# Analyzing and Predicting Micro-Location Patterns of Software Firms

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- RQ1
- Are the effects of location factors, as reported by previous studies using aggregated spatial units, robust at the microgeographic level?
- RQ2
- How does a firm location prediction model perform at the microgeographic level and to what degree does it provide valuable new insights into the firm allocation process? What are the distinct requirements to the data and the statistical model?

## 2. Data

#### 2.1. OpenStreetMap Data

#### 2.2. Official Geodata

#### 2.3. The Mannheim Enterprise Panel

_{i}*) of low match rates in rural areas. However, there is only a minor positive correlation (r

_{s}= 0.006 ***) between the geocoding match rate and population density. Hence, known OSM data quality issues in rural areas (see above) do not seem to induce a systematic error in our geocoding results. We included an according control variable in the regression analysis (geocoding match rate at postal code area level) to cope with spatially varying geocoding completeness. We further used the MUP to identify the headquarter locations of the top 100 firms (by annual turnover) in Germany to include them as a location factor in the regression analysis.

## 3. Methods

#### 3.1. Exploratory Spatial Data Analysis

_{s}to measure the degree of monotonic relationship between variables. Quadrat analysis is used to evaluate the dispersion of point patterns by calculating their variance-to-mean ratio (VMR) using regular grids. The results of the quadrat analysis are used to assess whether the software firm location point pattern was produced by a random (homogenous Poisson) process [44,45]. We measure global spatial autocorrelation using Moran’s Index I, which is arguably the most common measure to do so. We also utilize standardized Moran’s I z-values, which allow us to compare I values between different levels of spatial aggregation. The generalized local G autocorrelation statistic G

_{i}* is used to evaluate local spatial association [46]. G

_{i}* was selected because we are mostly interested in detecting local pockets of positive spatial autocorrelation (e.g., “hotspots of the software industry”). Measures of spatial autocorrelation require us to hypothesize the spatial relationships in the study area [47]. We use the topological contiguity method with queen contiguity criterion (QNN) for our regular grids.

#### 3.2. Count Data Regression Models

_{i}in cell i is conditional on the local values of

**x**

_{i}:

_{i}|

**x**

_{i}~ Poisson(λ

_{i}) E(y

_{i}|

**x**

_{i}) = λ

_{i}Var

_{i}= λ

_{i}

_{i}, given n location factors x, is then:

_{n}change in x

_{n}is ${\mathrm{e}}^{{\widehat{\mathsf{\beta}}}_{\mathrm{n}}\Delta {\mathrm{x}}_{\mathrm{n}}}$ (ceteris paribus). Cameron and Trivedi [26] recommend using robust standard errors for Poisson models.

## 4. Results

#### 4.1. Exploratory Spatial Data Analysis Results

_{i}*) in the areas of Munich, Stuttgart and Rhine-Main (around Frankfurt). On the contrary, the absence of high software industry shares and hotspots in the very densely populated and large Ruhr area (around Essen) indicates that high population density alone does not necessarily imply large proportions of software firms in the local firm population.

_{s}= 0.94 ***) and the total stock of firms (r

_{s}= 0.97 ***) exhibit similarly strong monotonic relationships with population numbers. At the 1 km scale, software firm numbers show a distinctively lower correlation to local population numbers (r

_{s}= 0.38 ***) than the rest of the firm population (r

_{s}= 0.65 ***). This indicates that population numbers alone do not predict the number of software firms very well at low levels of geographic aggregation.

#### 4.2. Regression Analysis Results

#### 4.2.1. Interpretation of Regression Coefficients

#### 4.2.2. Model Fit and Spatial Residual Analysis

_{i}*) still exist. The described prediction disparity in Berlin is still present for example, because Berlin was, by chance, divided uniformly into four cells (cf. MAUP as mentioned above). This results in significant (p < 0.05) clustering of negative residuals (overestimation) in the south of Berlin (coldspot) and a hotspot of positive residuals (underestimation) in the north. Interestingly, other residual clusters occur mainly in areas which were identified as hotspots of the software industry (see Figure 6b).

