Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples Preparation
3.2. EPR Measurements
4. Conclusions
- All the tested infusions obtained from both plant materials that were nonirradiated and exposed to UVA: Asparagus racemosus (root), Mitchella repens (herb), Cnicus benedictus L. (herb), Galega officinalis L. (herb), and Eupatorium cannabinum L. (herb), show an antioxidant character and that they can quench the EPR spectra of DPPH free radicals.
- The free radical scavenging activity of the plant infusions examined in vitro depends on the type of raw plant material, and for the nonirradiated materials, it increased in the following order: Asparagus racemosus (root) < Mitchella repens (herb) < Cnicus benedictus L. (herb) < Galega officinalis L. (herb) < Eupatorium cannabinum L. (herb). The most effective antioxidant is the infusion of Eupatorium cannabinum L. (herb).
- For the experiment performed in vitro with the nonirradiated plant materials, the infusions of Galega officinalis L. herb and Eupatorium cannabinum L. herb interacted with free radicals the fastest. The infusion of Mitchella repens herb interacted with free radicals the slowest.
- UVA radiation changed the in vitro interactions with free radicals of all the tested infusions obtained from Asparagus racemosus (root), Mitchella repens (herb), Cnicus benedictus L. (herb), Galega officinalis L. (herb), and Eupatorium cannabinum L. (herb), so these plant materials should be protected from UVA radiation during storage.
- UVA radiation decreases the magnitudes of the interaction of the examined infusions with free radicals. This effect was most evident for the infusion of Eupatorium cannabinum L. herb, and it was the weakest for the infusion of the root of Asparagus racemosus. The in vitro free radical scavenging activity of the infusions decreased more for longer exposure times.
- UVA radiation caused strong acceleration in vitro of the free radical interactions of the infusion of Eupatorium cannabinum L. herb, but the speed of the interactions of the infusion of the root of Asparagus racemosus remained unchanged.
- EPR spectroscopy is a useful method for examining the ability of plant infusions to quench free radicals, by measurements of the changes of the amplitudes of the EPR spectra of free radicals, and these measurements in vitro are treated as preliminary research for in vivo studies. This is helpful for identifying effective antioxidants for applications in obstetrics and to determine the optimal storage conditions of medicinal herbs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abourashed, E.A. Bioavailability of plant-derived antioxidants. Antioxidants 2013, 2, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Dubey, N.K. Plants as a Source of Natural Antioxidants; CABI: New Delhi, India, 2014; pp. 1–128. [Google Scholar]
- Sikora, E.; Cieślik, E.; Topolska, K. The sources of natural antioxidants. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–17. [Google Scholar]
- Saxena, M.; Saxena, J.; Pradhan, A. Flavonoids and phenolic acids as antioxidants in plants and human health. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Rreview of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.K.; Micali, M.; Pellerito, A.; Santangelo, A.; Natalello, S.; Tulumello, R.; Singla, R.K. Studies on the determination of antioxidant activity and phenolic content of plant products in India (2000–2017). J. AOAC Intern 2019, 102, 1407–1413. [Google Scholar] [CrossRef]
- Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Asian J. Plant Sci. Res. 2015, 5, 63–68. [Google Scholar]
- Lamer-Zarawskal, E.; Kowal-Gierczak, B.; Niedworak, J. Fitoterapia i Leki Roślinne; PZWL: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Agarwal, A.; Aponte-Mellano, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effect of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Pacheco, J.M.; Lourenco-Jaramillo, D.L.; Mendez-Hermandez, E.M.; Sandoval-Carrillo, A.A.; Rayon, Y.I.H.; Llave-Leon, O.L.; Aguilar-Duran, M.; Lopez-Terrones, A.; Barraza-Salas, M.; Vazquez-Alaniz, F. Oxidative stress equilibrium during obstretric event in normal pregnancy. J. Matern. Fetal Neonatal Med. 2017, 30, 1836–1840. [Google Scholar] [CrossRef]
