At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy
Abstract
:1. Introduction
1.1. Autotomy and Regeneration in Lizards
1.2. Balancing the Costs of Regeneration Following Autotomy
1.3. Literature Search
2. Results
3. Discussion
3.1. Effects on Regeneration Ability
3.1.1. Type of Autotomy Plane
3.1.2. Importance of Tail
3.2. Life History Traits
3.2.1. Longevity
3.2.2. Sex
3.2.3. Age
3.3. Mechanical Effects
3.3.1. Position of Autotomy
3.3.2. Mechanism of Inducing Autotomy
3.3.3. Injury and Incomplete Autotomy—Multiple Tails
3.4. Regeneration Costs on Life History
3.4.1. Reproduction
3.4.2. Growth
3.4.3. Altered Behaviour
3.5. Environment
3.5.1. Temperature
3.5.2. Photoperiod
3.5.3. Nutrient and Food Availability
3.5.4. Environmental Stressors
3.6. Future Directions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bely, A.E.; Nyberg, K.G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 2010, 25, 161–170. [Google Scholar] [CrossRef]
- Bellairs, A.; Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 1985, 15, 301–410. [Google Scholar]
- Elchaninov, A.; Sukhikh, G.; Fatkhudinov, T. Evolution of regeneration in animals: A tangled story. Front. Ecol. Evol. 2021, 9, 121. [Google Scholar] [CrossRef]
- Goss, R.J. Principles of Regeneration; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Alibardi, L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. J. Exp. Zool. Part B Mol. Dev. Evol. 2019, 336, 145–164. [Google Scholar] [CrossRef]
- Lozito, T.P.; Tuan, R.S. Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniote. Connect. Tissue Res. 2017, 58, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Alibardi, L. Regeneration in anamniotes was replaced by regengrow and scarring in amniotes after land colonization and the evolution of terrestrial biological cycles. Dev. Dyn. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Goss, R.J. The evolution of regeneration: Adaptive or inherent? J. Theor. Biol. 1992, 159, 241–260. [Google Scholar]
- Daponte, V.; Tylzanowski, P.; Forlino, A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021, 10, 242. [Google Scholar] [CrossRef]
- Tsonis, P.A. Regeneration in vertebrates. Dev. Biol. 2000, 221, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, L.M.; Vogel, L.A.; Bowden, R.M. Understanding the vertebrate immune system: Insights from the reptilian perspective. J. Exp. Biol. 2010, 213, 661–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibardi, L. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes. J. Exp. Zool. Part B Mol. Dev. Evol. 2017, 328, 493–514. [Google Scholar] [CrossRef]
- Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 1988, 16, 235–273. [Google Scholar]
- Bateman, P.W.; Fleming, P.A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. 2009, 277, 1–14. [Google Scholar] [CrossRef]
- Itescu, Y.; Schwarz, R.; Meiri, S.; Pafilis, P.; Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 2017, 86, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 1984, 18, 127–169. [Google Scholar] [CrossRef]
- White, C.P. Regeneration of the lizard’s tail. J. Pathol. 1925, 28, 63–68. [Google Scholar] [CrossRef]
- Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Clause, A.R.; Capaldi, E.A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 2006, 305, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 1920, 2, 63–100. [Google Scholar] [CrossRef]
- Barr, J.I.; Boisvert, C.A.; Somaweera, R.; Trinajstic, K.; Bateman, P.W. Re-regeneration to reduce negative effects associated with tail loss in lizards. Sci. Rep. 2019, 9, 18717. [Google Scholar] [CrossRef]
- Fox, S.F.; McCoy, J.K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 2000, 122, 327–334. [Google Scholar] [CrossRef]
- Maginnis, T.L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 2006, 17, 857–872. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Camacho, F.J.; Rubiño-Hispán, M.V.; Reguera, S.; Moreno-Rueda, G. Does tail regeneration following autotomy restore lizard sprint speed? Evidence from the lacertid Psammodromus algirus. Herpetol. J. 2016, 26, 213–218. [Google Scholar]
- Higham, T.E.; Russell, A.P.; Zani, P.A. Integrative biology of tail autotomy in lizards. Physiol. Biochem. Zool. 2013, 86, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, R. Lizard caudal vertebrae. Copeia 1967, 699–721. [Google Scholar] [CrossRef]
- Alibardi, L.; Meyer-Rochow, V. Comparative fine structure of the axial skeleton inside the regenerated tail of some lizard species and the tuatara (Sphenodon punctatus). Gegenbaurs Morphol. Jahrb. 1989, 135, 705–716. [Google Scholar]
- Hardy, C.J.; Hardy, C.M. Tail regeneration and other observations in a species of agamid lizard. Aust. Zool. 1977, 14, 141–148. [Google Scholar]
- Loumbourdis, N. The tail of the lizard Agama stellio stellio: Energetics, significance and comments on its regeneration. Amphibia-Reptilia 1986, 7, 167–170. [Google Scholar] [CrossRef]
- Bryant, S.V.; Bellairs, A.d.A. Tail regeneration in the lizards Anguis fragilis and Lacerta dugesii. Zool. J. Linn. Soc. 1967, 46, 297–305. [Google Scholar] [CrossRef]
- Miller, C.M. Ecologic relations and adaptations of the limbless lizards of the genus Anniella. Ecol. Monogr. 1944, 14, 271–289. [Google Scholar] [CrossRef]