## 5. Discussion

#### 5.1. Discussion of Regression Coefficients

#### 5.1.1. Agglomeration Location Factors

#### 5.1.2. Infrastructure Location Factors

#### 5.1.3. Socio-Economic Location Factors

_{s}= 0.49 ***) to the proportion of university graduated employees in the local workforce, which is found to have a strong positive effect on local software firm numbers (indicating multicollinearity). The software industry’s need for highly educated employees is further emphasized by the strong positive effect of nearby universities. The number of local public research institutes has no significant effect though. It needs to be kept in mind that some socio-economic location factors are measured at a low spatial resolution (district and municipality level). While this is of no concern for tax levels, the share of graduate employees and wages can differ significantly within districts (ecological fallacy [4,76]). The lack of socio-economic location factors at the microgeographic level could in fact be a major issue of our model as we discuss further below.

#### 5.1.4. Quality of Life and Amenities Location Factors

#### 5.1.5. Other Location Factors

#### 5.2. Discussion of Model Adequacy

## 6. Conclusions

#### 6.1. RS1: Scale-Robust Location Factors

#### 6.2. RS2: Microgeographic Location Prediction

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Strotmann, H. Entrepreneurial survival. Small Bus. Econ.
**2007**, 28, 87–104. [Google Scholar] [CrossRef] - Capello, R. Classical contributions to location theory. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 507–526. [Google Scholar]
- Clark, W.A.V.; Avery, K.L. The effects of data aggregation in statistical analysis. Geogr. Anal.
**1976**, 8, 428–438. [Google Scholar] [CrossRef] - Manley, D. Scale, aggregation, and the modifiable areal unit problem. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1157–1171. [Google Scholar]
- Flowerdew, R. How serious is the modifiable areal unit problem for analysis of English census data? Popul. Trends
**2011**, 145, 106–118. [Google Scholar] [CrossRef] [PubMed] - Bluemke, M.; Resch, B.; Lechner, C.; Westerholt, R.; Kolb, J.-P. Integrating geographic information into survey research: Current applications, challenges and future avenues. Surv. Res. Methods
**2017**, 11, 307–327. [Google Scholar] - Arauzo-Carod, J.M.; Manjón-Antolín, M. (Optimal) spatial aggregation in the determinants of industrial location. Small Bus. Econ.
**2012**, 39, 645–658. [Google Scholar] [CrossRef] - Lee, Y. Geographic redistribution of US manufacturing and the role of state development policy. J. Urban Econ.
**2008**, 64, 436–450. [Google Scholar] [CrossRef] - Garrett, T.A. Aggregated versus disaggregated data in regression analysis: Implications for inference. Econ. Lett.
**2003**, 81, 61–65. [Google Scholar] [CrossRef] - Cherry, T.L.; List, J.A. Aggregation bias in the economic model of crime. Econ. Lett.
**2002**, 75, 81–86. [Google Scholar] [CrossRef] - Amrhein, C.G. Searching for the elusive aggregation effect: Evidence from statistical simulations. Environ. Plan. A
**1995**, 27, 105–119. [Google Scholar] [CrossRef] - Arauzo-Carod, J.-M. Industrial location at a local level: Some comments about the territorial level of the analysis. Tijdschr. Voor Econ. Soc. Geogr.
**2008**, 99, 193–208. [Google Scholar] [CrossRef] - Manjon-Antolin, M.; Arauzo-Carod, J.M. Locations and relocations: Modelling, determinants, and interrelations. Ann. Reg. Sci.
**2006**, 47, 131–146. [Google Scholar] [CrossRef] - Briant, A.; Combes, P.P.; Lafourcade, M. Dots to boxes: Do the size and shape of spatial units jeopardize economic geography estimations? J. Urban Econ.
**2010**, 67, 287–302. [Google Scholar] [CrossRef] - Arauzo-Carod, J.-M.; Liviano-Solis, D.; Manjon-Antolin, M. Empirical studies in industrial location: An assessment of their methods and results. J. Reg. Sci.
**2010**, 50, 685–711. [Google Scholar] [CrossRef] - Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal
**2007**, 69, 211–221. [Google Scholar] [CrossRef] - Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Ann. Assoc. Am. Geogr.
**2012**, 102, 571–590. [Google Scholar] [CrossRef] - Goodchild, M.F.; Longley, P.A. The practice of geographic information science. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1107–1122. [Google Scholar]
- Sui, D.; Goodchild, M. The convergence of GIS and social media: Challenges for GIScience. Int. J. Geogr. Inf. Sci.
