Estimation of Hourly Link Population and Flow Directions from Mobile CDR
Abstract
1. Introduction
2. Study Area
3. List of Data
4. Methodology
4.1. Research Flow
4.2. MPT CDR Data Preprocessing
4.3. Home User-Based CDR Data Magnification Factor
4.4. Hourly Link Population and Flow Directions
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Zhang, D.; Zhou, Z.H.; Li, N.; Atmaca, T.; Li, S. B-Planner: Night bus route planning using large-scale taxi GPS traces. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), San Diego, CA, USA, 18–22 March 2013; pp. 225–233. [Google Scholar]
- Van Oudheusden, D.L.; Zhu, W. Trip frequency scheduling for bus route management in Bangkok. Eur. J. Oper. Res. 1995, 83, 439–451. [Google Scholar] [CrossRef]
- Etemad, M.; Júnior, A.S.; Matwin, S. Predicting Transportation Modes of GPS Trajectories using Feature Engineering and Noise Removal. In Advances in Artificial Intelligence: Proceedings of the 31st Canadian Conference on Artificial Intelligence, Canadian AI 2018, Toronto, ON, Canada, 8–11 May 2018; Springer International Publishing: New York, NY, USA, 2018; p. 31. [Google Scholar]
- Wang, J.; Mao, Y.; Li, J.; Xiong, Z.; Wang, W. Predictability of Road Traffic and Congestion in Urban Areas. PLoS ONE. 2015. [Google Scholar] [CrossRef] [PubMed]
- Stute, M.; Maass, M.; Schons, T.; Hollick, M. Reverse Engineering Human Mobility in Large-scale Natural Disasters. In Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems—MSWiM 17, Miami, FL, USA, 21–25 November 2017. [Google Scholar]
- Batran, M.; Mejia, M.; Kanasugi, H.; Sekimoto, Y.; Shibasaki, R. Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining. ISPRS Int. J. Geo-Inf. 2018, 7, 259. [Google Scholar] [CrossRef]
- Caceres, N.; Wideberg, J.; Benitez, F. Deriving origin-destination data from a mobile phone network. IET Intell. Transp. Syst. 2007. [Google Scholar] [CrossRef]
- Friedrich, M.; Immisch, K.; Jehlicka, P.; Otterstätter, T.; Schlaich, J. Generating Origin-Destination Matrices from Mobile Phone Trajectories. Transp. Res. Rec. J. Transp. Res. Board. 2010, 2196, 93–101. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Choudhury, C.F.; Wang, P.; González, M.C. Development of origin–destination matrices using mobile phone call data. Transp. Res. Part C Emerg. Technol. 2014, 40, 63–74. [Google Scholar] [CrossRef]
- Mellegard, E.; Moritz, S.; Zahoor, M. Origin/Destination-estimation Using Cellular Network Data. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011. [Google Scholar]
- Zin, T.; Kyaing, D.; Lwin, K.; Sekimoto, Y. Estimation of Originating-Destination Trips in Yangon by Using Big Data Source. J. Disaster Res. 2018, 13, 6–13. [Google Scholar] [CrossRef]
- Kang, C.; Gao, S.; Lin, X.; Xiao, Y.; Yuan, Y.; Liu, Y.; Ma, X. Analyzing and geo-visualizing individual human mobility patterns using mobile call records. In Proceedings of the International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–7. [Google Scholar]
- Kyaing, D.; Lwin, K.; Sekimoto, Y. Human Mobility Patterns for Different Regions in Myanmar Based on CDRs Data. IPTEK J. Proc. Ser. 2017. [Google Scholar] [CrossRef]
- Wu, W.; Xu, J.; Zeng, H.; Zheng, Y.; Qu, H.; Ni, B.; Yuan, M.; Ni, L.M. Telcovis: Visual exploration of co-occurrence in urban human mobility based on telco data. IEEE Trans. Vis. Comput. Graph. 2016, 22, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Wang, Y.; Ma, X. Discovering Spatial Interaction Communities from Mobile Phone Data. Trans. GIS 2013, 17, 463–481. [Google Scholar] [CrossRef]
- Han, Q. Social Influence Analysis Using Mobile Phone Dataset. In Proceedings of the 2016 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016. [Google Scholar]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Dan, Y.; He, Z. A dynamic model for urban population density estimation using mobile phone location data. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010. [Google Scholar]
- Ricciato, F.; Widhalm, P.; Pantisano, F.; Craglia, M. Beyond the “single-operator, CDR-only” paradigm: An interoperable framework for mobile phone network data analyses and population density estimation. Pervasive Mob. Comput. 2017, 35, 65–82. [Google Scholar] [CrossRef]
- Castillo, E.; Gallego, I.; Menéndez, J.M.; Jiménez, P. Link Flow Estimation in Traffic Networks on the Basis of Link Flow Observations. J. Intell. Transp. Syst. 2011, 15, 205–222. [Google Scholar] [CrossRef]
- Doblas, J.; Benitez, F.G. An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix. Transp. Res. Part B. 2005, 39, 565–591. [Google Scholar] [CrossRef]