- Vitt, L.J.; Congdon, J.D.; Dickson, N.A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 1977, 58, 326–337. [Google Scholar] [CrossRef]
- Jamison, J.P. Regeneration subsequent to intervertebral amputation in lizards. Herpetologica 1964, 20, 145–149. [Google Scholar]
- Fitch, H.S. A comparative study of loss and regeneration of lizard tails. J. Herpetol. 2003, 37, 395–399. [Google Scholar] [CrossRef]
- Licht, P.; Howe, N.R. Hormonal dependence of tail regeneration in the lizard Anolis carolinensis. J. Exp. Zool. 1969, 171, 75–83. [Google Scholar] [CrossRef]
- Maderson, P.; Licht, P. Factors influencing rates of tail regeneration in the lizard Anolis carolinensis. Experientia 1968, 24, 1083–1086. [Google Scholar] [CrossRef]
- Maderson, P.; Salthe, S. Further observations on tail regeneration in Anolis carolinensis (Iguanidae, Lacertilia). J. Exp. Zool. 1971, 177, 185–189. [Google Scholar] [CrossRef]
- Turner, J.E.; Tipton, S.R. The effect of unnatural day lengths on tail regeneration in the lizard Anolis carolinensis. Herpetologica 1972, 28, 47–50. [Google Scholar]
- Cox, P.G. Some aspects of tail regeneration in the lizard, Anolis carolinensis. I. A description based on histology and autoradiography. J. Exp. Zool. 1969, 171, 127–149. [Google Scholar] [CrossRef]
- Tassava, R.; Goss, R. Regeneration rate and amputation level in fish fins and lizard tails. Growth 1966, 30, 9–21. [Google Scholar] [PubMed]
- Kamrin, R.P.; Singer, M. The influence of the spinal cord in regeneration of the tail of the lizard, Anolis carolinensis. J. Exp. Zool. 1955, 128, 611–627. [Google Scholar] [CrossRef]
- Barber, L.W. Correlations between wound healing and regeneration in fore-limbs and tails of lizards. Anat. Rec. 1944, 89, 441–453. [Google Scholar] [CrossRef]
- Beatty, A.E.; Mote, D.M.; Schwartz, T.S. Tails of reproduction: Regeneration leads to increased reproductive investment. J. Exp. Zool. A Ecol. Integr. Physiol. 2021, 335, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.K. Effects of tail autotomy on survival, growth and territory occupation in free-ranging juvenile geckos (Oedura lesueurii). Austral Ecol. 2006, 31, 432–440. [Google Scholar] [CrossRef]
- Mulaik, S. Tail Regeneration in Coleonyx brevis Stejneger. Copeia 1935, 1935, 155–156. [Google Scholar] [CrossRef]
- Congdon, J.D.; Vitt, L.J.; King, W.W. Geckos: Adaptive significance and energetics of tail autotomy. Science 1974, 184, 1379–1380. [Google Scholar] [CrossRef]
- Parker, W.S. Aspects of the ecology of a Sonoran Desert population of the western banded gecko, Coleonyx variegatus (Sauria, Eublepharinae). Am. Midl. Nat. 1972, 88, 209–224. [Google Scholar] [CrossRef]
- Jagnandan, K.; Russell, A.P.; Higham, T.E. Tail autotomy and subsequent regeneration alter the mechanics of locomotion in lizards. J. Exp. Biol. 2014, 217, 3891–3897. [Google Scholar] [CrossRef] [Green Version]
- Abdel Karim, A.E. Regeneration from different levels along the tail of the geckonid lizard, Bunopus tuberculatus. Qatar Univ. Sci. J. 1994, 14, 82–89. [Google Scholar]
- Abdel Karim, A.E.; Michael, M.I. Tail regeneration after autotomy in the geckonid lizard Bunopus tuberculatus. Qatar Univ. Sci. J. 1993, 13, 293–300. [Google Scholar]
- Panitvong, N.; Lauhachinda, V.; Saithong, S.; Temchai, T. Ecology of Cyrtodactylus sumonthai bauer, Pauwels & Chanhome, 2002 (Reprilia: Squamata: Gekkonidae): A karst dwelling bento-toed gecko from South-Eastern Thailand. Raffles Bull. Zool. 2012, 60, 569–582. [Google Scholar]
- Kurup, A.; Patel, M.; Ramachandran, A. Differential time dependent influence of pineal indoles on tail regeneration in the gekkonid lizard, Hemidactylus flaviviridis Ruppell. Indian J. Exp. Biol. 1995, 33, 560–564. [Google Scholar]
- Kurup, A.; Ramachandran, A. Temperature is relatively more important than light for regenerative tail growth in tropical lizards: Observations from seasonal and experimental studies in Hemidactylus flaviviridis. World J. Zool. 2011, 6, 375–384. [Google Scholar]
- Magon, D. Studies on the Normal and Regenerating Tail of the House Lizard Hemidactylus flaviviridis with Emphasis on Oxidative Enzymes; University of Baroda: Baroda, India, 1970. [Google Scholar]
- Ramachandran, A.V.; Ndukuba, P.I. Tail regeneration in normal, blinded and pinealectomized gekkonid lizards, Hemidactylus flaviviridis, exposed to four different light conditions during three seasons (temperatures). Acta. Zool. 1989, 70, 205–210. [Google Scholar] [CrossRef]
- Hughes, A.; New, D. Tail regeneration in the geckonid lizard, Sphaerodactylus. Development 1959, 7, 281–302. [Google Scholar] [CrossRef]
- Cagle, F.R. Tail loss and regeneration in a Pacific island gecko. Copeia 1946, 1946, 45. [Google Scholar] [CrossRef]
- Meyer, V.; Preest, M.R.; Lochetto, S.M. Physiology of original and regenerated lizard tails. Herpetologica 2002, 58, 75–86. [Google Scholar] [CrossRef]
- Werner, Y.L. Regeneration of the caudal axial skeleton in a gekkonid lizard (Hemidactylus) with particular reference to the ‘latent’period. Acta Zool. 1967, 48, 103–125. [Google Scholar] [CrossRef]
- Starostová, Z.; Gvoždík, L.; Kratochvíl, L. An energetic perspective on tissue regeneration: The costs of tail autotomy in growing geckos. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 206, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 1993, 32, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Fraisse, P.H. Die Regeneration von Geweben und Organen bei den Wirbelthieren, besonders Amphibien und Reptilien; Fischer: Cassel, France, 1885. [Google Scholar]