- Mannaerts, D.; Faes, E.; Cos, P.; Briede, J.J.; Gyselaers, W.; Cornette, J.; Gorbanev, Y.; Bogaerts, A.; Spaanderman, M.; Van Craenenbroeck, E.; et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE 2018, 11, e0202919. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health effects of carotenoids during pregnancy and lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Ziomkiewicz, A.; Sancilo, A.; Galbarczyk, A.; Klimek, M.; Jasienska, G.; Bribiescas, R.G. Evidence for the cost reproduction in humans: High lifetime reproductive effort is associated with greater oxidative stress in post-menopausal women. PLoS ONE 2016, 11, e0145753. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid. Med. Cell Longev. 2014, 2014, 358375. [Google Scholar] [CrossRef] [Green Version]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martin-Cabrejas, M.A.; Lopez de Pablo, A.L.; Saenz de Pipaon, M.S.; Ramiro-Cortijo, D. Review of bioactive factors in human breastmilk: A focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Nehring-Gugulska, M.; Żukowska-Rubik, A.; Pietkiewicz, A. Red Karmienie piersią w Teorii i Praktyce. Podręcznik dla Doradców i Konsultantów Laktacyjnych oraz Położnych, Pielęgniarek i Lekarzy; Medycyna Praktyczna: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- Kowalska, D.; Gruczyńskja, E.; Bryś, J. Mleko matki—Pierwsza żywność w życiu człowieka. Probl. Hig. Epidemiol. 2015, 96, 387–398. (In Polish) [Google Scholar]
- Cubero, J.; Sanchez, C.L.; Bravo, R.; Sanchez, J.; Rodriguez, A.B.; Rivero, M.; Barriga, C. Analysis of the antioxidant activity in human milk, days vs. night. Cell Membr. Free Radic. Res. 2009, 1, 100–101. [Google Scholar]
- Alok, S.; Jain, S.K.; Verma, A.; Singh, M.K. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis. 2013, 3, 242–252. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gupta, A.; Tiwari, M.; Prasad, S.; Pandey, A.N.; Yadav, P.K.; Sharma, A.; Sahu, K.; Asrafuzzaman, A.; Vengayil, D.T.; et al. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomed. Pharmacother. 2018, 103, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Borszewska-Kornacka, M.; Rachtan-Janicka, J.; Wesołowska, A.; Socha, P.; Wielgoś, M.; Żukowska-Rubik, M.; Pawlus, B. Stanowisko grupy ekspertów w sprawie zaleceń żywieniowych dla kobiet w okresie laktacji. Stand. Med. Pediatr. 2013, 10, 265–279. (In Polish) [Google Scholar]
- Mills, E.; Duguoa, J.J.; Perri, D.; Koren, G. Herbal Medicines in Pregnancy and Lactation. An Evidence-Based Approach; Taylor Francis Group: London, UK, 2006. [Google Scholar]
- Bazzano, A.; Hofer, R.; Thibeau, S.; Gillispie, V.; Jacobs, M.; Theall, K.P. A review of herbal and pharmaceutical galactagogues for breast-feeding. Ochsner J. 2016, 16, 511–524. [Google Scholar] [PubMed]
- Selvaraj, K.; Sivakumar, G.; Pillai, A.A.; Veeraraghavan, V.P. Phytochemical screening HPTLC fingerprinting and in vitro antioxidant activity of root extract of Asparagus racemosus. Pharmacog. J. 2019, 11, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.N.; Verma, N.K. Asparagus racemosus: Chemical constituents and pharmacological activities—A review. Eur. J. Biomed. Pharm. Sci. 2017, 4, 207–213. [Google Scholar]
- Selvaraj, K.; Sivakumar, G.; Veeraraghavan, V.P.; Dandannavar, V.S.; Veeraraghavan, G.R.; Rengasamy, G. Asparagus Racemosus—A Review. Sys. Rev. Pharm. 2019, 10, 87–89. [Google Scholar]
- Dziennik EFSA. 2012, Volume 10, p. 2663. (In Polish). Available online: https://docplayer.pl/15739932-Dziennik-efsa-2012-10-5-2663.html (accessed on 22 September 2021).
- Pursell, J.J. Lecznicze rośliny dziko rosnące. In Najskuteczniejsze Rośliny w Domowej Apteczce; Vital: Białystok, Poland, 2017. (In Polish) [Google Scholar]
- Sarnecki, J. Galaktogogi-substancje stymulujące laktację. Stand. Med. Pediatr. 2016, 13, 49–52. [Google Scholar]
- Agrawal, P. Dolegliwości ciążowe. Pomocna z natury. Mag. Piel Położ 2013, 3, 28–30. (In Polish) [Google Scholar]
- Kaczmarczyk-Sedlak, I.; Ciołkowski, A. Zioła w medycynie. In Choroby Układu Pokarmowego; PZWL: Warszawa, Poland, 2017. (In Polish) [Google Scholar]
- Gruenwald, J.; Brendler, T.; Jacnicke, C. (Eds.) PDR for Herbal Medicines; Medical Economics Company: Montvale, NJ, USA, 2000. [Google Scholar]
- Shymanska, O.; Vergun, O.; Rakhmetov, D.; Brindza, J.; Ivanisova, E. Total content of phenolic compounds in the ethanol extracts of Galega officinalis L. and G. Orientalis Lam. Agrbiol. Div. Impr. Nutr. Health Life Qual. 2018, 2, 140–145. [Google Scholar]
