Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Index Construction
2.2.1. Street Data Processing
2.2.2. POI Data Processing
2.2.3. NDVI and NDWI Processing
2.2.4. Land Surface Temperature Processing
2.2.5. Bus/Subway Station Distance Processing
2.2.6. SWI and DWI Calculation
2.3. Walking Index Category Definition
2.4. Field Validation
3. Results
3.1. Shopping Walking Index (SWI)
3.2. Dining Walking index (DWI)
3.3. Field Validation Results
4. Discussion
4.1. SWI and DWI Construction
4.2. Shopping and Dining-Oriented Walking Indices
4.3. 50-m Street Segment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Orso, G.; Migliore, M. A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transp. Geogr. 2020, 82, 102555. [Google Scholar] [CrossRef]
- WHO. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- De Vries, S.; Van Dillen, S.M.; Groenewegen, P.P.; Spreeuwenberg, P. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Soc. Sci. Med. 2013, 94, 26–33. [Google Scholar] [CrossRef]
- Howell, N.A.; Tu, J.V.; Moineddin, R.; Chen, H.; Chu, A.; Hystad, P.; Booth, G.L. Interaction between neighborhood walkability and traffic-related air pollution on hypertension and diabetes: The CANHEART cohort. Environ. Int 2019, 132, 104799. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Driving and the Built Environment: The Effects of Compact Development on Motorized Travel, Energy Use, and CO2 Emissions—Special Report 298; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Geng, J.; Long, R.; Chen, H.; Li, W. Exploring the motivation-behavior gap in urban residents’ green travel behavior: A theoretical and empirical study. Resour. Conserv. Recycl. 2017, 125, 282–292. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W. Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives. Appl. Energy 2015, 158, 292–299. [Google Scholar] [CrossRef]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; White, K.; Castro, M.C.; Williams, D.R. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities? Demogr. Res. 2012, 26, 409. [Google Scholar] [CrossRef] [Green Version]
- Cortright, J. Walking the Walk: How Walkability Raises Home Values in US Cities; CEOs for Cities: 2009. Available online: https://community-wealth.org/sites/clone.community-wealth.org/files/downloads/report-cortright.pdf (accessed on 1 June 2019).
- Zhu, W.; Nedovic-Budic, Z.; Olshansky, R.B.; Marti, J.; Gao, Y.; Park, Y.; McAuley, E.; Chodzko-Zajko, W. Agent-based modeling of physical activity behavior and environmental correlations: An introduction and illustration. J. Phys. Act. Health 2013, 10, 309–322. [Google Scholar] [CrossRef]
- Perrotta, K.; Campbell, M.; Chirrey, S.; Frank, L.; Chapman, J. The Walkable City: Neighbourhood Design and Preferences, Travel Choices and Health; Toronto Public Health: Toronto, ON, Canada, 2012. [Google Scholar]
- Giles-Corti, B.; Vernez-Moudon, A.; Reis, R.; Turrell, G.; Dannenberg, A.L.; Badland, H.; Foster, S.; Lowe, M.; Sallis, J.F.; Stevenson, M. City planning and population health: A global challenge. Lancet 2016, 388, 2912–2924. [Google Scholar] [CrossRef]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using Street View imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Bahrainy, H.; Khosravi, H. The impact of urban design features and qualities on walkability and health in under-construction environments: The case of Hashtgerd New Town in Iran. Cities 2013, 31, 17–28. [Google Scholar] [CrossRef]
- Yameqani, A.S.; Alesheikh, A.A. Predicting subjective measures of walkability index from objective measures using artificial neural networks. Sustain. Cities Soc. 2019, 48, 101560. [Google Scholar] [CrossRef]
- Park, S.; Deakin, E.; Lee, J.S. Perception-based walkability index to test impact of microlevel walkability on sustainable mode choice decisions. Transp. Res. Rec. 2014, 2464, 126–134. [Google Scholar] [CrossRef]
- Su, S.; Pi, J.; Xie, H.; Cai, Z.; Weng, M. Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion. Land Use Policy 2017, 67, 315–326. [Google Scholar] [CrossRef]
- TRL. What Is PERS. Available online: https://trlsoftware.com/products/road-safety/street-auditing/streetaudit-pers/ (accessed on 21 April 2020).
