Allelopathic Effect of Selected Rice (Oryza sativa) Varieties against Barnyard Grass (Echinochloa cruss-gulli)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioassays
2.1.1. Sandwich Method
2.1.2. Relay Seeding Method
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Germination Percentage
3.2. Mean Germination Time
3.3. Root Length
3.4. Shoot Length
3.5. Dry Matter
3.6. Average Percent Inhibition (API)
4. Correlation of Different Quantitative Traits
4.1. Sandwich Method
4.2. Relay Seeding Method
5. Comparison of Two Methods on Different Seedling Traits
6. Clustering
7. Principal Component Analysis (PCA)
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hettel, G.; Clayton, S. GRiSP in Motion; Annual Report 2012; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Tegegne, B.; Belay, A.; Gashaw, T. Nutritional potential and mineral profiling of selected rice variety available in Ethiopia. Chem. Int. 2020, 6, 21–29. [Google Scholar]
- Arif, G.M.; Riaz, M.; Jamal, M.; Khattak, K.; Sathar, Z. Climate, population, and vulnerability in Pakistan: Exploring evidence of linkages for adaptation. Popul. Council 2019. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Haggag, W.M. Weed control in clean agriculture: A review1. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Firdaus, R.B.R.; Leong Tan, M.; Rahmat, S.R.; Senevi Gunaratne, M. Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent. Soc. Sci. 2020, 6, 1818373. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, S.; Chu, C. Improvement of nutrient use efficiency in rice: Current toolbox and future perspectives. Theor. Appl. Genet. 2020, 133, 1365–1384. [Google Scholar] [CrossRef]
- Mushtaq, W.; Siddiqui, M.B.; Hakeem, K.R. Allelopathic control of native weeds. In Allelopathy; Springer Nature: Cham, Switzerland, 2020; pp. 53–59. [Google Scholar]
- Kaur, S.; Jabran, K.; Florentine, S.; Chauhan, B.S. Assuring Crop Protection in the Face of Climate Change Through an Understanding of Herbicide Metabolisms and Enhanced Weed Control Strategies. In Crop Protection Under Changing Climate; Springer Nature: Cham, Switzerland, 2020; pp. 17–56. [Google Scholar]
- Yang, X.; Zhang, Z.; Gu, T.; Dong, M.; Peng, Q.; Bai, L.; Li, Y. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crusgalli L.). J. Proteom. 2017, 150, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Qiu, J.; Li, L.-F.; Lu, B.; Olsen, K.; Fan, L. Genomic clues for crop–weed interactions and evolution. Trends Plant. Sci. 2018, 23, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.K.; Webb, E.B.; Haukos, D.A.; Fritschi, F.B.; Goyne, K.W. Barnyardgrass (Echinochloa crusgalli) emergence and growth in a changing climate in great plains wetlands. Wetl. Ecol. Manag. 2020, 28, 35–50. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, G.; Yuan, G.; Song, K.; Lu, J.; Da, L. Effects of Echinochloa crusgalli and Cyperus difformis on yield and eco-economic thresholds of rice. J. Clean. Prod. 2020, 259, 120807. [Google Scholar] [CrossRef]
