Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage
Abstract
:1. Introduction
2. Major Causes and Factors for the Depletion of Soil Organic Carbon
3. Management of Soil Organic Carbon
4. Mechanism of Soil C Sequestration
5. Conventional Tillage and Soil Carbon Stocks (CS)
6. Conservation Agriculture and NT for Soil Organic Carbon
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Baker, H.S.; Millar, R.J.; Karoly, D.J.; Beyerle, U.; Guillod, B.P.; Mitchell, D.; Shiogama, H.; Sparrow, S.; Woollings, T.; Allen, M.R. Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nat. Clim. Chang. 2018, 8, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Liu, Z.; Kaufmann, G. Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasarao, C.; Lal, R.; Kundu, S.; Thakur, P.B. Conservation agriculture and soil carbon sequestration. Conserv. Agric. 2015, 479–524. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.; Jarvis, A.; Kristjanson, P. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Lal, R. Soil Erosion Research Methods. In Soil and Water Conservation Society; CRC Press: Ankeny, IA, USA, 1994; p. 340. [Google Scholar]
- Kendall, H.W.; Pimentel, D. Constraints on the expansion of the global food supply. Ambio 1994, 23, 198–205. [Google Scholar]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Haider, K. Von der toten organischen Substanz zum Humus. J. Plant Nutr. Soil Sci. 1999, 162, 363–371. [Google Scholar] [CrossRef]
- Lal, R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci. 1999, 1, 307–326. [Google Scholar]
- Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.; Sharma, V.; Arya, V.M.; Kumar, R.; Singh, V.; Sinha, B.K.; Singh, B. Soil Quality Refurbishment through Carbon Sequestration in Climate Change: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1210–1223. [Google Scholar] [CrossRef] [Green Version]
- Nwite, J.; Alu, M. Carbon sequestration and assessment of fertility status of soil under different land uses for agronomic potentials in Abakaliki South Eastern Nigeria. Afr. J. Agric. Res. 2017, 12, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Kumar, A.; Behera, S.K.; Sharma, Y.K.; Singh, N. Soil carbon sequestration: An innovative strategy for reducing atmospheric carbon dioxide concentration. Biodivers. Conserv. 2012, 21, 1343–1358. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.M.; Lal, R.; Lowery, B. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Sci. Soc. Am. J. 2014, 78, 348–360. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ding, W.; Chen, Z.; Zhang, H.; Luo, J.; Bolan, N. Accumulation of organic C components in soil and aggregates. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Vittal, K.; Venkateswarlu, B.; Wani, S.; Sahrawat, K.; Marimuthu, S.; Kundu, S. Carbon stocks in different soil types under diverse rainfed production systems in tropical India. Commun. Soil Sci. Plant Anal. 2009, 40, 2338–2356. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Huang, S.; Zha, X. Assessing spatial variability of soil organic carbon and total nitrogen in eroded hilly region of subtropical China. PLoS ONE 2020, 15, e0244322. [Google Scholar] [CrossRef]
- Naitam, R.; Bhattacharyya, T. Quasi-equilibrium of organic carbon in shrink–swell soils of the subhumid tropics in India under forest, horticulture, and agricultural systems. Soil Res. 2004, 42, 181–188. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S.; Vittal, K.P.R.; Ramachandrappa, B.K.; Gajanan, G.N. Long-term effects of crop residues and fertility management on carbon sequestration and agronomic productivity of groundnut–finger millet rotation on an Alfisol in southern India. Int. J. Agric. Sustain. 2012, 10, 230–244. [Google Scholar] [CrossRef]
- Nath, C.; Das, T.; Rana, K.; Bhattacharyya, R.; Pathak, H.; Paul, S.; Meena, M.; Singh, S. Weed and nitrogen management effects on weed infestation and crop productivity of wheat–mungbean sequence in conventional and conservation tillage practices. Agric. Res. 2017, 6, 33–46. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T. An ecologically sustainable approach to agricultural production intensification: Global perspectives and developments. Field Actions Sci. Rep. J. Field Actions 2012. Available online: http://journals.openedition.org/factsreports/1382 (accessed on 28 July 2021).