- Asakura, Y.; Hato, E.; Kashiwadani, M. Origin-destination matrices estimation model using automatic vehicle identification data and its application to the Han-Shin expressway network. Transportation. 2000, 27, 419–438. [Google Scholar] [CrossRef]
- Calabrese, F.; Lorenzo, G.D.; Liu, L.; Ratti, C. Estimating Origin-Destination Flows Using Mobile Phone Location Data. IEEE Pervasive Comput. 2011, 10, 36–44. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Sekimoto, Y.; Kashiyama, T.; Kanasugi, H. Transportation Melting Pot Dhaka: Road-link Based Traffic Volume Estimation from Sparse CDR Data. In Proceedings of the First International Conference on IoT in Urban Space, Rome, Italy, 27–28 October 2014. [Google Scholar]
- Wang, P.; Hunter, T.; Bayen, A.M.; Schechtner, K.; González, M.C. Understanding Road Usage Patterns in Urban Areas. Sci. Rep. 2012. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F.; Yuan, M.; Cova, T.J. Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci. 2007, 21, 239–260. [Google Scholar] [CrossRef]
- Liu, L. PPFLOW: An interactive visualization system for the exploratory analysis of migration flows. Geogr. Inf. Sci. 1995, 1, 118–123. [Google Scholar] [CrossRef]
- Marble, D.F.; Gou, Z.; Liu, L.; Saunders, J. Recent advances in the exploratory analysis of interregional flows in space and time. In Innovations in GIS 4: Selected Papers from the Fourth National Conference on GIS Research UK GISRUK; Kemp, Z., Ed.; Taylor & Francis: London, UK, 1997; pp. 75–81. [Google Scholar]
- The 2014 Myanmar Population and Housing Census Report Volume 2; Department of Population, Ministry of Immigration and Population: Nay Pyi Taw, Myanmar, May 2015.
- JICA. A Strategic Urban Development Plan of Greater Yangon. 2014. Available online: http://open_jicareport.jica.go.jp/pdf/12122511.pdf (accessed on 16 November 2018).
- Lwin, K.; Sekimoto, Y.; Takeuchi, W. Development of GIS Integrated Big Data Research Toolbox (BigGIS-RTX) for Mobile CDR Data Processing in Disasters Management. J. Disaster Res. 2018, 13, 380–386. [Google Scholar] [CrossRef]
- Telenor Investor and Analyst Day in Yangon. 1 December 2016. Available online: https://www.telenor.com/wp-content/uploads/2016/12/Asia-field-trip-day-3-Myanmar.pdf (accessed on 16 November 2018).
- Mobile World Live. Myanmar’s MPT Hits 20M Subscribers Milestone. 24 May 2016. Available online: https://www.mobileworldlive.com/asia/asia-news/myanmars-mpt-hits-20m-sub-milestone/ (accessed on 16 November 2018).
- Lwin, K.; Murayama, Y. A GIS Approach to Estimation of Building Population for Micro-spatial Analysis. Trans. GIS 2009, 13, 401–414. [Google Scholar] [CrossRef]
- Lwin, K.; Hashimoto, M.; Murayama, Y. Real-Time Geospatial Data Collection and Visualization with Smartphone. J. Geogr. Inf. Syst. 2014, 6, 99–108. [Google Scholar] [CrossRef]
Dataset Name | Data Source | Acquisition Date | Attribute Information | Purpose |
---|---|---|---|---|
MPT CDR | Myanma Posts and Telecommunications (MPT) call-detail records (CDR) for Myanmar | 1 December 2015 to 7 December 2015 | CDR for both voice and data, including text messages Attributes:
| To generate OD pairs for individuals |
GIS road network | Yangon City Development Committee (YCDC) | 2013 | Road names, type, length, etc. | To compute trip distance, speed, and direction |
National census | Myanmar Information Management Unit (MIMU) | 2014 |
male, female, and total | To compute home-based magnification factor (h-MF) |
JICA Transport Surveys Report | Japan International Cooperation Agency (JICA) | Transport surveys conducted between February 2013 and August 2013 |
| Result validation |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lwin, K.K.; Sekimoto, Y.; Takeuchi, W. Estimation of Hourly Link Population and Flow Directions from Mobile CDR. ISPRS Int. J. Geo-Inf. 2018, 7, 449. https://doi.org/10.3390/ijgi7110449
Lwin KK, Sekimoto Y, Takeuchi W. Estimation of Hourly Link Population and Flow Directions from Mobile CDR. ISPRS International Journal of Geo-Information. 2018; 7(11):449. https://doi.org/10.3390/ijgi7110449
Chicago/Turabian StyleLwin, Ko Ko, Yoshihide Sekimoto, and Wataru Takeuchi. 2018. "Estimation of Hourly Link Population and Flow Directions from Mobile CDR" ISPRS International Journal of Geo-Information 7, no. 11: 449. https://doi.org/10.3390/ijgi7110449
APA StyleLwin, K. K., Sekimoto, Y., & Takeuchi, W. (2018). Estimation of Hourly Link Population and Flow Directions from Mobile CDR. ISPRS International Journal of Geo-Information, 7(11), 449. https://doi.org/10.3390/ijgi7110449