- Gioria, M.; Osborne, B.A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant. Sci. 2014, 5, 501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, Y.; Yuan, L.; Weber, E.; van Kleunen, M. Effect of allelopathy on plant performance: A meta-analysis. Ecol. Lett. 2021, 24, 348–362. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Peters, R.J. The role of momilactones in rice allelopathy. J. Chem. Ecol. 2013, 39, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant. Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Otusanya, O.; Ilori, O. Studies on the allelopathic effects of Tithonia rotundifolia on the germination and seedling growth of some legumes and cereals. Int. J. Biol. 2014, 6, 38–47. [Google Scholar] [CrossRef]
- Sowiński, J.; Dayan, F.E.; Głąb, L.; Adamczewska-Sowińska, K. Sorghum Allelopathy for Sustainable Weed Management. In Plant Defence: Biological Control; Springer Nature: Cham, Switzerland, 2020; pp. 263–288. [Google Scholar]
- Thi, H.L.; Lin, C.H.; Smeda, R.J.; Fritschi, F.B. Isolation and purification of growth-inhibitors from Vietnamese rice cultivars. Weed Biol. Manag. 2014, 14, 221–231. [Google Scholar] [CrossRef]
- Ayub, M.; Ijaz, M.K.; Tariq, M.; Tahir, M.; Nadeem, M.A. Allelopathic effects of winter legumes on germination and seedling indicators of various summer cereals. Agric. Trop. Subtrop. 2012, 45, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Sitthinoi, P.; Lertmongkol, S.; Chanprasert, W.; Vajrodaya, S. Allelopathic effects of jungle rice (Echinochloa colona (L.) Link) extract on seed germination and seedling growth of rice. Agric. Nat. Resour. 2017, 51, 74–78. [Google Scholar] [CrossRef]
- Soleymani, A.; Shahrajabian, M.H. Study of allelopathic effects of sesame (Sesamum indicum) on canola (Brassica napus) growth and germination. IJACS 2012, 4, 183–186. [Google Scholar]
- Kadioglu, I.; Yanar, Y.; Asav, U. Allelopathic effects of weeds extracts against seed germination of some plants. J. Environ. Biol. 2005, 26, 169–173. [Google Scholar]
- Chung, I.-M.; Kim, K.-H.; Ahn, J.-K.; Ju, H.-J. Allelopathic potential evaluation of rice varieties on Echinochloa crusgalli. Korean J. Weed Sci. 1997, 17, 52–58. [Google Scholar]
- Karim, S.M.R.; Momin, A.M.; Begum, M. Allelopathic potential of selected rice varieties. Afr. J. Biotechnol. 2012, 11, 15410–15414. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ahmed, M.; Shaukat, S.S.; Noshad, S. Allelopathy: An overview. Fuuast J. Biol. 2018, 8, 331–350. [Google Scholar]
- Kabir, A.K.M.S.; Karim, S.M.R.; Begum, M.; Juraimi, A.S. Allelopathic potential of rice varieties against Spinach (Spinacia oleracea). Int. J. Agric. Biol. 2010, 12, 809–815. [Google Scholar]
- Mazid, M.S.; Juraimi, A.S.; Rafii, M.Y.; Hanafi, M.M.; Hakim, M.A.; Ferdous, J. Evaluation of selected rice accessions for allelopathic potential against Barnyard grass. Allelopath. J. 2018, 43, 159–174. [Google Scholar] [CrossRef]
- Karim, S.M.R.; Mridha, A.J.; Faruq, G. Allelopathic potential of rice cultivars against Echinochloa crusgalli. Int. J. Biol. Pharm. Allied Sci. 2014, 3, 2027–2039. [Google Scholar]
- Jafari, L.; Ghadiri, H.; Moradshahi, A. Allelopathic potential of rice (Oryza sativa L.) cultivars on Barnyard Grass (Echinochloa crusgalli). J. Agric. Sci. Technol. B 2011, 1, 853–864. [Google Scholar]