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation agriculture, improving soil quality for sustainable production systems. In Advances in Soil Science: Food Security and Soil Quality; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Dick, W.; Durkalski, J. No-tillage production agriculture and carbon sequestration in a Typic Fragiudalf soil of northeastern Ohio. In Management of Carbon Sequestration in Soil; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Ration, FL, USA, 1998; pp. 59–71. [Google Scholar]
- De Moraes Sa, J.C.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J. Environ. Manag. 2020, 261, 110261. [Google Scholar] [CrossRef]
- De Moraes Sá, J.C.; Cerri, C.C.; Dick, W.A.; Lal, R.; Filho, S.P.V.; Piccolo, M.C.; Feigl, B.E. Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. 2001, 65, 1486–1499. [Google Scholar]
- Kimble, J.M.; Follett, R.F.; Cole, C.V. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- de Torres, M.A.R.-R.; Carbonell-Bojollo, R.M.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríquez-Lizana, A. Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard. Soil Tillage Res. 2021, 210, 104977. [Google Scholar] [CrossRef]
- Jat, R.A.; Wani, S.P.; Sahrawat, K.L. Conservation agriculture in the semi-arid tropics: Prospects and problems. Adv. Agron. 2012, 117, 191–273. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, K.R.; Al-Kaisi, M.; Lal, R.; Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 2016, 71, 61A–67A. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The increase of soil organic matter reduces global warming, myth or reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, G.; Feng, H.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; Dyck, M.; Wang, X.; Zhang, J. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res. 2017, 24, 10108–10120. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- De Gouvello, C. Brazil Low-carbon Country Case Study; The World Bank Group; The International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Gebara, M.F.; Thuault, A. GHG Mitigation in Brazil’s Land Use Sector: An Introduction to the Current National Policy Landscape; WRI: Washington, DC, USA, 2013. [Google Scholar]
- de Magalhães, M.M.; Lima, D.L. Low-Carbon Agriculture in Brazil: The Environmental and Trade Impact of Current Farm Policies, Issue Paper No. 54; International Centre for Trade and Sustainable Development: Geneva, Switzerland, 2014. [Google Scholar]
- Robertson, G.P.; Grace, P.R. Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials. In Tropical Agriculture in Transition—Opportunities for Mitigating Greenhouse Gas Emissions? Springer: Berlin/Heidelberg, Germany, 2004; pp. 51–63. [Google Scholar]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.; Mendes, I.C.; Arihara, J. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Kimble, J. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue. Soil Sci. Soc. Am. J. 2002, 66, 1965–1973. [Google Scholar] [CrossRef]
- Gale, W.; Cambardella, C.; Bailey, T. Surface Residue–and Root-derived Carbon in Stable and Unstable Aggregates. Soil Sci. Soc. Am. J. 2000, 64, 196–201. [Google Scholar] [CrossRef]
- Gale, W.; Cambardella, C.; Bailey, T. Root-derived carbon and the formation and stabilization of aggregates. Soil Sci. Soc. Am. J. 2000, 64, 201–207. [Google Scholar] [CrossRef]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Castejón, J.M.P. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Beare, M.; Hendrix, P.; Coleman, D. Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils. Soil Sci. Soc. Am. J. 1994, 58, 777–786. [Google Scholar] [CrossRef]