- Sarnecki, J. Skuteczność stosowania galaktogogów u matek noworodków urodzonych przedwcześnie. Stand. Med. Pediatr. 2017, 14, 29–31. (In Polish) [Google Scholar]
- Jassem-Bobowicz, J.M.; Domżalska-Popadiuk, I. Zioła i leki stosowane w okresie laktacji. Ann. Acad. Med. Gedan. 2016, 46, 87–94. [Google Scholar]
- Salatino, S.; Giacomelli, L.; Carnevali, I.; Giacomelli, E. The role of natural galacagogues during breastfeeding: Focus on a Galega officinalis based food supplement. Minerva Pediatr. 2017, 69, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Grigore, A.; Neagu, G.; Dobre, N.; Albulescu, A.; Ionita, L.; Ionita, C.; Albulescu, R. Evaluation of antiproliferative and protective effects of Eupatorium cannabium L. extracts. Turk. J. Biol. 2018, 42, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and Phtostabilization of Drugs and Drug Products. Inter. J. Photoenergy 2016, 2016, 8135608. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Tse, Y.; Webb, A.; Mudd, E.; Abedin, M.R.; Mormile, M.; Dutta, S.; Rege, K.; Barua, S. PolyRad—Protection Against Free Radical Damage. Sci. Rep. 2020, 10, 8335. [Google Scholar] [CrossRef] [PubMed]
- Holicki, M.F. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer Res. 2016, 36, 1345–1356. [Google Scholar]
- Gramza, A.; Pawlak-Lemańska, K.; Korczak, J.; Wąsowicz, E.; Rudzińska, M. Tea extracts as free radical scavengers. Polish J. Environ. Stud. 2005, 14, 861–867. [Google Scholar]
- Wosiński, S.; Jurga, J.; Kruczyński, Z.; Górski, R.; Sobieralski, K.; Siwulski, M. An ESR study of free radicals scavenging by red tea. Ecol. Chem. Eng. 2012, 19, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Wasek, M.; Giebultowicz, J.; Sochacka, M.; Zawada, K.; Modzelewska, W. The measurement of antioxidant capacity and polyphenol content in selected food supplements. Acta Polon. Pharm. Drug Res. 2015, 72, 877–887. [Google Scholar]
- Ellnain-Wojtaszek, M.; Kruczyński, Z.; Kasprzak, J. Investigation of the free radical scavenging activity of Gingko biloba L. Fitoterapia 2003, 74, 1–6. [Google Scholar] [CrossRef]
- Ramos, P.; Pilawa, B. Effect of UV irradiation on Echinaceae purpureae interactions with free radicals examined by an X-band (9.3 GHz) EPR spectroscopy. Med. Chem. Res. 2015, 24, 645–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogacz, A.; Stec, M.; Ramos, P.; Pilawa, B. UV-irradiation influence on free radical formation and radical scavenging ability of caffeic acid—EPR, UV-Vis, and colorimetric examination. J. Food Process. Eng. 2021, 44, e13700. [Google Scholar] [CrossRef]
- Stankowski, J.; Hilczer, W. Wstęp do spektroskopii rezonansów magnetycznych. In Wydawnictwo Naukowe; PWN: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Wertz, J.E.; Bolton, J.R. Electron Spin Resonance. Theory and Practical Applications; Chapman and Hall: New York, NY, USA; London, UK, 1986. [Google Scholar]
- Eaton, G.R.; Eaton, S.S.; Salikhov, K.M. (Eds.) Foundations of Modern EPR; World Scientific: Singapore, 1998. [Google Scholar]
- Tirzitis, G.; Bartosz, G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Biochim. Pol. Acta 2010, 57, 139–442. [Google Scholar] [CrossRef]
- Yordanov, N.D.; Christova, A. DPPH as a primary standard quantitative EPR spectrometry. Appl. Magn. Reason. 1994, 6, 341–344. [Google Scholar] [CrossRef]
- Yordanov, N.D. Is our knowledge about the chemical and physical properties of DPPH enough to consider it as a primary standard for quantitative EPR spectrometry. Appl. Magn. Reason. 1996, 10, 339–350. [Google Scholar] [CrossRef]
- Yordanov, N.D. Quantitative spectrophotometric and EPR-determination of 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Fresenius J. Anal. Chem. 1997, 358, 610–630. [Google Scholar] [CrossRef]
- Molyneux, P. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarco, S.; Pilawa, B.; Ramos, P. Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics. Plants 2021, 10, 2016. https://doi.org/10.3390/plants10102016
Jarco S, Pilawa B, Ramos P. Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics. Plants. 2021; 10(10):2016. https://doi.org/10.3390/plants10102016
Chicago/Turabian StyleJarco, Sylwia, Barbara Pilawa, and Paweł Ramos. 2021. "Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics" Plants 10, no. 10: 2016. https://doi.org/10.3390/plants10102016
APA StyleJarco, S., Pilawa, B., & Ramos, P. (2021). Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics. Plants, 10(10), 2016. https://doi.org/10.3390/plants10102016