- Khanh, T.D.; Xuan, T.D.; Chung, I.M. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 2007, 151, 325–339. [Google Scholar] [CrossRef]
- Ismail, B.S.; Rezaul Karim, S.M.; Abdullah, M.Z. The allelopathic potential of several rice varieties on barnyard grass. J. Trop. Agric. Food Sci. 2007, 35, 173–182. [Google Scholar]
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Navarez, D.C.; Olofsdotter, M. Relay seeding technique for screening allelopathic rice (Oryza sativa). In Proceedings of the 2nd International Weed Control Congress, Copenhagen, Denmark, 25–28 June 1996. [Google Scholar]
- Mirmostafaee, S.; Azizi, M.; Fujii, Y. Study of Allelopathic Interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy 2020, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Nicols, M.A.; Heydecker, W. Two approaches to the study of germination date. Int. Seed Test. Assoc. 1968, 33, 531–540. [Google Scholar]
- NTSYS-pc, N.T.; Taxonomy, N. Multivariate Analysis System, Version 2.2; Exter Publications: Setauket, NY, USA, 2005. [Google Scholar]
- Jobson, J.D. Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate Methods; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 1461209218. [Google Scholar]
- Vaithiyanathan, T.; Soundari, M.; Rajesh, M.; Sankar Ganesh, K.; Sundaramoorthy, P. Allelopathic effect of Azadirachta indica L. on the germination of Abelmoschus esculentus L. Int. Lett. Nat. Sci. 2014, 15, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Kumbhar, B.A.; Patel, G.R. Effect of allelochemicals from Cressa cretica L. on in vitro pollen germination of Cajanus cajan (L.) mill sp. Biosci. Discov. 2012, 3, 169–171. [Google Scholar]
- Ma, Y.; Zhang, M.; Li, Y.; Shui, J.; Zhou, Y. Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. germination. J. Plant. Interact. 2014, 9, 722–730. [Google Scholar] [CrossRef]
- Kruse, M.; Strandberg, M.; Strandberg, B. Ecological effects of allelopathic plants—A review. NERI Tech. Rep. 2000, 315, 66. [Google Scholar]
- Courtois, B.; Olofsdotter, M. Incorporating the allelopathy trait in upland rice breeding programs. In Allelopathy in Rice, Proceedings of the Workshop on Allelopathy in Rice, Manila, Philippines, 25–27 November 1996; International Rice Research Institute: Manila, Philippines, 1998; pp. 57–68. [Google Scholar]
- Alam, M.A.; Hakim, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hasan, M.M.; Aslani, F. Potential allelopathic effects of rice plant aqueous extracts on germination and seedling growth of some rice field common weeds. Ital. J. Agron. 2018, 13, 134–140. [Google Scholar] [CrossRef]
- Rimando, A.M.; Olofsdotter, M.; Dayan, F.E.; Duke, S.O. Searching for rice allelochemicals: An example of bioassay-guided isolation. Agron. J. 2001, 93, 16–20. [Google Scholar] [CrossRef]
- Jabeen, N.; Ahmed, M. Possible allelopathic effects of three different weeds on germination and growth of maize (Zea mays) cultivars. Pak. J. Bot 2009, 41, 1677–1683. [Google Scholar]