- Beare, M.H.; Hendrix, P.; Cabrera, M.; Coleman, D. Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils. Soil Sci. Soc. Am. J. 1994, 58, 787–795. [Google Scholar] [CrossRef]
- Puget, P.; Lal, R.; Izaurralde, C.; Post, M.; Owens, L. Stock and distribution of total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices. Soil Sci. 2005, 170, 256–279. [Google Scholar] [CrossRef]
- Allmaras, R.R.; Linden, D.R.; Clapp, C. Corn-residue transformations into root and soil carbon as related to nitrogen, tillage, and stover management. Soil Sci. Soc. Am. J. 2004, 68, 1366–1375. [Google Scholar] [CrossRef] [Green Version]
- Himes, F. Nitrogen, sulfur, and phosphorus and the sequestering of carbon. In Soil Processes and the Carbon Cycle; CRC Press: Boca Raton, FL, USA, 2018; pp. 315–319. [Google Scholar]
- Jacinthe, P.; Lal, R.; Kimble, J. Effects of wheat residue fertilization on accumulation and biochemical attributes of organic carbon in a central Ohio Luvisol. Soil Sci. 2002, 167, 750–758. [Google Scholar] [CrossRef]
- Campbell, C.; Selles, F.; Lafond, G.; Zentner, R. Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 2001, 81, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Gregorich, E.; Monreal, C.; Ellert, B. Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance. Can. J. Soil Sci. 1995, 75, 161–167. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Voroney, R.; Vyn, T.; Beyaert, R.; MacKenzie, A. Tillage effects on the dynamics of total and corn-residue-derived soil organic matter in two southern Ontario soils. Can. J. Soil Sci. 1999, 79, 473–480. [Google Scholar] [CrossRef]
- Murungu, F.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-Temp. climate of South Africa. Soil Tillage Res. 2011, 112, 58–65. [Google Scholar] [CrossRef]
- Lavelle, P.; Pashanasi, B. Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 1989, 33, 283–291. [Google Scholar]
- Lorenz, K.; Lal, R. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 2005, 88, 35–66. [Google Scholar]
- Wani, S.A.; Mehraj-Ud-din, K.; Bashir, Z.; Kousar, S.; Rasool, F.; Zargar, M. Carbon Sequestration Potential of Soils—A Review. Carbon Sequestration Potential Soils 2016, 5, 9500–9600. [Google Scholar]
- Gupta, D.; Bhatia, A.; Kumar, A.; Chakrabarti, B.; Jain, N.; Pathak, H. Global warming potential of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system of the Indo-Gangetic Plains. Indian J. Agric. Sci 2015, 85, 807–816. [Google Scholar]
- Shrestha, B.; McConkey, B.; Smith, W.; Desjardins, R.; Campbell, C.; Grant, B.; Miller, P. Effects of crop rotation, crop type and tillage on soil organic carbon in a semiarid climate. Can. J. Soil Sci. 2013, 93, 137–146. [Google Scholar] [CrossRef]
- Jain, N.; Dubey, R.; Dubey, D.; Singh, J.; Khanna, M.; Pathak, H.; Bhatia, A. Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy Water Environ. 2014, 12, 355–363. [Google Scholar] [CrossRef]
- Hille, D.; Rosenzweig, C. The role of soils in climate change. In Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation; Hille, D., Rosenzweig, C., Eds.; ICP Series on Climate Change Impacts, Adaptation, and Mitigation; Imperial College Press: Singapore, 2011; Volume 1, pp. 9–20. [Google Scholar]
- Bhattacharyya, R.; Das, T.; Sudhishri, S.; Dudwal, B.; Sharma, A.; Bhatia, A.; Singh, G. Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. Eur. J. Agron. 2015, 70, 11–21. [Google Scholar] [CrossRef]
- Rashidi, M.; Keshavarzpour, F. Effect of different tillage methods on grain yield and yield components of maize (Zea mays L.). Int. J. Agric. Biol 2007, 9, 274–277. [Google Scholar]
- Rashidi, M.; Keshavarzpour, F. Effect of different tillage methods on soil physical properties and crop yield of melon (Cucumis melo). ARPN J. Agric. Biol. Sci. 2008, 3, 41–46. [Google Scholar]
