Grey System Theory in Research into Preferences Regarding the Location of Place of Residence within a City
Abstract
:1. Introduction
A City as a System
- –
- a socio-economic approach (a territorial social system or, in other words, private and public capital resources and urban population)
- –
- an ecological approach (a city as an ecosystem and its natural resources)
- –
2. Materials and Methods
2.1. Characteristics of Gray Systems Theory
- –
- white (white box), of which our knowledge is complete; certain information,
- –
- black (black box), of which nothing is known; it is only possible to observe the input and (or) output of a complex system; uncertain information,
- –
- grey (grey box), information about it is limited; the information is of an intermediate nature between certain and uncertain.
- (1)
- 0 < ε ≤ 1;
- (2)
- ε is related only to the geometric shape of vectors X0 and Xk, but it is not related to their location in space;
- (3)
- each of the two vectors is at least minimally similar; therefore, ε is never equal to zero;
- (4)
- the greater the similarity between the observation vectors, the higher the value of ε;
- (5)
- the value of ε is equal or close to 1 when the observation vectors are parallel or when they fluctuate [28].
2.2. The Selection of Features and Respondents
- –
- representative—when the evaluated sample is representative of the entire population,
- –
- quasi-representative—when the evaluated sample only partly fulfils the requirements of the representative method,
- –
3. Results
3.1. Analysis in Terms of Input Data
- –
- threat of crime (X1).
- –
- access to social infrastructure (X2),
- –
- a high standard of flats (X3),
- –
- convenient shopping (X4),
- –
- access to public transportation (X5),
3.2. Determination of the Relation Order for the Minimum Number of the Required Input Data
3.3. Analysis Due to the Different Number of Observations
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Swamy, P. Statistical Inference in Random Coefficient Models; Springer: Berlin, Germany, 1971. [Google Scholar]
- Caseti, E. Generating models by the expansion method: Applications to geographic research. Geogr. Anal. 1972, 4, 81–91. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Haining, R. Spatial Analysis of Regional Geostatistics Data; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gerus-Gościewska, M.; Gościewski, D.; Salata, T.; Palicki, S.; Prus, B.K.; Gawroński, K.; Konieczna, J.; Jaroszewicz, J.; Wilkosz-Mamcarczyk, M.; Król, K. Interpretacja Danych Przestrzennych Jako Forma Stymulowania Partycypacji Społecznej; Wydawnictwo Uniwersytetu Rolniczego: Kraków, Poland, 2015. [Google Scholar]
- Bajerowski, T.; Biłozor, A.; Cieślak, I.; Senetra, A.; Szczepańska, A. Ocena i Wycena Krajobrazu; Wydawnictwo Educaterra: Olsztyn, Poland, 2007. [Google Scholar]
- Bajerowski, T.; Bal, A.; Biłozor, A.; Gerus-Gościewska, M.; Sidor, I.; Szurek, M.; Turkowska, O.; Wielgosz, A. Teoretyczne Podstawy Teorii Gospodarki Przestrzennej i Zarządzania Przestrzenią; Bajerowski, T., Ed.; Wydawnictwo UWM: Olsztyn, Poland, 2003. [Google Scholar]
- Górniak-Zimroz, J. Wykorzystanie systemów wspomagania decyzji w gospodarce odpadami. Pr. Nauk. Inst. Gór. Politech. Wroc. Stud. Mater. 2007, 188, 23–41. [Google Scholar]
- Liu, S.; Lin, Y. Grey Information. Theory and Practical Applications; Springer: London, UK, 2006. [Google Scholar]
- Kotkowski, B.; Ratajczak, W. Zbiory Przybliżone w Analizie Danych Geograficznych. Możliwości i Ograniczenia Zastosowań Metod Badawczych w Geografii Społeczno-Ekonomicznej i Gospodarce Przestrzennej; Rogacki, H., Ed.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2002. [Google Scholar]
- D’Amato, M. Rough Set Theory as Property Valuation Methodology: The Whole Story. Mass Appraisal Methods. An International Perspective for Property Valuers; RICS Research; Kauko, T., d’Amato, M., Eds.; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Deng, J.L. Control Problems of Grey Systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Liu, S.F.; Lin, Y. Grey Systems—Theory and Applications; Springer: Berlin, Germany, 2010. [Google Scholar]