- Gaffar, M.A.; Reza, M.S.; Rahman, M.M. Allelopathic effect of several plant species in controlling weed in direct seeded Aus rice. Bangladesh J. Sci. Ind. Res. 1996, 31, 69–76. [Google Scholar]
- Madhu, M.; Nanjappa, H.V.; Ramachandrappa, B.K. Allelopathic effect of weeds on crops. Weed Abst. 1995, 45, 178–179. [Google Scholar]
- Joshi, N.; Joshi, A. Allelopathic effects of weed extracts on germination of wheat. Ann. Plant. Sci. 2016, 5, 1330–1334. [Google Scholar] [CrossRef]
- Jabran, K. Rice allelopathy for weed control. In Manipulation of Allelopathic Crops for Weed Control; Springer Nature: Cham, Switzerland, 2017; pp. 35–47. [Google Scholar]
- Kato-Noguchi, H.; Hasegawa, M.; Ino, T.; Ota, K.; Kujime, H. Contribution of momilactone A and B to rice allelopathy. J. Plant. Physiol. 2010, 167, 787–791. [Google Scholar] [CrossRef]
- Khanh, T.D.; Linh, L.H.; Linh, T.H.; Quan, N.T.; Cuong, D.M.; Hien, V.T.T.; Ham, L.H.; Xuan, T.D. Integration of Allelopathy to Control Weeds in Rice. In Herbicides-Current Research and Case Studies in Use; Andrew, J.P., Jessica, A.K., Eds.; Intech Publishing: New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Berendji, S.; Asghari, J.B.; Matin, A.A. Allelopathic potential of rice (Oryza sativa) varieties on seedling growth of barnyardgrass (Echinochloa crusgalli). J. Plant. Interact. 2008, 3, 175–180. [Google Scholar] [CrossRef]
- Khang, D.T.; Anh, L.H.; Ha, T.; Tuyen, P.T.; Van Quan, N.; Minh, L.T.; Quan, N.T.; Minh, T.N.; Xuan, T.D.; Khanh, T.D. Allelopathic activity of dehulled rice and its allelochemicals on weed germination. Int. Lett. Nat. Sci. 2016, 58, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-L.; Zhao, H.-H.; Kong, C.-H. (–)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J. Exp. Bot. 2020, 71, 1540–1550. [Google Scholar] [CrossRef]
- Chung, I.-M.; Ahn, J.-K.; Kim, J.-T.; Kim, C.-S. Assessment of allelopathic potentiality and identification of allelopathic compounds on Korean local rice varieties. Korean J. Crop. Sci. 2000, 45, 44–49. [Google Scholar]
- Song, H.K.; Ahn, J.K.; Ahmad, A.; Hahn, S.J.; Kim, S.H.; Chung, I.M. Identification of allelochemicals in rice root exudates at various phenological phases and their influence on barnyardgrass. Allelopath. J. 2004, 13, 173–188. [Google Scholar]
- Otusanya, O.O.; Ogunwole, A.A.; Tijani, M.O. Allelopathic effect of Tithonia diversifolia and Chromolaena odorata on the germination, growth and chlorophyll accumulation of Hibiscus sabdariffa (L.). Int. J. Bot. Res. 2015, 5, 1–14. [Google Scholar]
- Chung, I.M.; Ahn, J.K.; Yun, S.J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant. Sci. 2001, 81, 815–819. [Google Scholar] [CrossRef]
- Abu-Romman, S.; Shatnawi, M.; Shibli, R. Allelopathic effects of spurge (Euphorbia hierosolymitana) on wheat (Triticum durum). Am. J. Agric. Environ. Sci. 2010, 7, 298–302. [Google Scholar]
- Salam, M.A.; Kato-Noguchi, H. Screening of allelopathic potential Bangladesh rice cultivars by donor-receiver bioassay. Asian J. Plant. Sci. 2009, 8, 20–27. [Google Scholar]
