Validation of Pleiades Tri-Stereo DSM in Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krauss, T. Preprocessing of satellite data for urban object extraction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W2, 115–120. [Google Scholar] [CrossRef]
- Yong, X.; Ren, C.; Ma, P.; Ho, J.; Wang, W.; Ka-Lun Lau, K.; Lin, H.; Ng, E. Urban morphology detection and computation for urban climate research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar] [CrossRef]
- Lefebvre, A.; Nabucet, J.; Corpetti, T.; Courty, N.; Hubert-Moy, L. Extraction of urban vegetation with Pleiades multiangular images. Remote Sens. Technol. Appl. Urban Environ. 2016, 10008, 100080H. [Google Scholar]
- De Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M. DEM reconstruction using light field and bidirectional reflectance function from multi-view high resolution spatial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 503–509. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Marconcini, M.; Gastellu-Etchegorry, J.P.; Grimmond, C.S.B.; Feigenwinter, C.; Lindberg, F.; Del Frate, F.; Klostermann, J.; Mitraka, Z.; Esch, T.; et al. Anthropogenic heat flux estimation from space: Results of the first phase of the URBANFLUXES project. Remote Sens. Technol. Appl. Urban Environ. 2016, 10008, 100080C. [Google Scholar]
- Tsanis, I.K.; Seiradakis, K.D.; Daliakopoulos, I.N.; Grillakis, M.G.; Koutroulis, A.G. Assessment of GeoEye-1 stereo-pair-generated DEM in flood mapping of an ungauged basin. J. Hydroinf. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Pu, L.; Yang, J.; Yang, C.; Chen, J.; Guan, C.; Wang, Q.; Chen, D.; Fu, B.; et al. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. ISPRS Int. J. Geo-Inf. 2016, 5, 200. [Google Scholar] [CrossRef]
- Poli, D.; Caravaggi, I. 3D information extraction from stereo VHR imagery on large urban areas: Lessons learned. Nat. Hazards 2013, 68, 53–78. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Abrams, M.; Kamarianakis, Y.; Stanislawski, M. Validation of ASTER GDEM for the area of Greece. Photogramm. Eng. Remote Sens. 2011, 77, 157–166. [Google Scholar] [CrossRef]
- Gleyzes, J.P.; Meygret, A.; Fratter, C.; Panem, C.; Ballarin, S.; Valorge, C. SPOT5—System overview and image ground segment. In Proceedings of the IGARSS, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Gleyzes, M.A.; Perret, L.; Kubik, P. Pleiades system architecture and main performances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B1. [Google Scholar] [CrossRef]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. Remote Sens. 2015, 100, 35–47. [Google Scholar] [CrossRef]
- Perko, R.; Raggam, H.; Gutjahr, K.H.; Schardt, M. Advanced DTM generation from Very High-Resolution Satellite stereo images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 165–172. [Google Scholar] [CrossRef]
- Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á.Þ.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J.M.C.; et al. Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 2014, 8, 2275–2291. [Google Scholar] [CrossRef]
- Centre National d’EtudesSpatiales (. 2016. Available online: https://pleiades.cnes.fr/en/PLEIADES/index.htm (accessed on 10 March 2018).