- Liu, S.-F.; Forrest, J.; Yang, Y. A brief introduction to grey systems theory, Grey Systems: Theory and Applications. In Proceedings of the 2011 IEEE International Conference on Grey Systems and Intelligent Services, Nanjing, China, 15–18 September 2011. [Google Scholar]
- Dytczak, M.; Ginda, G. Użyteczność systemów “szarych” w transporcie i logistyce. Logistyka 2014, 3, 1515–1523. [Google Scholar]
- Deng, J. Application of Grey System Theory in China. In Proceedings of the First International Symposium on Uncertainty Modeling and Analysis, College Park, MD, USA, 3–5 December 1990. [Google Scholar]
- Donaj, Ł. Teoria szarych systemów a prognozowanie w naukach społecznych przyczynek do dyskusji. Przegląd Strateg. 2017, 7, 43–52. [Google Scholar]
- Liu, X.Q.; Wang, Z.M. Grey Econometric Models and Applications; Yellow River Press: Jinan, China, 1996. [Google Scholar]
- Liu, S.F.; Dang, Y.G.; Li, B.J. Computational analysis on the periodic contribu-tion of technological advances in Henan Province. J. Henan Agric. Univ. 1998, 32, 203–207. [Google Scholar]
- Chen, K.X. The Epistemology of Grey Medical Analysis’. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 1999. [Google Scholar]
- Tan, X.R. Grey Medical Incidence Theory and Applications. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 1997. [Google Scholar]
- Werner, K.; Mierzwiak, R.; Pochmara, J. Teoria systemów szarych jako narzędzie wspomagania prognozowania popytu. Logistyka 2009, 2. [Google Scholar]
- Wang, Z.X.; Pei, L.L. System thinking—Based grey model for sustainability evaluation of urban tourism. Kybernetes 2014, 43, 462–479. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.W.; Hao, N.L.; Shen, X.B.; Qi, X.H. Online noise source identification based on power spectrum estimation and grey relational analysis. Appl. Acoust. 2009, 7, 493–497. [Google Scholar] [CrossRef]
- Parysek, J. Miasto w ujęciu systemowym. Ruch Praw. Ekon. Socjol. 2015, 77, 27–53. [Google Scholar] [CrossRef] [Green Version]
- Funck, R.H.; Blum, U.H. Urban Change: A Changing Process. In Klassen, Spatial Cycle; van den Berg, L., Burns, L.S., Eds.; Gower: Aldershot, UK, 1987. [Google Scholar]
- Mierzwiak, R.; Werner, K.; Pochmara, A. Zastosowanie teorii systemów szarych do prognozowania ekonomicznych szeregów czasowych. In Proceedings of the IV Krakowska Konferencja Młodych Uczonych, Sesja Plenarna Nauki Ekonomiczne, Kraków, Poland, 17–19 September 2009. [Google Scholar]
- Cempel, C. Teoria szarych systemów—Nowa metodologia analizy i oceny złożonych systemów. Przegląd możliwości. Zeszyty Naukowe Politechniki Poznańskiej 2014, 63, 9–20. [Google Scholar]
- Barczak, S. Zastosowanie teorii szarych systemów do przewidywania przyszłych ofert składanych na aukcjach pierwszej ceny poprzez pryzmat modelu szarego GM(1,1). In Studia Ekonomiczne. Innowacje w Finansach i Ubezpieczeniach—Metody Matematyczne i Informatyczne; Mika, J., Dziwok, E., Eds.; Zeszyty Naukowe Wydziałowe Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach: Katowice, Poland, 2013; Volume 146, pp. 7–18. [Google Scholar]
- Barczak, S. Gold price forecasting using grey model GM(1,1) and selected classical time series models. A comparison of methods. In Proceedings of the 8th International Days of Statistics and Economics, Prague, Czechia, 11–13 September 2014. [Google Scholar]
- Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Mazurek-Łopacińska, K. Badania Marketingowe. Teoria i Praktyka; PWN: Warszawa, Poland, 2005. [Google Scholar]
- Wasilewska, E. Descriptive Statistics not only for Sociologists; Wydawnictwo SGGW: Warszawa, Poland, 2008. [Google Scholar]