- Siyar, S.; Majeed, A.; Muhammad, Z.; Ali, H.; Inayat, N. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecol. Sin. 2019, 39, 63–68. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathic substance in rice root exudates: Rediscovery of momilactone B as an allelochemical. J. Plant. Physiol. 2004, 161, 271–276. [Google Scholar] [CrossRef] [PubMed]
- El-Naby, A.; El-Ghandor, A.M.A.; Ramadan, I.A.; El-Khalek, A.; Samah, M. Field Evaluation and Molecular Detection of Allelopathic Potential for Some Rice Genotypes to Improve Weed Management and Grain Yield of Broadcast-Seeded Rice. J. Plant. Prod. 2019, 10, 21–30. [Google Scholar] [CrossRef]
- Bahadur, I.; Meena, V.S.; Kumar, S. Importance and application of potassic biofertilizer in Indian agriculture. Res. J. Chem. Sci. 2014, 2231, 606X. [Google Scholar]
- Rawat, L.S.; Maikhuri, R.K.; Bahuguna, Y.M.; Jha, N.K.; Phondani, P.C. Sunflower allelopathy for weed control in agriculture systems. J. Crop. Sci. Biotechnol. 2017, 20, 45–60. [Google Scholar] [CrossRef]
- Muzell Trezzi, M.; Vidal, R.A.; Balbinot, A.A., Jr.; von Hertwig Bittencourt, H.; da Silva Souza Filho, A.P. Allelopathy: Driving mechanisms governing its activity in agriculture. J. Plant. Interact. 2016, 11, 53–60. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Ino, T. Possible involvement of momilactone B in rice allelopathy. J. Plant. Physiol. 2005, 162, 718–721. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Fushimi, Y.; Shigemori, H. An allelopathic substance in red pine needles (Pinus densiflora). J. Plant. Physiol. 2009, 166, 442–446. [Google Scholar] [CrossRef]
Accession Code | Variety | Source | Varietal Speciality | Year of Release |
---|---|---|---|---|
V1 | BRRIdhan 45 | BRRI, Bangladesh | Early maturing | 2005 |
V2 | BRRIdhan 48 | BRRI, Bangladesh | Early maturing | 2008 |
V3 | Line (L50-38-8) | UPM, Malaysia | Weed competitive and require minimum water | 2018 |
V4 | Saitta | Local variety, Bangladesh | Traditional | - |
V5 | BRRIdhan 75 | BRRI, Bangladesh | Not lodging, Slightly aromatic | 2016 |
V6 | BRRIdhan 69 | BRRI, Bangladesh | Not lodging, late maturing | 2014 |
V7 | BR17 | BRRI, Bangladesh | Suitable for haor (depressed area) | 1985 |
V8 | Line (16-3-38-9) | UPM, Malaysia | Allelopathic and high zinc content | 2018 |
V9 | BRRIdhan 46 | BRRI, Bangladesh | Photoperiod sensitive, suitable for flood prone areas | 2007 |
V10 | Putra 1 | UPM, Malaysia | High yielding, blast resistant | 2021 |
V11 | BRRIdhan 82 | BRRI, Bangladesh | High amylose content (28%) | 2017 |
V12 | MRIA1 | MARDI, Malaysia | Drought tolerant | 2014 |
V13 | BR26 | BRRI, Bangladesh | Intermediate amylose | 1993 |
V14 | BR23 | BRRI, Bangladesh | Late maturing, photo period sensitive | 1988 |
V15 | MRQ74 | MARDI, Malaysia | High tillering and weed competitive | 2005 |
V16 | BRRIdhan 39 | BRRI, Bangladesh | Early maturing | 1999 |
V17 | Putra 2 | UPM, Malaysia | High yielding, submergence tolerance | 2021 |
Variety | Code | Sandwich Method | Relay Seeding Method | ||
---|---|---|---|---|---|
WSG (%) | % Reduction for WSG | WSG (%) | % Reduction for WSG | ||
Control | V0 | 100 a | 0 | 90.83 a | 0 |
BRRIdhan 45 | V1 | 91.66 b–e | 8.34 d–g | 84.99 a–c | 6.36 b,c |
