Geo-Informatics in Resource Management
Abstract
:1. Introduction
2. The Contribution of This Special Issue
Funding
Conflicts of Interest
References
- Tripathy, P.; Kumar, A. Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. Cities 2019, 90, 52–63. [Google Scholar] [CrossRef]
- Makinde, E.O.; Agbor, C.F. Geoinformatic assessment of urban heat island and land use/cover processes: A case study from Akure. Environ. Earth Sci. 2019, 78, 483. [Google Scholar] [CrossRef]
- Xiao, W.; Mills, J.; Guidi, G.; Rodríguez-Gonzálvez, P.; Gonizzi Barsanti, S.; González-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN sustainable development goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- Monego, M.; Menin, A.; Fabris, M.; Achilli, V. 3D survey of Sarno Baths (Pompeii) by integrated geomatic methodologies. J. Cult. Herit. 2019, 40, 240–246. [Google Scholar] [CrossRef]
- Afnarius, S.; Akbar, F.; Yuliani, F. Developing web-based and mobile-based GIS for places of worship information to support halal tourism: A case study in Bukittinggi, Indonesia. ISPRS Int. J. Geo-Inf. 2020, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry Remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; Pérez Porras, F.; Triviño-Tarradas, P.; García-Ferrer, A.; Meroño-Larriva, J.E. Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sens. 2020, 12, 2210. [Google Scholar] [CrossRef]
- Badach, J.; Voordeckers, D.; Nyka, L.; Van Acker, M. A framework for air quality management zones-useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Build. Environ. 2020, 174, 106743. [Google Scholar] [CrossRef]
- Dias, M.A.; Silva, E.A.; da Azevedo, S.C.; de Casaca, W.; Statella, T.; Negri, R.G. An incongruence-based anomaly detection strategy for analyzing water pollution in images from remote sensing. Remote Sens. 2020, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of bathing water quality using thermal images Landsat 8 on the west coast of tangier: Preliminary results. Remote Sens. 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Qu, Y.; Xia, Z.; Peng, Y.; Liu, Z. Multi-scale validation of MODIS LAI products based on crop growth period. ISPRS Int. J. Geo-Inf. 2019, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Niu, Z.; Ma, Y.; Chen, F.; Yang, J.; Liu, J. Assessing the distribution of heavy industrial heat sources in India between 2012 and 2018. ISPRS Int. J. Geo-Inf. 2019, 8, 568. [Google Scholar] [CrossRef] [Green Version]
- Kupidura, P.; Osińska-Skotak, K.; Lesisz, K.; Podkowa, A. The Efficacy Analysis of determining the wooded and shrubbed area based on archival aerial imagery using texture analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 450. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lendínez, J.J. Abandoned farmland location in areas affected by rapid urbanization using textural characterization of high resolution aerial imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhao, X.; Zhang, H.; Qin, Y.; Yi, S. Evaluation of the accuracy of the field quadrat survey of alpine grassland fractional vegetation cover based on the satellite remote sensing pixel scale. ISPRS Int. J. Geo-Inf. 2019, 8, 497. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, A.; Afzal, F.; Razia, A. Disaster mitigation in Urban Pakistan using agent based modeling with GIS. ISPRS Int. J. Geo-Inf. 2020, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Mellado, J.L.; Tien Bui, D. GIS-Based mapping of seismic parameters for the Pyrenees. ISPRS Int. J. Geo-Inf. 2020, 9, 452. [Google Scholar] [CrossRef]
- Wang, Z.; He, X.; Zhang, C.; Xu, J.; Wang, Y. Evaluation of geological and ecological bearing capacity and spatial pattern along du-wen road based on the analytic hierarchy process (AHP) and the technique for order of preference by similarity to an ideal solution (TOPSIS) method. ISPRS Int. J. Geo-Inf. 2020, 9, 237. [Google Scholar] [CrossRef]
- Zhou, T.; Niu, A.; Huang, Z.; Ma, J.; Xu, S. Spatial relationship between natural wetlands changes and associated influencing factors in mainland China. ISPRS Int. J. Geo-Inf. 2020, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Navarro Cerrillo, R.M.; Palacios Rodríguez, G.; Clavero Rumbao, I.; Lara, M.Á.; Bonet, F.J.; Mesas-Carrascosa, F.-J. Modeling major rural land-use changes using the GIS-based cellular automata metronamica model: The case of Andalusia (Southern Spain). ISPRS Int. J. Geo-Inf. 2020, 9, 458. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Liu, X.; Yan, Z.; Cheng, L.; Li, M. Oil flow analysis in the maritime silk road region using AIS data. ISPRS Int. J. Geo-Inf. 2020, 9, 265. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesas-Carrascosa, F.J. Geo-Informatics in Resource Management. ISPRS Int. J. Geo-Inf. 2020, 9, 628. https://doi.org/10.3390/ijgi9110628
Mesas-Carrascosa FJ. Geo-Informatics in Resource Management. ISPRS International Journal of Geo-Information. 2020; 9(11):628. https://doi.org/10.3390/ijgi9110628
Chicago/Turabian StyleMesas-Carrascosa, Francisco Javier. 2020. "Geo-Informatics in Resource Management" ISPRS International Journal of Geo-Information 9, no. 11: 628. https://doi.org/10.3390/ijgi9110628