- Rashidi, M.; Gholami, M.; Abbassi, S. Effect of different tillage methods on yield and yield components of tomato (Lycopersicon esculentum). ARPN J. Agric. Biol. Sci. 2006, 5, 26–30. [Google Scholar]
- Tejada, M.; Garcia, C.; Gonzalez, J.; Hernandez, M. Organic amendment based on fresh and composted beet vinasse: Influence on soil properties and wheat yield. Soil Sci. Soc. Am. J. 2006, 70, 900–908. [Google Scholar] [CrossRef]
- Jastrow, J.; Miller, R. Methods for assessing the effects of biota on soil structure. Agric. Ecosyst. Environ. 1991, 34, 279–303. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Haile, S.G.; Nair, P.R.; Nair, V.D. Carbon storage of different soil-size fractions in Florida silvopastoral systems. J. Environ. Qual. 2008, 37, 1789–1797. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Kou, T.; Zhu, P.; Huang, S.; Peng, X.; Song, Z.; Deng, A.; Gao, H.; Peng, C.; Zhang, W. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil Tillage Res. 2012, 118, 132–138. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.; Reynolds, W.; Tan, C. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon. Soil Tillage Res. 2008, 100, 120–124. [Google Scholar] [CrossRef]
- Obalum, S.; Obi, M. Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems. Soil Tillage Res. 2010, 108, 30–36. [Google Scholar] [CrossRef]
- Gregorich, E.; Drury, C.; Baldock, J. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can. J. Soil Sci. 2001, 81, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Fang, H.; Gao, L.; Zhang, W. Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecol. Res. 2006, 21, 855–867. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Lal, R.; Ann-Varughese, M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res. 2013, 126, 151–158. [Google Scholar] [CrossRef]
- Prasad, J.; Rao, C.S.; Srinivas, K.; Jyothi, C.N.; Venkateswarlu, B.; Ramachandrappa, B.; Dhanapal, G.; Ravichandra, K.; Mishra, P. Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi arid tropics of southern India. Soil Tillage Res. 2016, 156, 131–139. [Google Scholar] [CrossRef]
- Somasundaram, J.; Sinha, N.; Dalal, R.C.; Lal, R.; Mohanty, M.; Naorem, A.; Hati, K.; Chaudhary, R.; Biswas, A.; Patra, A. No-till farming and conservation agriculture in South Asia–issues, challenges, prospects and benefits. Crit. Rev. Plant Sci. 2020, 39, 236–279. [Google Scholar] [CrossRef]
- Dumanski, J.; Peiretti, R.; Benites, J.; McGarry, D.; Pieri, C. The paradigm of conservation agriculture. Proc. World Assoc. Soil Water Conserv. 2006, 1, 58–64. [Google Scholar]
- Pisante, M.; Stagnari, F.; Acutis, M.; Bindi, M.; Brilli, L.; Di Stefano, V.; Carozzi, M. Conservation agriculture and climate change. In Conservation Agriculture; Springer: Berlin/Heidelberg, Germany, 2015; pp. 579–620. [Google Scholar]
- Pisante, M.; Stagnari, F.; Grant, C.A. Agricultural innovations for sustainable crop production intensification. Ital. J. Agron. 2012, 7, e40. [Google Scholar] [CrossRef] [Green Version]
- González-Sánchez, E.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Ella, V.B.; Reyes, M.R.; Mercado, A., Jr.; Adrian, A.; Padre, R. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems. Eurasian J. Soil Sci. 2016, 5, 24–29. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Resources Assessment 2015, How Are the World’s Forests Changing? Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration and aggregation by cover cropping. J. Soil Water Conserv. 2015, 70, 329–339. [Google Scholar] [CrossRef]