- Hooker, D. Die Nerven im regenerierten Schwanz der Eidechsen. Arch. Mikrosk. 1912, 80, 217–222. [Google Scholar] [CrossRef]
- Haddad, L.T. A Comparative Study of the Histology and Gross Morphology of Limb and Tail Regenerates in Lacerta laevis; American University of Beirut: Beirut, Lebanon, 1958. [Google Scholar]
- Tsasi, G.; Valakos, E.; Simou, C.; Pafilis, P. Predation pressure, density-induced stress and tail regeneration: A casual-nexus situation or a bunch of independent factors? Amphibia-Reptilia 2009, 30, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Baranowitz, S.; Maderson, P.; Connelly, T.G. Lizard and newt tail regeneration: A quantitative study. J. Exp. Zool. 1979, 210, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Moffat, L.A.; Bellairs, A.D.A. The regenerative capacity of the tail in embryonic and post-natal lizards (Lacerta vivipara). J. Embryol. Exp. Morphol. 1964, 12, 769–786. [Google Scholar]
- Oppliger, A.; Clobert, J. Reduced tail regeneration in the Common Lizard, Lacerta vivipara, parasitized by blood parasites. Funct. Ecol. 1997, 11, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Blair, W.F. The Rusty Lizard: A Population Study; University of Texas Press: Austin, TX, USA, 1960. [Google Scholar]
- Tinkle, D.W. The life and demography of the side-blotched lizard, Uta stansburiana. Misc. Publ. Mus. Zool. Univ. Mich. 1967, 132, 1–182. [Google Scholar]
- Noble, G.; Bradley, H. The effect of temperature on the scale form of regenerated lizard skin. J. Exp. Zool. 1933, 65, 1–16. [Google Scholar] [CrossRef]
- Gosse, P.H.; Hill, R. A Naturalist’s Sojourn in Jamaica; Longman, Brown, Green and Longmans: London, UK, 1851. [Google Scholar]
- Vitt, L.J. Tail autotomy and regeneration in the tropical skink, Mabuya heathi. J. Herpetol. 1981, 15, 454–457. [Google Scholar] [CrossRef]
- Chapple, D. ‘Costs’ of Caudal Autotomy in the Metallic Skink, Niveoscincus metallicus; University of Tasmania: Hobart, Australia, 2000. [Google Scholar]
- Chapple, D.G.; McCoull, C.J.; Swain, R. Changes in reproductive investment following caudal autotomy in viviparous skinks (Niveoscincus metallicus): Lipid depletion or energetic diversion? J. Herpetol. 2002, 36, 480–486. [Google Scholar] [CrossRef]
- Langkilde, T.; Alford, R.A.; Schwarzkopf, L. No behavioural compensation for fitness costs of autotomy in a lizard. Austral Ecol. 2005, 30, 713–718. [Google Scholar] [CrossRef]
- Fredericksen, N.J. The Energetic Consequences of Tail Loss to Juveniles; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1989. [Google Scholar]
- Taylor, J.A. Ecology of the Lizard, ‘Ctenotus taeniolatus’: Interaction of Life History, Energy Storage and Tail Autonomy; University of New England: Armidale, Australia, 1985. [Google Scholar]
- Barwick, R.E. The life history of the common New Zealand skink Leiolopisma zelandica (Gray, 1843). Trans. R. Soc. N. Z. 1959, 86, 331–380. [Google Scholar]
- Rathor, M. The autotomy and regeneration of tail of an Indian sand lizard. Ophiomorus Str. Anderson Leviton. Zool. Polon. 1971, 21, 125. [Google Scholar]
- Messner, A. Energy Allocation after Caudal Autotomy in the Great Plains Skink, Plestiodon obsoletus; Emporia State University: Emporia, KS, USA, 2015. [Google Scholar]
- Goodman, R.M. Effects of tail loss on growth and sprint speed of juvenile Eumeces fasciatus (Scincidae). J. Herpetol. 2006, 40, 99–102. [Google Scholar] [CrossRef]
- Vitt, L.J.; Cooper, W.E., Jr. Tail loss, tail color, and predator escape in Eumeces (Lacertilia: Scincidae): Age-specific differences in costs and benefits. Can. J. Zool. 1986, 64, 583–592. [Google Scholar] [CrossRef]
- Fitch, H.S. Life history and ecology of the five-lined skink, Eumeces fasciatus. Univ. Kans. Publ. Mus. Nat. Hist. 1954, 8, 1–156. [Google Scholar]
- Simpson, S., Jr. Analysis of tail regeneration in the lizard Lygosoma laterale. I. Initiation of regeneration and cartilage differentiation: The role of ependyma. J. Morphol. 1964, 114, 425–435. [Google Scholar] [CrossRef]
- Magon, D.K. Effects of temperature on growth in the regenerating tail of the scincid lizard, Mabuya striata. Afr. Zool. 1977, 12, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, R.G.; Lowe, C.H. The ecology of a population of Xantusia vigilis, the desert night lizard. Am. Mus. Novit. 1966, 2247, 1–57. [Google Scholar]
- Fleming, P.A.; Valentine, L.E.; Bateman, P.W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 2013, 86, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Schwaner, M.J.; Hsieh, S.T.; Braasch, I.; Bradley, S.; Campos, C.B.; Collins, C.E.; Donatelli, C.M.; Fish, F.E.; Fitch, O.E.; Flammang, B.E.; et al. Future tail tales: A forward-looking, integrative perspective on tail research. Integr. Comp. Biol. 2021, 61, 521–537. [Google Scholar] [CrossRef]
- Emberts, Z.; Escalante, I.; Bateman, P.W. The ecology and evolution of autotomy. Biol. Rev. 2019, 94, 1881–1896. [Google Scholar] [CrossRef]
- Uetz, P.E. The Reptile Database. Available online: http://www.reptile-database.org (accessed on 15 August 2021).
