci. Technol. 2016, 12, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Meena, M.; Aamir, M.; Kumar, V.; Swapnil, P.; Upadhyay, R.S. Evaluation of Morpho-Physiological Growth Parameters of Tomato in Response to Cd Induced Toxicity and Characterization of Metal Sensitive NRAMP3 Transporter Protein. Environ. Exp. Bot. 2018, 148, 144–167. [Google Scholar] [CrossRef]
- Piršelová, B.; Kuna, R.; Lukáč, P.; Havrlentová, M. Effect of Cadmium on Growth, Photosynthetic Pigments, Iron and Cadmium Accumulation of Faba Bean (Vicia Faba Cv. Aštar). Agric. Polnohospodárstvo 2016, 62, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Bagheri, M.; Zhang, W.; Chen, Z.; Burken, J.G.; Ma, X. Using Artificial Neural Network to Investigate Physiological Changes and Cerium Oxide Nanoparticles and Cadmium Uptake by Brassica Napus Plants. Environ. Pollut. 2019, 246, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.-T. Lead Uptake and Effects on Seed Germination and Plant Growth in a Pb Hyperaccumulator Brassica Pekinensis Rupr. Bull. Environ. Contam. Toxicol. 1998, 60, 285–291. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil Testing for Heavy Metals. Commun. Soil Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Grabner, B.; Ribaric-Lasnik, C.; Romih, N.; Pfeifhofer, H.W.; Batic, F. Bioaccumulation Capacity for Pb, Cd and Zn from Polluted Soil in Selected Species of the Brassicaceae Family Growing in Different Vegetation Types. Arch. Environ. Contam. Toxicol. 2011, 50, 287–300. [Google Scholar]
- Ebbs, S.D.; Lasat, M.M.; Brady, D.J.; Cornish, J.; Gordon, R.; Kochian, L.V. Phytoextraction of Cadmium and Zinc from a Contaminated Soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Agricultural Problems Related to Excessive Trace Metal Contents of Soils. In Heavy Metals; Förstner, U., Salomons, W., Mader, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 3–18. ISBN 978-3-642-79318-9. [Google Scholar]
Metals | Normal Values (mg/kg) | Alert Thresholds | Intervention Thresholds | ||
---|---|---|---|---|---|
Sensitive | Less Sensitive | Sensitive | Less Sensitive | ||
Cadmium | 1 | 3 | 5 | 5 | 10 |
Lead | 20 | 50 | 250 | 100 | 1000 |
Metal Ion | Concentration in Soil (mg/kg) | BCF | BAC | TF |
---|---|---|---|---|
Pb(II) | 100 | 1.154 | 0.338 | 0.293 |
200 | 1.940 | 0.601 | 0.309 | |
500 | 0.597 | 0.148 | 0.247 | |
750 | 0.150 | 0.045 | 0.303 | |
1000 | 0.652 | 0.190 | 0.292 | |
1500 | 0.737 | 0.196 | 0.2676 | |
Cd(II) | 1 | 8.297 | 2.473 | 0.298 |
5 | 2.400 | 0.643 | 0.268 | |
10 | 2.445 | 0.670 | 0.274 | |
15 | 1.654 | 0.442 | 0.267 | |
20 | 1.411 | 0.391 | 0.277 | |
30 | 2.073 | 0.492 | 0.237 |
Pollutant | Concentration in Soil (mg/kg) | Factor | Interpretation * |
---|---|---|---|
Lead | 100 | BCF > 1, TF < 1 | Potential phytostabilizers |
BAC: 0.1–1 | Medium accumulator | ||
BCF: 1–10 | Accumulator | ||
200 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium accumulator | ||
BCF: 1–10 | Accumulator | ||
500 | BCF < 1, TF < 1 | Not suitable for phytoextraction | |
BAC: 0.1–1 | Medium accumulator | ||
BCF < 1 | Excluder | ||
750 | BCF < 1, TF < 1 | Not suitable for phytoextraction | |
BAC: 0.01–0.1 | Low accumulator | ||
BCF < 1 | Excluder | ||
1000 | BCF < 1, TF < 1 | Not suitable for phytoextraction | |
BAC: 0.1–1 | Medium accumulator | ||
BCF < 1 | Excluder | ||
1500 | BCF < 1, TF < 1 | Not suitable for phytoextraction | |
BAC: 0.1–1 | Medium accumulator | ||
BCF < 1 | Excluder | ||
Cadmium | 1 | BCF > 1, TF < 1 | Potential phytostabilizers |
BAC: 1–10 | High-accumulator | ||
BCF: 1–10 | Accumulator | ||
5 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium-accumulator | ||
BCF: 1–10 | Accumulator | ||
10 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium-accumulator | ||
BCF: 1–10 | Accumulator | ||
15 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium-accumulator | ||
BCF: 1–10 | Accumulator | ||
20 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium-accumulator | ||
BCF: 1–10 | Accumulator | ||
30 | BCF > 1, TF < 1 | Potential phytostabilizers | |
BAC: 0.1–1 | Medium-accumulator | ||
BCF: 1–10 | Accumulator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosca, M.; Cozma, P.; Minut, M.; Hlihor, R.-M.; Bețianu, C.; Diaconu, M.; Gavrilescu, M. New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium. Plants 2021, 10, 2051. https://doi.org/10.3390/plants10102051
Rosca M, Cozma P, Minut M, Hlihor R-M, Bețianu C, Diaconu M, Gavrilescu M. New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium. Plants. 2021; 10(10):2051. https://doi.org/10.3390/plants10102051
Chicago/Turabian StyleRosca, Mihaela, Petronela Cozma, Mariana Minut, Raluca-Maria Hlihor, Camelia Bețianu, Mariana Diaconu, and Maria Gavrilescu. 2021. "New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium" Plants 10, no. 10: 2051. https://doi.org/10.3390/plants10102051
APA StyleRosca, M., Cozma, P., Minut, M., Hlihor, R.-M., Bețianu, C., Diaconu, M., & Gavrilescu, M. (2021). New Evidence of Model Crop Brassica napus L. in Soil Clean-Up: Comparison of Tolerance and Accumulation of Lead and Cadmium. Plants, 10(10), 2051. https://doi.org/10.3390/plants10102051