- Walk Score C. Walk Score Methodology. Available online: https://www.walkscore.com/methodology.shtml (accessed on 21 April 2020).
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J. Validation of Walk scores and Transit Scores for estimating neighborhood walkability and transit availability: A small-area analysis. GeoJournal 2013, 78, 407–416. [Google Scholar] [CrossRef]
- Koschinsky, J.; Talen, E.; Alfonzo, M.; Lee, S. How walkable is Walker’s paradise? Environ. Plan. B Urban Anal. City Sci. 2017, 44, 343–363. [Google Scholar] [CrossRef]
- Gilderbloom, J.I.; Riggs, W.W.; Meares, W.L. Does walkability matter? An examination of walkability’s impact on housing values, foreclosures and crime. Cities 2015, 42, 13–24. [Google Scholar] [CrossRef]
- Long, Y.; Zhao, J.; Li, S.; Zhou, Y.; Xu, L. The Large-Scale Calculation of “Walk score” of Main Cities in China. New Archit. 2018, 3, 4–8. [Google Scholar]
- Jiansheng, W.; Shen, N. Walk score method-based evaluation of social service function of urban park green lands in Futian district, Shenzhen, China. Acta Ecol. Sin. 2019, 37, 7483–7492. [Google Scholar]
- Brown, S.C.; Pantin, H.; Lombard, J.; Toro, M.; Huang, S.; Plater-Zyberk, E.; Perrino, T.; Perez-Gomez, G.; Barrera-Allen, L.; Szapocznik, J. Walk score®: Associations with purpose walking in recent Cuban immigrants. Am. J. Prev. Med. 2013, 45, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Litman, T.A. Economic Value of Walkability; Victoria Transport Policy Institute: Victoria, BC, Canada, 2017. [Google Scholar]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of Walking score® for estimating neighborhood walkability: An analysis of four US metropolitan areas. Int. J. Environ. Res. Public. Health 2011, 8, 4160–4179. [Google Scholar]
- Singleton, P.A.; Schneider, R.J.; Muhs, C.; Clifton, K.J. The pedestrian index of the environment: Representing the walking environment in planning applications. In Proceedings of the 93rd Annual Meeting, Transportation Research Board, Washington, DC, USA, 12–16 January 2014. [Google Scholar]
- Knapskog, M.; Hagen, O.H.; Tennøy, A.; Rynning, M.K. Exploring ways of measuring walkability. Transp. Res. Procedia 2019, 41, 264–282. [Google Scholar] [CrossRef]
- Kuzmyak, J.R.; Baber, C.; Savory, D. Use of walk opportunities index to quantify local accessibility. Transp. Res. Rec. 2006, 1977, 145–153. [Google Scholar] [CrossRef]
- Freeman, L.; Neckerman, K.; Schwartz-Soicher, O.; Quinn, J.; Richards, C.; Bader, M.D.; Lovasi, G.; Jack, D.; Weiss, C.; Konty, K. Neighborhood walkability and active travel (walking and cycling) in New York City. J. Urban Health 2013, 90, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frackelton, A.; Grossman, A.; Palinginis, E.; Castrillon, F.; Elango, V.; Guensler, R. Measuring walkability: Development of an automated sidewalk quality assessment tool. Suburb. Sustain. 2013, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-based differences in physical activity: An environment scale evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef]
- Buck, C.; Tkaczick, T.; Pitsiladis, Y.; De Bourdehaudhuij, I.; Reisch, L.; Ahrens, W.; Pigeot, I. Objective measures of the built environment and physical activity in children: From walkability to moveability. J. Urban Health 2015, 92, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Witten, K.; Pearce, J.; Day, P. Neighbourhood Destination Accessibility Index: A GIS tool for measuring infrastructure support for neighbourhood physical activity. Environ. Plan. A 2011, 43, 205–223. [Google Scholar] [CrossRef]
- Millstein, R.A.; Cain, K.L.; Sallis, J.F.; Conway, T.L.; Geremia, C.; Frank, L.D.; Chapman, J.; Van Dyck, D.; Dipzinski, L.R.; Kerr, J. Development, scoring, and reliability of the Microscale Audit of Pedestrian Streetscapes (MAPS). BMC Public Health 2013, 13, 403. [Google Scholar] [CrossRef] [Green Version]
- Cain, K.; Millstein, R.; Geremia, C. Microscale audit of pedestrian streetscapes (MAPS): Data Collection & Scoring Manual. University California San Diego. Available online: http://sallis.ucsd.edu/Documents/Measures_documents/MAPS%20Manual_v1_010713.pdf (accessed on 8 August 2013).