- Hardy, G.S. The New Zealand Scincidae (Reptilia: Lacertilia); a taxonomic and zoogeographic study. N. Z. J. Zool. 1977, 4, 221–325. [Google Scholar] [CrossRef]
- Ananjeva, N.B.; Gordeev, D.A.; Korost, D.V. The review of the autotomy of agamid lizards with considerations about the types of autotomy and regeneration. J. Dev. Biol. 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Schall, J.J.; Bromwich, C.R.; Werner, Y.L.; Midlege, J. Clubbed regenerated tails in Agama agama and their possible use in social interactions. J. Herpetol. 1989, 23, 303–305. [Google Scholar] [CrossRef]
- Barr, J.; Gilson, L.N.; Sanchez Garzon, D.F.; Bateman, P.W. Amblyrhynchus cristatus (Marine Iguana). Tail regeneration and bifurcation. Herpetol. Rev. 2019, 50, 567. [Google Scholar]
- Bateman, P.W.; Fleming, P.A.; Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 2014, 60, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.E.; Vitt, L.J. Blue tails and autotomy: Enhancement of predation avoidance in juvenile skinks. Z. Tierpsychol. 1985, 70, 265–276. [Google Scholar] [CrossRef]
- Scharf, I.; Feldman, A.; Novosolov, M.; Pincheira-Donoso, D.; Das, I.; Böhm, M.; Uetz, P.; Torres-Carvajal, O.; Bauer, A.; Roll, U.; et al. Late bloomers and baby boomers: Ecological drivers of longevity in squamates and the tuatara. Glob. Ecol. Biogeogr. 2015, 24, 396–405. [Google Scholar] [CrossRef]
- Stark, G.; Tamar, K.; Itescu, Y.; Feldman, A.; Meiri, S. Cold and isolated ectotherms: Drivers of reptilian longevity. Biol. J. Linn. Soc. 2018, 125, 730–740. [Google Scholar] [CrossRef]
- Castanet, J.; Newman, D.; Girons, H.S. Skeletochronological data on the growth, age, and population structure of the tuatara, Sphenodon punctatus, on Stephens and Lady Alice Islands, New Zealand. Herpetologica 1988, 40, 25–37. [Google Scholar]
- Gaze, P. Tuatara Recovery Plan, 2001–2011; Biodiversity Recovery Unit, Department of Conservation: Wellington, New Zealand, 2001. [Google Scholar]
- Thompson, M.B.; Daugherty, C.H. Metabolism of Tuatara, Sphenodon punctatus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 119, 519–522. [Google Scholar] [CrossRef]
- Walls, G.Y. Activity of the tuatara and its relationships to weather conditions on Stephens Island, Cook Strait, with observations on geckos and invertebrates. N. Z. J. Zool. 1983, 10, 309–317. [Google Scholar] [CrossRef]
- Dial, B.E.; Fitzpatrick, L.C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 1981, 51, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Bryant, S.V.; Bellairs, A.D.A. Development of regenerative ability in the lizard, Lacerta vivipara. Am. Zool. 1970, 10, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Dawbin, W.H. Tuatara in its natural habitat. Endeavour 1962, 21, 16–24. [Google Scholar] [CrossRef]
- Daniels, C.B. Economy of autotomy as a lipid conserving mechanism: An hypothesis rejected for the gecko Phyllodactylus marmoratus. Copeia 1985, 1985, 468–472. [Google Scholar] [CrossRef]
- Godwin, J.; Rosenthal, N. Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success. Differentiation 2014, 87, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Godwin, J.W.; Pinto, A.R.; Rosenthal, N.A. Macrophages are required for adult salamander limb regeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 9415–9420. [Google Scholar] [CrossRef] [Green Version]
- Alibardi, L. Tail regeneration reduction in lizards after repetitive amputation or cauterization reflects an increase of immune cells in blastemas. Zool. Res. 2018, 39, 413–423. [Google Scholar] [CrossRef]
- Bernardo, J.; Agosta, S.J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 2005, 86, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Barr, J.I.; Somaweera, R.; Godfrey, S.S.; Gardner, M.G.; Bateman, P.W. When one tail isn’t enough: Abnormal caudal regeneration in lepidosaurs and its potential ecological impacts. Biol. Rev. 2020, 95, 1479–1496. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W.K.; Iverson, J.B.; Knapp, C.R.; Carter, R.L. Do invasive rodents impact endangered insular iguana populations? Biodivers. Conserv. 2012, 21, 1893–1899. [Google Scholar] [CrossRef]
- Fox, S.F.; Heger, N.A.; Delay, L.S. Social cost of tail loss in Uta stansburiana: Lizard tails as status-signalling badges. Anim. Behav. 1990, 39, 549–554. [Google Scholar] [CrossRef]
- Salvador, A.; Martin, J.; López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 1995, 6, 382–387. [Google Scholar] [CrossRef]
- Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 1974, 22, 135–145. [Google Scholar] [CrossRef]
- Wilson, R.S.; Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 1998, 32, 128–131. [Google Scholar] [CrossRef]