**2011**, 25, 1737–1748. [Google Scholar] [CrossRef] - OpenStreetMap Foundation OpenStreetMap. Available online: http://www.openstreetmap.org (accessed on 1 November 2016).
- Ahlfeldt, G.M. Urbanity; SERC Discussion Paper, 136; London School of Economics and Political Science: London, UK, 2013. [Google Scholar]
- Möller, K. Culturally Clustered or in the Cloud? Location of Internet Start-Ups in Berlin; London School of Economics: London, UK, 2014; Volume 157. [Google Scholar]
- Ahlfeldt, G.M.; Richter, F.J. Urban Renewal after the Berlin Wall; SERC Discussion Paper, 151; London School of Economics and Political Science: London, UK, 2013. [Google Scholar]
- Grasland, C.; Madelin, M. The Modifiable Areas Unit Problem; ESPON: Luxembourg, 2006. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA; London, UK, 2002. [Google Scholar]
- Cameron, C.; Trivedi, P. Microeconomics Using Stata, Revised ed.; Stata Press: College Station, TX, USA, 2009. [Google Scholar]
- Pereira, R.H.M.; Nadalin, V.; Monasterio, L.; Albuquerque, P.H.M. Urban centrality: A simple index. Geogr. Anal.
**2013**, 45, 77–89. [Google Scholar] [CrossRef] - Flanagin, A.J.; Metzger, M.J. The credibility of volunteered geographic information. GeoJournal
**2008**, 72, 137–148. [Google Scholar] [CrossRef] - Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. B Plan. Des.
**2010**, 37, 682–703. [Google Scholar] [CrossRef] - Girres, J.F.; Touya, G. Quality assessment of the French OpenStreetMap dataset. Trans. GIS
**2010**, 14, 435–459. [Google Scholar] [CrossRef] - Neis, P.; Zielstra, D.; Zipf, A. The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet
**2011**, 4, 1–21. [Google Scholar] [CrossRef] - Hecht, R.; Kunze, C.; Hahmann, S. Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int. J. Geo-Inf.
**2013**, 2, 1066–1091. [Google Scholar] [CrossRef] - Arsanjani, J.J.; Mooney, P.; Zipf, A.; Schauss, A. Quality assessment of the contributed land use information from OpenStreetMap versus authoritative datasets. In OpenStreetMap in GIScience: Experiences, Research, and Applications; Arsanjani, J.J., Zipf, A., Mooney, P., Helbich, M., Eds.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; p. 324. [Google Scholar]
- Arsanjani, J.J.; Vaz, E. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int. J. Appl. Earth Obs. Geoinf.
**2015**, 35, 329–337. [Google Scholar] [CrossRef] - Dorn, H.; Törnros, T.; Zipf, A. Geo-Information comparison with land use data in Southern Germany. Int. J. Geo-Inf.
**2015**, 4, 1657–1671. [Google Scholar] [CrossRef] - Gallego, F.J. A population density grid of the European Union. Popul. Environ.
**2010**, 31, 460–473. [Google Scholar] [CrossRef] - Bersch, J.; Gottschalk, S.; Müller, B.; Niefert, M. The Mannheim Enterprise Panel (MUP) and Firm Statistics for Germany; ZEW Discussion Paper, 14-104; Centre for European Economic Research: Mannheim, Germany, 2014. [Google Scholar]
- Zandbergen, P.A. A comparison of address point, parcel and street geocoding techniques. Comput. Environ. Urban Syst.
**2008**, 32, 214–232. [Google Scholar] [CrossRef] - Miller, H.J.; Han, J. Geographic Data Mining and Knowledge Discovery, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Cheng, T.; Haworth, J.; Anbaroglu, B.; Tanaksaranond, G.; Wang, J. Spatiotemporal data mining. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1173–1193. [Google Scholar]
- Andrienko, N.; Andrienko, G. Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Bak, P.; Keim, D.; Wrobel, S. Visual Analytics; Springer: Heidelberg/Berlin, Germany, 2013. [Google Scholar]