- Drake-McLaughlin, N.; Netusil, N.R. Valuing walkability and vegetation in Portland, Oregon. In Proceedings of the Twenty-Second Interim Report and Proceedings from the Annual Meeting, Benefits and Costs of Natural Resources Policies Affecting Public and Private Lands, New York, NY, USA, 14–18 June 2010; Volume 2, p. 173. [Google Scholar]
- Davis, A.W. Using Road Network Spatial Clustering to Assess the Timing and Duration of Dining, Shopping, and Entertainment Activities in California; UC Santa Barbara: Santa Barbara, CA, USA, 2019. [Google Scholar]
- Gaode Map. Available online: https://www.amap.com/ (accessed on 1 January 2016).
- Open Street Map. Available online: www.openstreetmap.org (accessed on 1 May 2020).
- Tencent Map. Available online: https://map.qq.com (accessed on 1 June 2020).
- Becker, F.; Choudhury, B.J. Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens. Environ. 1988, 24, 297–311. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.; Sobrino, J. Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote Sens. 2006, 27, 999–1014. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristóbal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2008, 47, 339–349. [Google Scholar] [CrossRef]
- Yi, Z.; Jianhui, X. Impervious surface extraction with Linear Spectral Mixture Analysis integrating Principal components analysis and Normalized Difference Building Index. In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 428–432. [Google Scholar]
- Zhang, W.; Montgomery, D.R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour. Res. 1994, 30, 1019–1028. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, F.; Jiang, H.; Hu, H.; Zhong, K.; Jing, W.; Yang, J.; Jia, B. Downscaling ASTER land surface temperature over urban areas with machine learning-based area-to-point regression Kriging. Remote Sens. 2020, 12, 1082. [Google Scholar] [CrossRef] [Green Version]
- Gregorczuk, M.; Cena, K. Distribution of effective temperature over the surface of the earth. Int. J. Biometeorol. 1967, 11, 145–149. [Google Scholar] [CrossRef]
- Wang, D. Climatological features of physical sensation temperature (Temperature-Humidity index) destribution in south China. Trop. Geogr. 1986, 1, 38–44. [Google Scholar]
- Schoen, C. A new empirical model of the temperature–humidity index. J. Appl. Meteorol. 2005, 44, 1413–1420. [Google Scholar] [CrossRef]
- Long, L.L.; Srinivasan, M. Walking, running, and resting under time, distance, and average speed constraints: Optimality of walk–run–rest mixtures. J. R. Soc. Interface 2013, 10, 20120980. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walking score™ as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Lwin, K.K.; Murayama, Y. Modelling of urban green space walkability: Eco-friendly walking score calculator. Computers. Environ. Urban Syst. 2011, 35, 408–420. [Google Scholar] [CrossRef]
- Yang, J.; Ou, C.-Q.; Ding, Y.; Zhou, Y.-X.; Chen, P.-Y. Daily temperature and mortality: A study of distributed lag non-linear effect and effect modification in Guangzhou. Environ. Health 2012, 11, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, R.; Zhao, W.; Song, K.; Du, L. Land-cover classification using GF-2 images and airborne lidar data based on Random Forest. Int. J. Remote Sens. 2019, 40, 2410–2426. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wu, H. Using GF-2 imagery and the conditional random field model for urban forest cover mapping. Remote Sens. Lett. 2016, 7, 378–387. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Z.; Zhang, G.; Dong, G. Spatial-temporal characteristics of green travel behavior based on vector perspective. J. Clean. Prod. 2019, 234, 549–558. [Google Scholar] [CrossRef]