- Downes, S.; Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators? Ecology 2001, 82, 1293–1303. [Google Scholar] [CrossRef]
- Althoff, D.M.; Thompson, J.N. The effects of tail autotomy on survivorship and body growth of Uta stansburiana under conditions of high mortality. Oecologia 1994, 100, 250–255. [Google Scholar] [CrossRef]
- Barr, J.I.; Somaweera, R.; Godfrey, S.S.; Bateman, P.W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles? Biol. J. Linn. Soc. 2019, 126, 268–275. [Google Scholar] [CrossRef]
- Pafilis, P.; Valakos, E.D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- Ballinger, R.E.; Tinkle, D.W. On the cost of tail regeneration to body growth in lizards. J. Herpetol. 1979, 13, 374–375. [Google Scholar] [CrossRef]
- Niewiarowski, P.H.; Congdon, J.D.; Dunham, A.E.; Vitt, L.J.; Tinkle, D.W. Tales of lizard tails: Effects of tail autotomy on subsequent survival and growth of free-ranging hatchling Uta stansburiana. Can. J. Zool. 1997, 75, 542–548. [Google Scholar] [CrossRef]
- Iraeta, P.; Salvador, A.; Díaz, J.A. Effects of caudal autotomy on postnatal growth rates of hatchling Psammodromus algirus. J. Herpetol. 2012, 46, 342–345. [Google Scholar] [CrossRef]
- Lynn, S.; Borkovic, B.P.; Russell, A. Relative apportioning of resources to the body and regenerating tail in juvenile leopard geckos (Eublepharis macularius) maintained on different dietary rations. Physiol. Biochem. Zool. 2013, 86, 659–668. [Google Scholar] [CrossRef]
- Russell, A.P.; Lynn, S.E.; Powell, G.L.; Cottle, A. The regenerated tail of juvenile leopard geckos (Gekkota: Eublepharidae: Eublepharis macularius) preferentially stores more fat than the original. Zoology 2015, 118, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Chapple, D.; Swain, R. Effect of caudal autotomy on locomotor performance in a viviparous skink, Niveoscincus metallicus. Funct. Ecol. 2002, 16, 817–825. [Google Scholar] [CrossRef]
- McElroy, E.J.; Bergmann, P.J. Tail autotomy, tail size, and locomotor performance in lizards. Physiol. Biochem. Zool. 2013, 86, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Cooper Jr, W.E. Compensatory changes in escape and refuge use following autotomy in the lizard Sceloporus virgatus. Can. J. Zool. 2007, 85, 99–107. [Google Scholar] [CrossRef]
- Cromie, G.L.; Chapple, D.G. Impact of tail loss on the behaviour and locomotor performance of two sympatric Lampropholis skink species. PLoS ONE 2012, 7, e34732. [Google Scholar] [CrossRef] [Green Version]
- Formanowicz, D.R.; Brodie, E.D.; Bradley, P.J. Behavioural compensation for tail loss in the ground skink, Scincella lateralis. Anim. Behav. 1990, 40, 782–784. [Google Scholar] [CrossRef]
- Martin, J.; Salvador, A. Thermoregulatory behaviour of rock lizards in response to tail loss. Behaviour 1993, 124, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.; Salvador, A. Tail loss and foraging tactics of the Iberian rock-lizard, Lacerta monticola. Oikos 1993, 318–324. [Google Scholar] [CrossRef]
- Chapple, D.; Swain, R. Caudal autotomy does not influence thermoregulatory characteristics in the metallic skink, Niveoscincus metallicus. Amphibia-Reptilia 2004, 25, 326–333. [Google Scholar]
- Cooper, W., Jr.; Pérez-Mellado, V.; Hawlena, D. Morphological traits affect escape behaviour of the Balearic lizards (Podarcis lilfordi). Amphibia-Reptilia 2009, 30, 587–592. [Google Scholar] [CrossRef] [Green Version]
- McConnachie, S.; Whiting, M.J. Costs associated with tail autotomy in an ambush foraging lizard, Cordylus melanotus melanotus. Afr. Zool. 2003, 38, 57–65. [Google Scholar] [CrossRef]
- García-Muñoz, E.; Ceacero, F.; Pedrajas, L.; Kaliontzopoulou, A.; Carretero, M.Á. Tail tip removal for tissue sampling has no short-term effects on microhabitat selection by Podarcis bocagei, but induced autotomy does. Acta Herpetol. 2011, 6, 223–227. [Google Scholar]
- Michelangeli, M.; Melki-Wegner, B.; Laskowski, K.; Wong, B.B.M.; Chapple, D.G. Impacts of caudal autotomy on personality. Anim. Behav. 2020, 162, 67–78. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, I.; Barroso, F.M.; Carretero, M.A. An integrative analysis of the short-term effects of tail autotomy on thermoregulation and dehydration rates in wall lizards. J. Therm. Biol. 2021, 99, 102976. [Google Scholar] [CrossRef]
- Adolph, S.C.; Porter, W.P. Temperature, activity, and lizard life histories. Am. Nat. 1993, 142, 273–295. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.F.; Dawson, W.R. Metabolism. Biol. Reptil. 1976, 5, 127–224. [Google Scholar]
- McDonald, H.S. Methods for the physiological study of reptiles. Biol. Reptil. 1976, 5, 19–126. [Google Scholar]