- Bielecka, A. Statystyka w Biznesie i Ekonomii. Teoria i Praktyka; Wydawnictwo WSPiZ im. L. Koźmińskiego: Warszawa, Poland, 2005. [Google Scholar]
- Colquhoun, I. Design Out Crime: Creating Safe and Sustainable Communities. Crime Prev. Community Saf. 2004, 6, 57–70. [Google Scholar] [CrossRef]
The Features that Affect the Selection of the Location of the Place of Residence in a City | The Value of the Coefficient of the System Factors’ Impact on X0 |
---|---|
X1—criminal threats | ε01 = 0.9721 |
X2—access to social infrastructure | ε02 = 0.5027 |
X3—a high standard of flats | ε03 = 0.9201 |
X4—convenient shopping | ε04 = 0.5018 |
X5—access to public transportation | ε05 = 0.5014 |
Number of Observations | ε01 | ε02 | ε03 | ε04 | ε05 |
---|---|---|---|---|---|
1 (5,6,7,8) | 0.8333 | 0.7500 | 1.0000 | 0.5500 | 0.5417 |
2 (15,16,17,18) | 0.5833 | 0.6250 | 0.5625 | 1.0000 | 0.6000 |
3 (15,25,35,55) | 0.9167 | 0.5625 | 0.8000 | 0.5556 | 0.5455 |
4 (3,14,37,48) | 0.6364 | 0.6364 | 0.5385 | 0.5294 | 0.5294 |
5 (4,11,64,72) | 0.5455 | 0.5294 | 0.5294 | 0.5556 | 0.8889 |
6 (57,67,77,80) | 0.7500 | 0.6250 | 0.7000 | 1.0000 | 0.5333 |
7 (2,11,26,42) | 0.8333 | 0.5714 | 1.0000 | 0.5500 | 0.5500 |
8 (40,50,55,65) | 0.5217 | 0.5714 | 0.7917 | 1.0000 | 0.5625 |
9 (42,50,62,65) | 0.8500 | 0.5250 | 0.9545 | 0.6000 | 0.5278 |
10 (26,62,68,77) | 0.5385 | 0.8636 | 0.8750 | 0.5417 | 0.5263 |
9 (42,50,62,65) | 0.8500 | 0.5250 | 0.9545 | 0.6000 | 0.5278 |
Sampled 4 Observations | Relation Strength Order |
---|---|
1 (5,6,7,8) | ε03 > ε01 > ε02 > ε04 > ε05 |
2 (15,16,17,18) | ε04 > ε02 > ε03 > ε05 > ε01 |
3 (15,25,35,55) | ε01 > ε03 > ε02 > ε04 > ε05 |
4 (3,14,37,48) | ε01 = ε02 > ε03 > ε04 = ε05 |
5 (4,11,64,72) | ε05 > ε04 > ε01 > ε02 = ε03 |
6 (57,67,77,80) | ε04 > ε01 > ε03 > ε02 > ε05 |
7 (2,11,26,42) | ε03 > ε01 > ε02 > ε04 = ε05 |
8 (40,50,55,65) | ε04 > ε03 > ε02 > ε05 > ε01 |
9 (42,50,62,65) | ε03 > ε01 > ε04 > ε05 > ε02 |
10 (26,62,68,77) | ε03 > ε02 > ε04 > ε01 > ε05 |
Number of Observations | ε01 | ε02 | ε03 | ε04 | ε05 |
---|---|---|---|---|---|
4 | 0.6667 | 0.7500 | 0.7500 | 1.0000 | 1.0000 |
5 | 0.7000 | 0.6667 | 0.6667 | 0.7500 | 0.6250 |
10 | 0.8667 | 0.6818 | 0.8636 | 0.5185 | 0.5227 |
20 | 0.8750 | 0.5833 | 0.7667 | 0.5100 | 0.5072 |
30 | 0.9104 | 0.5070 | 0.8909 | 0.5051 | 0.5047 |
40 | 0.9593 | 0.5048 | 0.9070 | 0.5035 | 0.5030 |
50 | 0.9504 | 0.5035 | 0.9215 | 0.5025 | 0.5021 |
60 | 0.9708 | 0.5034 | 0.9197 | 0.5022 | 0.5018 |
70 | 1.0000 | 0.5032 | 0.9172 | 0.5020 | 0.5015 |
80 | 0.9721 | 0.5027 | 0.9201 | 0.5018 | 0.5014 |
Number of Observations | Relation Strength Order |
---|---|
4 | ε04 = ε05 > ε02 = ε03 > ε01 |
5 | ε04 > ε01 > ε02 = ε03 > ε05 |
10 | ε01 > ε03 > ε02 > ε05 > ε04 |
20, 30, 40, 50, 60, 70, 80 | ε01 > ε03 > ε02 > ε04 > ε05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerus-Gościewska, M.; Gościewski, D.; Bajerowski, T.; Szczepańska, A. Grey System Theory in Research into Preferences Regarding the Location of Place of Residence within a City. ISPRS Int. J. Geo-Inf. 2019, 8, 563. https://doi.org/10.3390/ijgi8120563
Gerus-Gościewska M, Gościewski D, Bajerowski T, Szczepańska A. Grey System Theory in Research into Preferences Regarding the Location of Place of Residence within a City. ISPRS International Journal of Geo-Information. 2019; 8(12):563. https://doi.org/10.3390/ijgi8120563
Chicago/Turabian StyleGerus-Gościewska, Małgorzata, Dariusz Gościewski, Tomasz Bajerowski, and Agnieszka Szczepańska. 2019. "Grey System Theory in Research into Preferences Regarding the Location of Place of Residence within a City" ISPRS International Journal of Geo-Information 8, no. 12: 563. https://doi.org/10.3390/ijgi8120563
APA StyleGerus-Gościewska, M., Gościewski, D., Bajerowski, T., & Szczepańska, A. (2019). Grey System Theory in Research into Preferences Regarding the Location of Place of Residence within a City. ISPRS International Journal of Geo-Information, 8(12), 563. https://doi.org/10.3390/ijgi8120563