- Vale, D.S.; Saraiva, M.; Pereira, M. Active accessibility: A review of operational measures of walking and cycling accessibility. J. Transp. Land Use 2016, 9, 209–235. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A.; Roux, A.V.D. Walking score® and Transit Score® and walking in the multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2013, 45, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Solecki, W.D.; Parshall, L.; Lynn, B.; Cox, J.; Goldberg, R.; Hodges, S.; Gaffin, S.; Slosberg, R.B.; Savio, P. Mitigating New York City’s heat island: Integrating stakeholder perspectives and scientific evaluation. Bull. Am. Meteorol. Soc. 2009, 90, 1297–1312. [Google Scholar] [CrossRef]
- Hall, C.M.; Ram, Y. Walking score® and its potential contribution to the study of active transport and walkability: A critical and systematic review. Transp. Res. Part D Transp. Environ. 2018, 61, 310–324. [Google Scholar] [CrossRef]
- Mummidi, L.N.; Krumm, J. Discovering points of interest from users’ map annotations. GeoJournal 2008, 72, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Vahidi, H.; Yan, W. How is an informal transport infrastructure system formed? Towards a spatially explicit conceptual model. Open Geospat. Data Softw. Stand. 2016, 1, 1–26. [Google Scholar] [CrossRef] [Green Version]
Types | Subclasses |
---|---|
Restaurants | Bars, tea houses, cafés, all kinds of restaurants, dessert shops, cake shops. |
Shopping | Shopping malls, clothing related stores, electronic shopping malls, retail stores, wholesale markets. |
Variables | POI | Vegetation | Water | Distance | Temperature |
---|---|---|---|---|---|
Scores | 0.6 | 0.3 | 0.1 | 0.1 | −0.1 |
Walking Index | Recommendation | Description |
---|---|---|
<0 | Not available | No shopping store or restaurant |
0–0.2 | Deprecated | Low POI density or no vegetation and water area, long distance to bus/subway station, and high temperature |
0.2–0.4 | Acceptable | Not many POIs, vegetation and water cover is low. |
0.4–0.6 | Recommended | Some POIs, medium density of vegetation or water cover, medium distance to bus/subway station, suitable temperature |
0.6–0.8 | Very Recommended | Many POIs and good walking environment. High density of vegetation or water cover, short distance to bus/subway station, suitable temperature |
0.8–1 | Highly Recommended | Many POIs and very good walking environment. High density of vegetation and water cover, short distance to bus/subway station, suitable temperature |
>1 | Extremely Recommended | Paradise for shopping or dining and very good walking environment. |
Model Calculation | Field trip Examination | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Loc. | SPF | RPF | WPF | VPF | SPF | RPF | WPF | VPF | SWI | DWI |
A | 9 | 35 | 0 | 4 | 9 | 35 | 0 | 4 | 0.23 | 0.54 |
B | 14 | 12 | 0 | 38 | 14 | 12 | 0 | 38 | 0.47 | 0.45 |
C | 12 | 39 | 0 | 8 | 12 | 39 | 0 | 8 | 0.25 | 0.58 |
D | 18 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0.29 | 0 |
E | 11 | 0 | 6 | 28 | 11 | 0 | 0 | 18 | 0.40 | 0 |
F | 8 | 0 | 0 | 3 | 8 | 0 | 0 | 3 | 0.20 | 0 |
G | 3 | 1 | 0 | 22 | 5 | 3 | 0 | 22 | 0.26 | 0.24 |
H | 9 | 20 | 0 | 39 | 9 | 20 | 0 | 39 | 0.42 | 0.56 |
I | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 0.13 | 0 |
J | 0 | 0 | 0 | 62 | 0 | 0 | 0 | 62 | 0 | 0 |
K | 1 | 0 | 0 | 18 | 1 | 0 | 0 | 18 | 0.22 | 0 |
L | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 16 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Yan, Y.; Xie, Y.; Xu, J.; Jiang, H.; Chen, R.; Tan, R. Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2020, 9, 366. https://doi.org/10.3390/ijgi9060366
Deng Y, Yan Y, Xie Y, Xu J, Jiang H, Chen R, Tan R. Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data. ISPRS International Journal of Geo-Information. 2020; 9(6):366. https://doi.org/10.3390/ijgi9060366
Chicago/Turabian StyleDeng, Yingbin, Yingwei Yan, Yichun Xie, Jianhui Xu, Hao Jiang, Renrong Chen, and Runnan Tan. 2020. "Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data" ISPRS International Journal of Geo-Information 9, no. 6: 366. https://doi.org/10.3390/ijgi9060366
APA StyleDeng, Y., Yan, Y., Xie, Y., Xu, J., Jiang, H., Chen, R., & Tan, R. (2020). Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data. ISPRS International Journal of Geo-Information, 9(6), 366. https://doi.org/10.3390/ijgi9060366