BRRIdhan 48 | V2 | 98.33 a,b | 1.69 g | 82.49 b–d | 9.17 b,c |
Line (L50-38-8) | V3 | 87.49 d–f | 12.51 c–e | 82.49 b–d | 9.10 b,c |
Saitta | V4 | 90.83 c–e | 9.17 d–g | 85.83 a,b | 5.50 c |
BRRIdhan 75 | V5 | 80.83 f–h | 19.17 a–c | 84.99 a–c | 6.28 b,c |
BRRIdhan 69 | V6 | 84.99 e–g | 15.00 b–d | 83.33 b–d | 8.28 b,c |
BR17 | V7 | 76.16 h | 23.84 a | 73.58 e | 18.9 a |
Line (16-3-38-9) | V8 | 80.83 f–h | 19.17 a–c | 78.82 b–e | 13.06 a–c |
BRRIdhan 46 | V9 | 93.33 a–d | 6.663 e–g | 83.33 b–d | 8.19 b,c |
Putra 1 | V10 | 87.49 d–f | 12.51 c–e | 79.99 b–e | 11.92 a–c |
BRRIdhan 82 | V11 | 96.33 a–c | 3.67 g,f | 84.99 a–c | 6.35 b,c |
MRIA1 | V12 | 91.66 b–e | 8.34 d–g | 84.99 a–c | 6.25 b,c |
BR26 | V13 | 100 a | 15.84 b–d | 82.49 b–d | 9.06 b,c |
BR23 | V14 | 91.66 b–e | 21.21 a,b | 76.82 d,e | 15.32 a,b |
MRQ74 | V15 | 98.33 a,b | 9.17 d–g | 85.83 a,b | 5.46 c |
BRRIdhan 39 | V16 | 87.49 d–f | 11.34 d–f | 78.32 c–e | 13.88 a–c |
Putra 2 | V17 | 90.83 c–e | 6.67 e–g | 84.16 a–c | 7.24 b,c |
Level of Significance | ** | ** | ** | * |
Variety | Code | Sandwich Method | Relay Seeding Method | ||
---|---|---|---|---|---|
MGT (No. day−1) | % Reduction for MGT | MGT (No. day−1) | % Reduction for MGT | ||
Control | V0 | 5.63 a | 0 | 5.81 a | 0 |
BRRIdhan 45 | V1 | 4.97 b,c | 11.73 c–e | 5.19 b | 10.58 d |
BRRIdhan 48 | V2 | 5.21 a,b | 7.463 d–e | 4.95 b,c | 12.92 b–d |
Line (L50-38-8) | V3 | 4.61 c,d,e | 18.11 b,c | 4.96 b,c | 12.60 c,d |
Saitta | V4 | 4.87 b,c,d | 13.48 c–e | 5.10 b,c | 10.23 d |
BRRIdhan 75 | V5 | 4.25 e | 24.54 a,b | 4.89 b–d | 13.61 b–d |
BRRIdhan 69 | V6 | 4.64 c,d,e | 17.57 b–d | 4.94 b–d | 13.113 b–d |
BR17 | V7 | 3.76 f | 33.07 a | 3.82 f | 29.12 a |
Line (16-3-38-9) | V8 | 4.67 c,d,e | 16.86 b–e | 4.41 d,e | 22.16 a–c |
BRRIdhan 46 | V9 | 4.87 b,c,d | 13.43 c–e | 4.81 b–d | 15.33 b–d |
Putra 1 | V10 | 4.72 c,d | 16.10 b–e | 4.69 b–e | 17.46 b–d |
BRRIdhan 82 | V11 | 5.23 a,b | 6.99 e | 4.81 b–d | 15.33 b–d |
MRIA1 | V12 | 4.91 b,c,d | 12.70 c–e | 5.04 b,c | 11.16 c,d |
BR26 | V13 | 4.44 d,e | 21.09 b,c | 4.89 b–d | 13.88 b–d |
BR23 | V14 | 4.24 e | 24.74 a,b | 4.31 e,f | 23.97 a,b |
MRQ74 | V15 | 4.94 b,c | 12.42 c–e | 5.14 b,c | 9.51 d |
BRRIdhan 39 | V16 | 4.62 c,d,e | 17.78 b–d | 4.64 c–e | 18.47 b–d |
Putra 2 | V17 | 5.24 a,b | 6.84 e | 4.98 b,c | 12.24 c,d |
Level of Significance | ** | ** | ** | * |
Variety | Code | Sandwich Method | Relay Seeding Method | ||
---|---|---|---|---|---|
Root Length | % Reduction of Root Length | Root Length | % Reduction of Root Length | ||
Control | V0 | 1.59 a | 0 | 3.26 a | 0 |
BRRIdhan 45 | V1 | 1.20 b,c | 26.42 e,f | 2.18 b–d | 32.71 a,b |
BRRIdhan 48 | V2 | 1.48 a,b | 16.07 f | 2.19 b–d | 31.73 a,b |
Line (L50-38-8) | V3 | 1.01 b–d | 35.93 d,e | 2.07 b–d | 36.50 a,b |
Saitta | V4 | 0.83 d–g | 47.39 a–d | 3.05 a | 6.57 c |
BRRIdhan 75 | V5 | 0.95 c–f | 40.12 b–e | 2.19 b–d | 32.37 a,b |
BRRIdhan 69 | V6 | 0.99 c–e | 37.67 c–e | 2.53 b | 21.61 b,c |
BR17 | V7 | 0.66 g | 58.15 a | 1.71 d | 47.58 a |
Line (16-3-38-9) | V8 | 0.79 d–g | 50.00 a–d | 1.87 c,d | 42.31 a |
BRRIdhan 46 | V9 | 0.75 e–g | 52.31 a–c | 2.04 b–d | 37.29 a |