- Maciejewski, R. Geovisualization. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1137–1155. [Google Scholar]
- Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns; Senn, S., Scott, M., Barnett, V., Eds.; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Selvin, S. Statistical Analysis of Epidemiologic Data, 2nd ed.; Oxford University Press: New York, NY, USA; Oxford, UK, 1996. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal.
**1995**, 27, 93–115. [Google Scholar] [CrossRef] - Getis, A. Spatial weights matrices. Geogr. Anal.
**2009**, 41, 404–410. [Google Scholar] [CrossRef] - Greene, W.H. Econometric Analysis, 7th ed.; Pearson: Harlow, UK, 2014. [Google Scholar]
- Coxe, S.; West, S.G.; Aiken, L.S. The analysis of count data: A gentle introduction to poisson regression and its alternatives. J. Pers. Assess.
**2009**, 91, 121–136. [Google Scholar] [CrossRef] [PubMed] - Lambert, D.M.; McNamara, K.T.; Garrett, M.I. An application of spatial poisson models to manufacturing investment location analysis. J. Agric. Appl. Econ.
**2006**, 38, 105–121. [Google Scholar] [CrossRef] - Liviano, D.; Arauzo-Carod, J.M. Industrial location and interpretation of zero counts. Ann. Reg. Sci.
**2013**, 50, 515–534. [Google Scholar] [CrossRef] - Gehrke, B.; Frietsch, R.; Neuhäusler, P.; Rammer, C. Neuabgrenzung Forschungsintensiver Industrien und Güter; EFI: Berlin, Germany, 2013. [Google Scholar]
- Florida, R.; King, K. Rise of the Urban Startup Neighborhood; Martin Prosperity Institute Working Paper; Martin Prosperity Institute: Toronto, ON, Canada, 2016. [Google Scholar]
- Florida, R.; Adler, P.; Mellander, C. The city as innovation machine. Reg. Stud.
**2017**, 51, 86–96. [Google Scholar] [CrossRef] - Projekt Adlershof Adlershof Science City. Available online: https://www.adlershof.de/en/sectors-of-technology/it-media/info/ (accessed on 1 October 2017).
- Weber, A. Über den Standort der Theorien: Reine Theorie des Standortes, 2nd ed.; J.C.B. Mohr: Tübingen, Germany, 1922. [Google Scholar]
- Marshall, A. Principles of Economics, 8th ed.; Macmillan Co.: London, UK, 1890. [Google Scholar]
- Hoover, E.M. Location Theory and the Shoe Leather Industries; Harvard University Press: Cambridge, MA, USA, 1937. [Google Scholar]
- Carlino, G.A.; Chatterjee, S.; Hunt, R.M. Urban density and the rate of invention. J. Urban Econ.
**2007**, 61, 389–419. [Google Scholar] [CrossRef] - Hansen, E.R. Industrial location choice in São Paulo, Brazil: A nested logit model. Reg. Sci. Urban Econ.
**1987**, 17, 89–108. [Google Scholar] [CrossRef] - Friedman, J.; Gerlowski, D.A.; Silberman, J. What attracts foreign multinational coproations? Evidence from branch plant location in the United States. J. Reg. Sci.
**1992**, 32, 403–418. [Google Scholar] [CrossRef] - Smith, D.F.J.; Florida, R. Agglomeration and industrial location: An econometric analysis of Japanese-Affiliated manufacturing establishments in automotive-related industries. J. Urban Econ.
**1994**, 36, 23–41. [Google Scholar] [CrossRef] - Ahlfeldt, G.; Pietrostefani, E. The Economic Effects of Density: A Synthesis; SERC Discussion Paper, 210; London School of Economics and Political Science: London, UK, 2017. [Google Scholar]
- Rosenthal, S.S.; Strange, W.C. Evidence on the nature and sources of agglomeration economies. In Handbook of Regional and Urban Economics; Henderson, J.V., Thisse, J.-F., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2120–2167. [Google Scholar]
- Eicher, T.S.; Strobel, T. Information Technology and Productivity Growth; Edward Elgar Publishing Ltd.: Cheltenham/Northampton, UK, 2009. [Google Scholar]
- Jang, S.; Kim, J.; von Zedtwitz, M. The importance of spatial agglomeration in product innovation: A microgeography perspective. J. Bus. Res.