- Carbonell-Bojollo, R.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A. Influence of olive mill waste application on the role of soil as a carbon source or sink. Clim. Chang. 2010, 102, 625–640. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkota, T.B.; Barberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Ruibérriz, M.A.R.; Bojollo, R.M.C.; Braña, C.A.; Lizana, A.R.; Fernández, R.M.O. Carbon sequestration potential of residues of different types of cover crops in olive groves under Mediterranean climate. Span. J. Agric. Res. 2012, 10, 649–661. [Google Scholar]
- Alvarez, R.; Diaz, R.A.; Barbero, N.; Santanatoglia, O.J.; Blotta, L. Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil Tillage Res. 1995, 33, 17–28. [Google Scholar] [CrossRef]
- Chahal, I.; Vyn, R.J.; Mayers, D.; Van Eerd, L.L. Cumulative impact of cover crops on soil carbon sequestration and profitability in a temperate humid climate. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Swink, S.N.; Duiker, S.W.; Czymmek, K.J.; Beegle, D.B.; Cox, W.J. Integrating cover crops for nitrogen management in corn systems on northeastern US dairies. Agron. J. 2015, 107, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Chahal, I.; Van Eerd, L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil 2018, 427, 351–367. [Google Scholar] [CrossRef]
- Chahal, I.; Van Eerd, L.L. Quantifying soil quality in a horticultural-cover cropping system. Geoderma 2019, 352, 38–48. [Google Scholar] [CrossRef]
- Chabierski, S.; Rada, K.; Sona, S.; Boulakia, S. Conservation Agriculture as an Alternative to Plough-Based Cassava Cropping in the Upland Borders of Kampong Cham, Cambodia: Preliminary Results of Extension. In Proceedings of the 3rd International Conference on Conservation Agriculture in Southeast Asia, Hanoi, Vietnam, 10–15 December 2012; p. 282. [Google Scholar]
- Corsi, S.; Friedrich, T.; Kassam, A.; Pisante, M.; Sà, J.M. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A Literature Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- De Moraes Sa, J.C.; Tivet, F.; Lal, R.; Briedis, C.; Hartman, D.C.; dos Santos, J.Z.; dos Santos, J.B. Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil Tillage Res. 2014, 136, 38–50. [Google Scholar] [CrossRef]
- Hok, L.; de Moraes Sá, J.C.; Boulakia, S.; Reyes, M.; Leng, V.; Kong, R.; Tivet, F.E.; Briedis, C.; Hartman, D.; Ferreira, L.A. Short-term conservation agriculture and biomass-C input impacts on soil C dynamics in a savanna ecosystem in Cambodia. Agric. Ecosyst. Environ. 2015, 214, 54–67. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- García-Orenes, F.; Morugán-Coronado, A.; Zornoza, R.; Scow, K. Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PLoS ONE 2013, 8, e80522. [Google Scholar] [CrossRef]
- Das, A.; Lal, R.; Patel, D.; Idapuganti, R.; Layek, J.; Ngachan, S.; Ghosh, P.; Bordoloi, J.; Kumar, M. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. Soil Tillage Res. 2014, 143, 50–58. [Google Scholar] [CrossRef]
- Mutema, M.; Mafongoya, P.; Nyagumbo, I.; Chikukura, L. Effects of crop residues and reduced tillage on macrofauna abundance. J. Org. Syst. 2013, 8, 5–16. [Google Scholar]
- Lal, R. The role of residues management in sustainable agricultural systems. J. Sustain. Agric. 1995, 5, 51–78. [Google Scholar] [CrossRef]
- Ogban, P.; Ekanem, T.; Etim, E. Effect of mulching methods on soil properties and growth and yield of maize in south-eastern Nigeria.(82). Trop. Agric. 2001, 78, 82–89. [Google Scholar]
- Iqbal, M.; Ali, A.; Rizwanullah, M. Residual effect of tillage and farm manure on some soil physicalproperties and growth of wheat (Triticum aestivum L.). Int. J. Agric. Biol. 2005, 7, 54–57. [Google Scholar]
- Mikha, M.M.; Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.; Bhattacharyya, P.; Shukla, A.; Shahid, M.; Raja, R.; Panda, B.; Mohanty, S.; Kumar, A.; Thilagam, V. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice–rice system. Geoderma 2014, 213, 280–286. [Google Scholar] [CrossRef]