Putra 1 | V10 | 0.84 d–g | 47.12 a–d | 2.03 b–d | 37.50 a,b |
BRRIdhan 82 | V11 | 0.90 d–g | 43.25 a–d | 2.34 b,c | 29.20 a,b |
MRIA1 | V12 | 1.15 b,c | 27.24 e,f | 1.98 b–d | 38.81 a,b |
BR26 | V13 | 0.79 d–g | 50.27 a–d | 1.86 c,d | 43.06 a |
BR23 | V14 | 0.71 f,g | 55.18 a,b | 1.77 c,d | 45.65 a |
MRQ74 | V15 | 0.81 d–g | 49.41 a–d | 1.82 c,d | 44.33 a |
BRRIdhan 39 | V16 | 0.78 d–g | 51.09 a–d | 2.13 b–d | 34.44 a,b |
Putra 2 | V17 | 0.83 d–g | 47.59 a–d | 2.23 b–d | 31.255 a,b |
Level of Significance | ** | ** | ** | * |
Variety | Code | Sandwich Method | Relay Seeding Method | ||
---|---|---|---|---|---|
Shoot Length | % Reduction for Shoot Length | Shoot Length | % Reduction for Shoot Length | ||
Control | V0 | 3.4 a | 0 | 3.28 a | 0 |
BRRIdhan 45 | V1 | 2.59 b,c | 23.72 c,d | 2.22 b | 31.16 a,b |
BRRIdhan 48 | V2 | 3.06 a,b | 9.96 d | 2.48 a,b | 24.28 a,b |
Line (L50-38-8) | V3 | 2.17 c,d | 35.38 a–c | 2.50 a,b | 23.15 a,b |
Saitta | V4 | 2.05 c,d | 38.99 a–c | 2.67 a,b | 16.99 b |
BRRIdhan 75 | V5 | 2.04 b–d | 39.91 a–c | 2.46 a,b | 24.23 a,b |
BRRIdhan 69 | V6 | 1.83 d | 46.11 a,b | 2.42 a,b | 25.91 a,b |
BR17 | V7 | 1.64 d | 51.90 a | 2.02 b | 36.75 a |
Line (16-3-38-9) | V8 | 2.15 c,d | 36.82 a–c | 2.47 a,b | 25.21 a,b |
BRRIdhan 46 | V9 | 2.11 c,d | 37.68 a–c | 2.12 b | 34.96 a,b |
Putra 1 | V10 | 1.85 d | 45.25 a,b | 2.48 a,b | 24.63 a,b |
BRRIdhan 82 | V11 | 2.75 b | 19.11 c,d | 2.27 a,b | 30.09 a,b |
MRIA1 | V12 | 2.54 b,c | 25.75 b–d | 2.36 a,b | 26.77 a,b |
BR26 | V13 | 1.75 d | 48.53 a | 1.94 b | 40.61 a |
BR23 | V14 | 1.70 d | 49.92 a | 2.15 a,b | 32.48 a,b |
MRQ74 | V15 | 2.07 c,d | 38.65 a–c | 2.38 a,b | 27.86 a,b |
BRRIdhan 39 | V16 | 1.75 d | 48.30 a | 2.37 a,b | 27.01 a,b |
Putra 2 | V17 | 2.05 c,d | 39.39 a–c | 2.52 a,b | 26.15 a,b |
Level of Significance | ** | ** | NS | NS |
Variety | Code | Sandwich Method | Relay Seeding Method | ||
---|---|---|---|---|---|
Dry Matter (mg) | % Reduction of Dry Matter | Dry Matter (mg) | % Reduction of Dry Matter | ||
Control | V0 | 7.5 a | 0 | 43 a | 0 |
BRRIdhan 45 | V1 | 5.75 b–d | 22.77 a–c | 16 e–g | 62.36 b–d |
BRRIdhan 48 | V2 | 6.75 a–c | 9.38 b,c | 16 e–g | 62.60 b–d |
Line (L50-38-8) | V3 | 6.5 a–c | 13.84 b,c | 18 d–f | 57.66 c,d |
Saitta | V4 | 7.25 a,b | 3.23 c | 19.2 c,d | 54.65 d–f |
BRRIdhan 75 | V5 | 6.75 a–c | 13.4 b,c | 15 e–h | 65.10 a–d |
BRRIdhan 69 | V6 | 6.75 a–c | 16.52 a–c | 23 b,c | 46.11 f–g |
BR17 | V7 | 4.75 d | 36.16 a | 10.5 i | 75.23 a |
Line (16-3-38-9) | V8 | 5.50 d,c | 25.90 a,b | 13 g–i | 69.29 a,b |
BRRIdhan 46 | V9 | 6.25 a–c | 16.07 a–c | 11 h,i | 74.23 a |
Putra 1 | V10 | 5.75 b–d | 23.66 a–c | 19 c,d | 55.513 d–f |
BRRIdhan 82 | V11 | 6.00 a–d | 19.64 a–d | 21 b–d | 51.02 e–g |
MRIA1 | V12 | 7.35 a,b | 3.13 b–e | 18.5 d,e | 56.38 d–f |
BR26 | V13 | 6.00 a–d | 19.64 a–c | 15 e–h | 64.86 a–d |
BR23 | V14 | 6.00 a–d | 19.64 a–c | 14.5 i | 75.35 a |
MRQ74 | V15 | 7.00 a–c | 6.25 b,c | 24 b | 43.55 g |
BRRIdhan 39 | V16 | 6.25 a–c | 16.07 a–c | 14 f–i | 67.30 a–c |
Putra 2 | V17 | 7.00 a–c | 6.25 b,c | 19 c,d | 55.48 d–f |
Level of Significance | ** | * | ** | ** |