- Hare, K.M.; Cree, A. Thermal and Metabolic Physiology of New Zealand Lizards. In New Zealand Lizards; Chapple, D.G., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 239–267. [Google Scholar]
- Kang, H.; Kenealy, T.M.; Cohen, R.E. The hypothalamic-pituitary-gonadal axis and thyroid hormone regulation interact to influence seasonal breeding in green anole lizards (Anolis carolinensis). Gen. Comp. Endocrinol. 2020, 292, 113446. [Google Scholar] [CrossRef]
- Zena, L.A.; Dillon, D.; Hunt, K.E.; Navas, C.A.; Bícego, K.C.; Buck, C.L. Seasonal changes in plasma concentrations of the thyroid, glucocorticoid and reproductive hormones in the tegu lizard Salvator merianae. Gen. Comp. Endocrinol. 2019, 273, 134–143. [Google Scholar] [CrossRef]
- Ndukuba, P.I.; Ramachandran, A. Extraretinal photoreception in lacertilian tail regeneration: The lateral eyes are not involved in photoperiodic photoreception in the Gekkonid lizard, Hemidactylus flaviviridis. J. Exp. Zool. 1988, 248, 73–80. [Google Scholar] [CrossRef]
- Gundy, G.C.; Wurst, G.Z. Parietal eye-pineal morphology in lizards and its physiological implications. Anat. Rec. 1976, 185, 419–431. [Google Scholar] [CrossRef]
- Sapède, D.; Cau, E. The Pineal Gland from Development to Function. Curr. Top. Dev. Biol. 2013, 106, 171–215. [Google Scholar] [PubMed]
- Ramachandran, A.; Ndukuba, P.I. Preliminary evidence for pineal-mediated extraretinal photoreception in relation to tail regeneration in the Gekkonid lizard, Hemidactylus flaviviridis. J. Pineal Res. 1989, 6, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Kurup, A.; Ramachandran, A. Melatonin and methoxytryptophol have temporal effect on tail elongation but not methoxytryptamine: Studies on tail regeneration in Hemidactylus flaviviridis. J. Endocrinol. Reprod. 2010, 14, 19–24. [Google Scholar]
- Mazzoccoli, G.; Carughi, S.; Sperandeo, M.; Pazienza, V.; Giuliani, F.; Tarquini, R. Neuro-endocrine correlations of hypothalamic-pituitary-thyroid axis in healthy humans. J. Biol. Regul. Homeost. Agents 2011, 25, 249–257. [Google Scholar]
- Pajdak-Czaus, J.; Terech-Majewska, E.; Będzłowicz, D.; Mączyński, M.; Krystkiewicz, W.; Łabuć, S.; Platt-Samoraj, A.; Szweda, W. Applicability of Thyroxine Measurements and Ultrasound Imaging in Evaluations of Thyroid Function in Turtles. J. Vet. Res. 2019, 63, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, A.V.; Kurup, A. Thyroid hormone control of tail regeneration: Differential in loco and systemic effects and seasonal variation. J. Endocrinol. Reprod. 2006, 10, 134–142. [Google Scholar]
- Hutchins, E.D.; Markov, G.J.; Eckalbar, W.L.; George, R.M.; King, J.M.; Tokuyama, M.A.; Geiger, L.A.; Emmert, N.; Ammar, M.J.; Allen, A.N.; et al. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS ONE 2014, 9, e105004. [Google Scholar] [CrossRef] [Green Version]
- Naya, D.E.; Božinović, F. The role of ecological interactions on the physiological flexibility of lizards. Funct. Ecol. 2006, 20, 601–608. [Google Scholar] [CrossRef]
- Stone, A.K.; Tanaka, T.; Nickerson, M.T. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef]
- French, S.S.; Matt, K.S.; Moore, M.C. The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen. Comp. Endocrinol. 2006, 145, 128–132. [Google Scholar] [CrossRef]
- Neuman-Lee, L.A.; French, S.S. Wound healing reduces stress-induced immune changes: Evidence for immune prioritization in the side-blotched lizard. J. Comp. Physiol. B 2014, 184, 623–629. [Google Scholar] [CrossRef]
- Archie, E.A. Wound healing in the wild: Stress, sociality and energetic costs affect wound healing in natural populations. Parasite Immunol. 2013, 35, 374–385. [Google Scholar] [CrossRef]
- Berger, S.; Wikelski, M.; Romero, L.M.; Kalko, E.K.V.; Rödl, T. Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana. Horm. Behav. 2007, 52, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Comendant, T.; Sinervo, B.; Svensson, E.I.; Wingfield, J. Social competition, corticosterone and survival in female lizard morphs. J. Evol. Biol. 2003, 16, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.P.; Freidenfelds, N.A.; Thawley, C.J.; Robbins, T.R.; Langkilde, T. Are invasive species stressful? The glucocorticoid profile of native lizards exposed to invasive fire ants depends on the context. Physiol. Biochem. Zool. 2017, 90, 328–337. [Google Scholar] [CrossRef]