- Aniekwe, N.; Okereke, O.; Anikwe, M. Modulating effect of black plastic mulch on the environment, growth and yield of cassava in a derived savanna belt of Nigeria. Tropicultura 2004, 22, 185–190. [Google Scholar]
- Anikwe, M.; Mbah, C.; Ezeaku, P.; Onyia, V. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil Tillage Res. 2007, 93, 264–272. [Google Scholar] [CrossRef]
- Khan, F.; Tahir, A.; Yule, I. Intrinsic implication of different tillage practices on soil penetration resistance and crop growth. Int. J. Agric. Biol. 2001, 1, 23–26. [Google Scholar]
- Khurshid, K.; Iqbal, M.; Arif, M.S.; Nawaz, A. Effect of tillage and mulch on soil physical properties and growth of maize. Int. J. Agric. Biol. 2006, 8, 593–596. [Google Scholar]
- Sarkar, S.; Singh, S. Interactive effect of tillage depth and mulch on soil temperature, productivity and water use pattern of rainfed barley (Hordium vulgare L.). Soil Tillage Res. 2007, 92, 79–86. [Google Scholar] [CrossRef]
- Sarkar, S.; Paramanick, M.; Goswami, S. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Tillage Res. 2007, 93, 94–101. [Google Scholar] [CrossRef]
- Gajri, P.; Arora, V.; Chaudhary, M. Maize growth responses to deep tillage, straw mulching and farmyard manure in coarse textured soils of NW India. Soil Use Manag. 1994, 10, 15–19. [Google Scholar] [CrossRef]
- Głąb, T.; Kulig, B. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Tillage Res. 2008, 99, 169–178. [Google Scholar] [CrossRef]
- Bhatt, R.; Khera, K. Effect of tillage and mode of straw mulch application on soil erosion in the submontaneous tract of Punjab, India. Soil Tillage Res. 2006, 88, 107–115. [Google Scholar] [CrossRef]
- Jastrow, J. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob. Chang. Biol. 2009, 15, 1603–1614. [Google Scholar] [CrossRef]
- Cambardella, C.; Elliott, E. Methods for physical separation and characterization of soil organic matter fractions. In Soil Structure/Soil Biota Interrelationships; Elsevier: Amsterdam, The Netherlands, 1993; pp. 449–457. [Google Scholar]
- Elliott, E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Cambardella, C.; Elliott, E. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Puget, P.; Chenu, C.; Balesdent, J. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 1995, 46, 449–459. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K.; Doran, J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, L.; Alves, B.; Urquiaga, S.; Torres, E.; Dos Santos, H.; Paustian, K.; Boddey, R.; Six, J. Impact of tillage and crop rotation on aggregate-associated carbon in two Oxisols. Soil Sci. Soc. Am. J. 2005, 69, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Zibilske, L.M.; Bradford, J.M. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage. Soil Sci. Soc. Am. J. 2007, 71, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Kern, J.; Johnson, M. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 1993, 57, 200–210. [Google Scholar] [CrossRef]
- Duiker, S.W.; Lal, R. Carbon budget study using CO2 flux measurements from a no till system in central Ohio. Soil Tillage Res. 2000, 54, 21–30. [Google Scholar] [CrossRef]
- Tan, Z.; Lal, R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agric. Ecosyst. Environ. 2005, 111, 140–152. [Google Scholar] [CrossRef]
- Chen, H.; Marhan, S.; Billen, N.; Stahr, K. Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Württemberg (southwest Germany). J. Plant Nutr. Soil Sci. 2009, 172, 32–42. [Google Scholar] [CrossRef]
- Havlin, J.; Kissel, D.; Maddux, L.; Claassen, M.; Long, J. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci. Soc. Am. J. 1990, 54, 448–452. [Google Scholar] [CrossRef]