Variety | Code | Sandwich Method | Relay Seeding Method |
---|---|---|---|
API | API | ||
BRRIdhan 45 | V1 | 18.21 g,h | 28.63 c–e |
BRRIdhan 48 | V2 | 5.81 i | 28.14 c–e |
Line (L50-38-8) | V3 | 23.15 d–g | 27.80 c–e |
Saitta | V4 | 21.18 e–h | 18.79 f |
BRRIdhan 75 | V5 | 27.43 b–d | 28.31 c–e |
BRRIdhan 69 | V6 | 21.04 e–h | 23.00 e,f |
BR17 | V7 | 40.62 a | 41.52 a |
Line (16-3-38-9) | V8 | 29.75 b–d | 34.41 a–c |
BRRIdhan 46 | V9 | 25.23 e,f | 34.00 a–d |
Putra 1 | V10 | 28.93 b–d | 29.405 c–e |
BRRIdhan 82 | V11 | 18.53 f–h | 26.4 c–e |
MRIA1 | V12 | 15.43 h | 27.873 c–e |
BR26 | V13 | 31.07 b,c | 34.293 a–c |
BR23 | V14 | 34.14 a,b | 38.553 a,b |
MRQ74 | V15 | 21.75 e–h | 26.143 d,e |
BRRIdhan 39 | V16 | 28.92 b–d | 32.218 b–d |
Putra 2 | V17 | 21.35 e–h | 26.47 c–e |
Level of significance | - | ** | ** |
M | Ger (%) | RL | SL | DW | MGT | API | |
---|---|---|---|---|---|---|---|
Ger (%) | R | 1 | |||||
S | 1 | ||||||
RL | R | 0.26 * | 1 | ||||
S | 0.38 * | 1 | |||||
SL | R | 0.13 * | 0.36 * | 1 | |||
S | 0.58 ** | 0.49 ** | 1 | ||||
DW | R | 0.34 * | 0.26 * | 0.30 * | 1 | ||
S | 0.29 * | 0.18 * | 0.07 * | 1 | |||
MGT | R | 0.89 ** | 0.30 * | 0.14 * | 0.40 * | 1 | |
S | 0.81 ** | 0.30 * | 0.51 ** | 0.31 * | 1 | ||
API | R | 0.64 ** | 0.73 ** | 0.62 ** | 0.68 ** | 0.69 ** | 1 |
S | 0.78 ** | 0.70 ** | 0.77 ** | 0.54 ** | 0.74 ** | 1 |
Cluster | No. of Accessions | Accessions | Origin |
---|---|---|---|
I | V1, V2, V7, V8, V10, | BRRIdhan 45, BRRIdhan 48, BR17, Line (16-3-38-9) | BRRI, Bangladesh, UPM, Malaysia |
II | V3, V5, V13, V14, V16 | Line (L50-38-8), BRRIdhan 75, BR26, BR23, BRRIdhan 39 | UPM, Malaysia, BRRI, Bangladesh, |
III | V4, V9, V15, V17 | Saitta, BRRIdhan 46, MRQ74, Putra2 | BRRI, Bangladesh, MARDI, Malaysia, UPM, Malaysia |
IV | V12 | MRIA1 | MARDI, Malaysia |
V | V6 | BRRIdhan69 | BRRI, Bangladesh |
VI | V11 | BRRIdhan82 | BRRI, Bangladesh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, F.; Juraimi, A.S.; Rafii, M.Y.; Uddin, M.K.; Hassan, L.; Chowdhury, A.K.; Bashar, H.M.K. Allelopathic Effect of Selected Rice (Oryza sativa) Varieties against Barnyard Grass (Echinochloa cruss-gulli). Plants 2021, 10, 2017. https://doi.org/10.3390/plants10102017
Rahaman F, Juraimi AS, Rafii MY, Uddin MK, Hassan L, Chowdhury AK, Bashar HMK. Allelopathic Effect of Selected Rice (Oryza sativa) Varieties against Barnyard Grass (Echinochloa cruss-gulli). Plants. 2021; 10(10):2017. https://doi.org/10.3390/plants10102017
Chicago/Turabian StyleRahaman, Ferdoushi, Abdul Shukor Juraimi, Mohd Y. Rafii, Md. Kamal Uddin, Lutful Hassan, Abul Kashem Chowdhury, and H. M. Khairul Bashar. 2021. "Allelopathic Effect of Selected Rice (Oryza sativa) Varieties against Barnyard Grass (Echinochloa cruss-gulli)" Plants 10, no. 10: 2017. https://doi.org/10.3390/plants10102017
APA StyleRahaman, F., Juraimi, A. S., Rafii, M. Y., Uddin, M. K., Hassan, L., Chowdhury, A. K., & Bashar, H. M. K. (2021). Allelopathic Effect of Selected Rice (Oryza sativa) Varieties against Barnyard Grass (Echinochloa cruss-gulli). Plants, 10(10), 2017. https://doi.org/10.3390/plants10102017