- Jessop, T.S.; Anson, J.R.; Narayan, E.; Lockwood, T. An introduced competitor elevates corticosterone responses of a native lizard (Varanus varius). Physiol. Biochem. Zool. 2015, 88, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, P.; Jessop, T.S.; Stuart-Fox, D. Testing the independent effects of population and shelter density on behavioural and corticosterone responses of tree skinks. Aust. J. Zool. 2011, 58, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Langkilde, T.; Shine, R. How much stress do researchers inflict on their study animals? A case study using a scincid lizard, Eulamprus heatwolei. J. Exp. Biol. 2006, 209, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Zena, L.A.; Dillon, D.; Hunt, K.E.; Navas, C.A.; Buck, C.L.; Bícego, K.C. Hormonal correlates of the annual cycle of activity and body temperature in the South-American tegu lizard (Salvator merianae). Gen. Comp. Endocrinol. 2019, 285, 113295. [Google Scholar] [CrossRef]
- Dunlap, K.D.; Mathies, T. Effects of nymphal ticks and their interaction with malaria on the physiology of male fence lizards. Copeia 1993, 1993, 1045–1048. [Google Scholar] [CrossRef]
- Oppliger, A.; Clobert, J.; Lecomte, J.; Lorenzon, P.; Boudjemadi, K.; John-Alder, H.B. Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara. Ecol. Lett. 1998, 1, 129–138. [Google Scholar] [CrossRef]
- Sorci, G.; Clobert, J. Effects of maternal parasite load on offspring life history traits in the common lizard (Lacerta vivipara). J. Evol. Biol. 1995, 8, 711–723. [Google Scholar] [CrossRef]
- Oppliger, A.; Célérier, M.L.; Clobert, J. Physiological and behaviour changes in common lizards parasitized by haemogregarines. Parasitology 1996, 113, 433–438. [Google Scholar] [CrossRef]
- Chapple, D.G. Ecology, life history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 2003, 17, 145–180. [Google Scholar] [CrossRef]
- Cogger, H.G. Reptiles and Amphibians of Australia, 7th ed.; CSIRO Publishing: Clayton, Australia, 2014. [Google Scholar]
- De Amorim, J.D.C.G.; Travnik, I.D.C.; de Sousa, B.M. Simplified three-dimensional model provides anatomical insights in lizards’ caudal autotomy as printed illustration. An. Acad. Bras. Cienc. 2015, 87, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordeev, D.A.; Ananjeva, N.B.; Korost, D.V. Autotomy and regeneration in squamate reptiles (Squamata, Reptilia): Defensive behavior strategies and morphological characteristics (using computer microtomography methods). Biol. Bull. 2020, 47, 389–398. [Google Scholar] [CrossRef]
Family | Species | Age | Point of Autotomy | Tail Status | Autotomy Induction | Photoperiod Range (h) | Temperature Range (°C) | Latency Period | Max Regeneration Rate Range (mm/day) | Regeneration Capacity | Sources |
---|---|---|---|---|---|---|---|---|---|---|---|
Agamidae (InterV, AbSp) | Agama agama | Adult | - | - | - | - | - | - | 0.167 | Fair–Good | [27] |
Calotes versicolor | - | - | - | A | - | - | - | 0 | - | [20] | |
Intellagama lesueurii | - | - | - | - | Nat | Nat | - | 0.21–0.77 | - | [28] | |
Stellagama stellio | - | D | - | M | - | - | - | 0 | Good | [29] | |
- | R | E | - | - | - | 0 | |||||
Anguidae (IntraV, AbSp) | Anguis fragilis | Adult | - | I, R | M | - | 27, Nat | 3–6 weeks | 0.05–0.07 | - | [30] |
Anniella pulchara | - | - | - | - | - | - | ~1 week | 0.02 | Poor | [31] | |
Elgaria multicarinata | - | P | - | M | - | 30 | - | 0.80–0.84 | Fair | [32] | |
- | - | - | - | - | 22 | - | 0.5 | Fair | [33] | ||
Crotaphytidae (IntraV, AbSp) | Crotaphytus collaris | - | - | - | - | - | - | - | 0 | - | [34] |
Dactyloidae (IntraV, AbSp) | Anolis carolinensis | Adult | P | I, NS | A | 6–18, Nat | 15–32 | 7 days–5 weeks | 0.15–1.7 | Fair | [35,36,37] |
Adult | - | - | A | 6–18 | 32 | 6–14 days | 0.76–1.34 | [38] | |||
Juvenile | P | I | A | 8–16, Nat | 15–31.5, Nat | 12–14 days | 0.24–1.12 | [37] | |||
- | P | - | M | 8–18, NS | 19–27 | ~5 weeks | 0.05–0.31 | [39,40] | |||
M | - | M | - | 19–23 | ~5 weeks | 0.23 | [40] | ||||
D | - | M | - | 19–30 | ~5 weeks | 0.1–0.40 | [40,41] | ||||
- | - | A, M | - | 22–32 | - | 0.12–0.22 | [33] | ||||
Anolis sagrei | Adult | P | I | M | 12 | 29 | - | 0.55–0.86 | - | [42,43] | |
Diplodactylidae (IntraV, RstrSp) | Amalosia lesueurii | Juvenile | P | - | E | Nat | Nat | - | 0.27 | - | [44] |
Dactylocnemis pacificus | - | - | - | - | - | 15–32 | - | 0.23–0.26 | - | [18] | |
Woodworthia maculata | - | - | - | - | - | 20 | - | 0.14 | - | [18] | |
Eublepharidae (IntraV, RstrSp) | Coleonyx brevis | - | - | - | E, NS | - | - | ~2 weeks | 0.45–1.50 | Good | [45] |
Coleonyx variegatus | P | - | M | - | 30 | - | 0.60–0.80 | Good | [46] | ||
- | - | - | E | Nat | Nat | - | 0.82 | [47] | |||
Eublepharis macularius | Adult | P | I | M | - | 28–33 | - | 0.71 | - | [48] | |
Gekkonidae (IntraV, AbSp, RstrSp) | Banopus tuberculatus | Adult | P | I, NS | A, M | 8–12 | 27–30 | 5–7 days | 0.14–0.53 | Fair | [49,50] |
Adult | M | - | A | 8–12 | 30 | 5–7 days | 0.21–0.40 | [49] | |||
Adult | D | - | A | 8–12 | 30 | 5–7 days | 0.14–0.30 | [49] | |||
Cyrtodactylus sumonthai | Adult | - | - | - | Nat | Nat | - | 0.88 | - | [51] | |