- Paustian, K.; Collins, H.P.; Paul, E.A. Management controls on soil carbon. In Soil Organic Matter in Temperate Agroecosystems; CRC Press: Boca Raton, FL, USA, 2019; pp. 15–49. [Google Scholar]
- Christensen, B.T. Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J. Soil Sci. 1986, 37, 125–135. [Google Scholar] [CrossRef]
- Skidmore, E.; Layton, J.; Armbrust, D.; Hooker, M. Soil physical properties as influenced by cropping and residue management. Soil Sci. Soc. Am. J. 1986, 50, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Unger, P.W. Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll. Soil Tillage Res. 1997, 42, 95–113. [Google Scholar] [CrossRef]
- Carter, M. Analysis of soil organic matter storage in agroecosystems. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–11. [Google Scholar]
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci.-Camb. 2007, 145, 127. [Google Scholar] [CrossRef] [Green Version]
- Angers, D.; Voroney, R.; Cote, D. Dynamics of soil organic matter and corn residues affected by tillage practices. Soil Sci. Soc. Am. J. 1995, 59, 1311–1315. [Google Scholar] [CrossRef]
- Reeves, M.; Lal, R.; Logan, T.; Sigaran, J. Soil nitrogen and carbon response to maize cropping system, nitrogen source, and tillage. Soil Sci. Soc. Am. J. 1997, 61, 1387–1392. [Google Scholar] [CrossRef]
- Dao, T.H. Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Sci. Soc. Am. J. 1998, 62, 250–256. [Google Scholar] [CrossRef]
- Needelman, B.; Wander, M.M.; Bollero, G.A.; Boast, C.; Sims, G.; Bullock, D. Interaction of tillage and soil texture biologically active soil organic matter in Illinois. Soil Sci. Soc. Am. J. 1999, 63, 1326–1334. [Google Scholar] [CrossRef]
- Clapp, C.E.; Allmaras, R.R.; Layese, M.F.; Linden, D.R.; Dowdy, R.H. Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res. 2000, 55, 127–142. [Google Scholar] [CrossRef]
- Wander, M.; Bidart, M.; Aref, S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 1998, 62, 1704–1711. [Google Scholar] [CrossRef]
- Ellert, B.; Bettany, J. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Huggins, D.R.; Clapp, C.; Allmaras, R.; Lamb, J.; Layese, M. Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance. Soil Sci. Soc. Am. J. 1998, 62, 195–203. [Google Scholar] [CrossRef]
- Duiker, S.; Lal, R. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res. 1999, 52, 73–81. [Google Scholar] [CrossRef]
- Campbell, C.; Zentner, R.; Bowren, K.; Townley-Smith, L.; Schnitzer, M. Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Can. J. Soil Sci. 1991, 71, 377–387. [Google Scholar] [CrossRef]
- Hao, Y.; Lal, R.; Owens, L.; Izaurralde, R.; Post, W.; Hothem, D. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil Tillage Res. 2002, 68, 133–142. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. https://doi.org/10.3390/plants10102001
Hussain S, Hussain S, Guo R, Sarwar M, Ren X, Krstic D, Aslam Z, Zulifqar U, Rauf A, Hano C, et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants. 2021; 10(10):2001. https://doi.org/10.3390/plants10102001
Chicago/Turabian StyleHussain, Sadam, Saddam Hussain, Ru Guo, Muhammad Sarwar, Xiaolong Ren, Djordje Krstic, Zubair Aslam, Usman Zulifqar, Abdur Rauf, Christophe Hano, and et al. 2021. "Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage" Plants 10, no. 10: 2001. https://doi.org/10.3390/plants10102001
APA StyleHussain, S., Hussain, S., Guo, R., Sarwar, M., Ren, X., Krstic, D., Aslam, Z., Zulifqar, U., Rauf, A., Hano, C., & El-Esawi, M. A. (2021). Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants, 10(10), 2001. https://doi.org/10.3390/plants10102001