- Nikolakopoulos, K.G.; Kamaratakis, E.K.; Chrysoulakis, N. SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int. J. Remote Sens. 2006, 27, 4819–4838. [Google Scholar] [CrossRef]
- De Lussy, F.; Greslou, D.; Dechoz, C.; Amberg, V.; Delvit, J.M.; Lebegue, L.; Blanchet, G.; Fourest, S. Pleiades HR in flight geometrical calibration: Location and mapping of the focal plane. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39. [Google Scholar] [CrossRef]
- Eisank, C.; Rieg, L.; Klug, C.; Kleindienst, H.; Sailer, R. Semi-Global Matching of Pléiades tri-stereo imagery to generate detailed digital topography for high-alpine regions. J. Geogr. Inf. Sci. 2015, 2015, 168–177. [Google Scholar] [CrossRef]
- Poursanidis, D.; Chrysoulakis, N. Remote Sensing, natural hazards and the contribution of ESA Sentinels missions. Remote Sens. Appl. Soc. Environ. 2017, 6, 25–38. [Google Scholar] [CrossRef]
- Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [Google Scholar] [CrossRef]
- Grigillo, D.; Kosmatin, M.F.; Petrovič, D. Automated building extraction from IKONOS images in suburban areas. Int. J. Remote Sens. 2012, 33, 5149–5170. [Google Scholar] [CrossRef]
- Hongjian, Y.; Shukai, L. Building extraction from DSM acquired by airborne 3D image. Geo-Spat. Inf. Sci. 2012, 6, 25–31. [Google Scholar] [CrossRef]
- Dalla, M.; Nex, M.; Remondino, F.; Zanin, M. Integration of photogrammetric DSM and advanced image analysis for the classification of urban areas. Image Signal Process. Remote Sens. 2012, 8537, 85370U. [Google Scholar]
- Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. A review of the effectiveness of spatial information used in urban land cover classification of VHR imagery. Int. J. GeoInf. 2012, 8, 35–51. [Google Scholar]
- Salehi, B.; Zhang, Y.; Zhong, M. Automatic moving vehicle information extraction from single-pass WorldView-2 imagery. IEEE J. Sel. Top. Earth Obs. Remote Sens. 2012, 5, 135–145. [Google Scholar] [CrossRef]
Satellite | Spatial Resolution (Panchromatic) | Stereo | Tristereo | Temporal Resolution |
---|---|---|---|---|
Ikonos | 0.82 m | y | n | 3 to 5 days off nadir |
Quickbird | 0.61 m | y | n | 1 to 3.5 days off-nadir |
Pleiades 1A/B | 0.7 m | y | y | 4 days off-nadir |
Worldview-1 | 0.46 m | y | n | 5.9 days off nadir |
Worldview-2 | 0.46 m | y | n | 3.7 off nadir |
OrbView-3 | 1 m | y | n | 3 off nadir |
GeoEye-1 | 0.46 m | y | n | 2.8 off nadir |
SPOT-5 | 2.5 m | y | n | 2–3 days off nadir |
SPOT-6 & SPOT-7 | 1.5 m | y | n | 1 day off nadir |
Resurs-DK1 | 0.8 m | y | n | 6 days off nadir |
ZY-3A | 2.1 m Nadir/3.5 m Forward–Backward | y | y | 5 days off nadir |
IRS Cartosat-1 | 2.5 m | y | n | 5 days off nadir |
IRS Cartosat-2 | 1 m | y | n | 4 days off-nadir |
IRS Cartosat-2 B | 1 m | y | n | 4 days off-nadir |
Image 1 | Image 2 | Image 3 | |
---|---|---|---|
Along-track (°) | 13.84 | 3.17 | −7.81 |
Across-track (°) | −4.01 | −3.45 | −2.86 |
GSD (m) | 0.74 × 0.74 | 0.70 × 0.71 | 0.71 × 0.71 |
Size (columns) | 39,501 | 40,000 | 40,000 |
Size (rows) | 38,248 | 39,956 | 39,576 |
Acquisition time | 9:19:36 | 9:19:56 | 9:20:16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotakis, E.; Chrysoulakis, N.; Charalampopoulou, V.; Poursanidis, D. Validation of Pleiades Tri-Stereo DSM in Urban Areas. ISPRS Int. J. Geo-Inf. 2018, 7, 118. https://doi.org/10.3390/ijgi7030118
Panagiotakis E, Chrysoulakis N, Charalampopoulou V, Poursanidis D. Validation of Pleiades Tri-Stereo DSM in Urban Areas. ISPRS International Journal of Geo-Information. 2018; 7(3):118. https://doi.org/10.3390/ijgi7030118
Chicago/Turabian StylePanagiotakis, Emmanouil, Nektarios Chrysoulakis, Vasiliki Charalampopoulou, and Dimitris Poursanidis. 2018. "Validation of Pleiades Tri-Stereo DSM in Urban Areas" ISPRS International Journal of Geo-Information 7, no. 3: 118. https://doi.org/10.3390/ijgi7030118