Hemidactylus flaviviridis | Adult | P | I, NS | M | 12, NS | 12.4–42.4 | ~5–26 days | 0.28–2.21 | Fair | [52,53,54,55] | |
- | - | - | - | - | - | - | 1.12 | [20] as mentioned in [2,56] | |||
Hemidactylus garnotii | - | - | - | E | - | - | - | 0.70 | Fair | [57] | |
Hemidactylus mabouia | - | P | I, R | M | 12 | 21–30 | ~2 weeks | 1.1–1.57 | - | [58] | |
Hemidactylus turcicus | Juvenile | D | - | M | - | - | ~10 days | 0.30 | Fair | [59] | |
Paroedura picta | Juvenile | P | I | M | 12 | 27 | 1 week | 0.75 | - | [60] | |
Lacertidae (IntraV) | Iberolacerta monticola | Adult | P | - | - | Nat | - | 1.31 | Good | [61] | |
Lacertaagilis | - | - | - | - | - | - | >17 days | 0.33–2.0 | Good | [62,63] | |
Phoenicolacerta laevis | - | M | - | A | - | 25–27 | ~8 days | 1.0 | - | [64] | |
Podarcis erhardii | Adult | P | I | M | 12 | 25 | - | 0.70 | - | [65] | |
Podarcis muralis | Juvenile | - | - | - | - | - | - | 0.89 | Good | [27] | |
- | - | - | - | - | 27–33 | - | 0.77 | [18] | |||
Teira dugesi | - | P, M | I, R | M | - | 27–30 | 6–10 days | 1.3–2.57 | - | [30] | |
Timon lepidus | Adult | P | I | M | 12 | 31 | 1 week | 1.14–4.3 | - | [66] | |
Zootoca vivipara | Adult | - | - | A | - | - | 14–21 days | 0.67– 0.86 | Good | [67] | |
Juvenile | P | I | - | - | - | 14–21 days | 0.46 | [68] | |||
Phrynosomatidae (IntraV, AbSp) | Sceloporus olivaceus | Adult | P, M | - | E | Nat | Nat | - | 0.94–1.05 | - | [69] |
Juvenile | P, M | - | E | Nat | Nat | - | 1.20–1.57 | [69] | |||
Sceloporus undulatus | - | - | - | M | Nat | Nat | - | 0.20 | Good | [33] | |
Uta stansburiana | Adult | - | - | E | Nat | Nat | 1 week | 0.67–0.70 | Good | [70] | |
Juvenile | - | - | E | Nat | Nat | 1 week | 0.55–1.0 | [70] | |||
Phyllodactylidae (IntraV) | Tarentola mauritanica | Adult | P | I | M | - | 28–35 | - | 0.62–0.75 | - | [71] |
Thecadactylus rapicauda | - | P | - | - | - | - | <1 week | 0.47–0.61 | - | [72] | |
Scincidae (IntraV, AbSp, RstrSp) | Brasiliscincus heathi | Adult | P | I, R | M | - | 25–30 | ~2 weeks | 1.6 | Good | [73] |
Carinascincus metallicus | Adult | P | I, R, NS | M | 14 | 12–35 | <3 weeks | 1.18–1.78 | - | [74,75] | |
Juvenile | P | I | M | 14 | 12–35 | <3 weeks | 0.61 | [74] | |||
Carlia jarnoldae | Adult | P | R | M | Nat | Nat | - | 0.60 | - | [76] | |
Chalcides ocellatus | Juvenile | P | I | M | 6 | 18–26.5 | - | 0.12–0.22 | - | [77] | |
Ctenotus taeniolatus | - | P | - | - | Nat | - | - | 0.90–0.98 | - | [78] | |
Lampropholis delicata | - | - | - | - | - | 24–28 | - | 0.60 | - | [18] | |
Lampropholis guichenoti | - | P | - | - | Nat | - | - | 0.25–0.33 | * | [78] | |
Leiolopisma zealandica | - | - | - | E | Nat | Nat | ~2–3 weeks | 0.16–0.37 | - | [79] | |
Oligosoma maccanni | - | - | - | - | - | 26–28 | - | 0.28 | - | [18] | |
Ophiomorus streeti | - | - | - | - | - | - | - | 0.09 | Poor | [80] | |
Plestidon obsoletus | Adult | M | - | M | 12 | - | - | 0.49 | – | [81] | |
Juvenile | M | - | M | 12 | - | - | 0.76 | [81] | |||
Plestiodon fasciatus | Juvenile | P | I, NS | M | 6–12, Nat | 18–33, Nat | 8 days | 0.39–1.14 | Fair–Good | [77,82,83] | |
- | - | - | M, E | Nat, NS | 22, Nat | - | 0.60–0.65 | [33,84] | |||
Plestiodon gilberti | - | P | - | M | - | 30 | - | 0.52–0.62 | Fair | [32] | |
Plestiodon laticeps | Juvenile | P | - | M | - | Nat | 8 days | 0.51 | Good | [83] | |
Plestiodon skiltonianus | - | P | - | M | - | 30 | - | 0.38–0.67 | Good | [32] | |
Scincella lateralis | - | - | - | M, NS | 12, NS | 21–24 | ~5–7 days | 0.60–2.0 | * | [33,85] | |
Trachylepis striata | Adult | P | I | M | - | 10.2–22.8 | ~6–14 days | 0.72–1.69 | – | [86] | |
Sphaerodactylidae (IntraV) | Sphaerodactylus argus | - | M | - | M | - | 25–30 | 10–12 days | 0.47 | Fair–Good | [56] |
Sphenodontidae (IntraV) | Sphenodon punctatus | Adult | - | - | - | - | - | - | 0.02 | – | [27] |
Xantusiidae (IntraV) | Xantusia vigilis | - | P, M | - | - | - | - | - | 0.22 | Fair–Good | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barr, J.I.; Boisvert, C.A.; Bateman, P.W. At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy. J. Dev. Biol. 2021, 9, 53. https://doi.org/10.3390/jdb9040053
Barr JI, Boisvert CA, Bateman PW. At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy. Journal of Developmental Biology. 2021; 9(4):53. https://doi.org/10.3390/jdb9040053
Chicago/Turabian StyleBarr, James I., Catherine A. Boisvert, and Philip W. Bateman. 2021. "At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy" Journal of Developmental Biology 9, no. 4: 53. https://doi.org/10.3390/jdb9040053
APA StyleBarr, J. I., Boisvert, C. A., & Bateman, P. W. (2021). At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy. Journal of Developmental Biology, 9(4), 53. https://doi.org/10.3390/jdb9040053