**2017**, 78, 143–154. [Google Scholar] [CrossRef] - List, J.A. US county-level determinants of inbound FDI: Evidence from a two-step modified count data model. Int. J. Ind. Organ.
**2001**, 19, 953–973. [Google Scholar] [CrossRef] - Coughlin, C.C.; Segev, E. Location determinants of new foreign-owned manufacturing plants. J. Reg. Sci.
**2000**, 40, 323–351. [Google Scholar] [CrossRef] - Arauzo-Carod, J.-M. Determinants of industrial location: An application for Catalan municipalitie. Pap. Reg. Sci.
**2005**, 84, 105–120. [Google Scholar] [CrossRef] - Peter, R. Kapazitäten und Flächenbedarf Öffentlicher Verkehrssysteme in Schweizerischen Agglomerationen; Term Paper; ETH Zürich: Zürich, Switzerland, 2005. [Google Scholar]
- Coughlin, C.C.; Terza, J.V.; Arromdee, V. State characteristics and the location of foreign direct investment within the United States. Rev. Econ. Stat.
**1991**, 73, 675–683. [Google Scholar] [CrossRef] - Audretsch, D.B.; Lehmann, E.E. Does the knowledge spillover theory of entrepreneurship hold for regions? Res. Policy
**2005**, 34, 1191–1202. [Google Scholar] [CrossRef] - Rammer, C.; Kinne, J.; Blind, K. Microgeography of Innovation in the City: Location Patterns of Innovative Firms in Berlin; ZEW Discussion Paper; ZEW: Mannheim, Germany, 2016. [Google Scholar]
- Basile, R. Acquisition versus greenfield investment: The location of foreign manufacturers in Italy. Reg. Sci. Urban Econ.
**2004**, 34, 3–25. [Google Scholar] - Barbosa, N.; Guimaraes, P.; Woodward, D. Foreign firm entry in an open economy: The case of Portugal. Appl. Econ.
**2004**, 36, 465–472. [Google Scholar] [CrossRef] - Goodchild, M.F. Scale in GIS: An overview. Geomorphology
**2011**, 130, 5–9. [Google Scholar] [CrossRef] - Cohendet, P.; Grandadam, D.; Simon, L. The anatomy of the creative city. Ind. Innov.
**2010**, 17, 91–111. [Google Scholar] [CrossRef] - Gottlieb, P.D. Residential amenities, firm location and economic development. Urban Stud.
**1995**, 32, 1413–1436. [Google Scholar] [CrossRef] - Glaeser, E.L.; Kerr, W.R.; Ponzetto, G.A.M. Clusters of Entrepreneurship; NBER Working Paper; NBER: Cambridge, MA, USA, 2009. [Google Scholar]
- Ahlfeldt, G.M. Blessing or curse? Appreciation, amenities and resistance to urban renewal. Reg. Sci. Urban Econ.
**2011**, 41, 32–45. [Google Scholar] [CrossRef] - Eurostat. Quality of Life: Facts and Views; Mercy, J.-L., Litwinska, A., Dupré, D., Clarke, S., Ivan, G., Stewart, C., Eds.; Eurostat: Luxembourg, Luxembourg, 2015. [Google Scholar]
- Månssona, K.; Shukur, G. A poisson ridge regression estimator. Econ. Model.
**2011**, 28, 1475–1481. [Google Scholar] [CrossRef] - Westerholt, R.; Resch, B.; Zipf, A. A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets. Int. J. Geogr. Inf. Sci.
**2015**, 1–20. [Google Scholar] [CrossRef] - LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Balakrishnan, N., Schucany, W.R., Eds.; Chapmann & Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Heidelberg/Berlin, Germany, 1988. [Google Scholar]
- Sagl, G.; Loidl, M.; Beinat, E. A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic. ISPRS Int. J. Geo-Inf.
**2012**, 1, 256–271. [Google Scholar] [CrossRef] [Green Version] - Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal
**2015**, 80, 449–461. [Google Scholar] [CrossRef] - Berlin-Brandenburg Bureau of Statistics Statistik Berlin-Brandenburg. Available online: https://www.statistik-berlin-brandenburg.de/ (accessed on 1 October 2017).
- Carlino, G.A.; Carr, J.; Hunt, R.M.; Smith, T.E. The agglomeration of R&D labs. J. Urban Econ.
**2017**, 101, 14–26. [Google Scholar] - Scholl, T.; Brenner, T. Detecting spatial clustering using a firm-level cluster index. Reg. Stud.
**2014**, 3404, 1–15. [Google Scholar] [CrossRef] - Kukuliač, P.; Hor, J.R.I. W Function: A new distance-based measure of spatial distribution of economic activities. Geogr. Anal.
**2016**, 49, 1–16. [Google Scholar] [CrossRef]

**Figure 1.**Overview (5 km scale) and zoom (1 km scale; with selection of location factors for exemplary cell) of the software firm location pattern.

**Figure 2.**(

**a**) Share of software firms in total stock of firms (25 km scale); (

**b**) and standardized Moran’s I by 1 km, 5 km, 10 km, and 25 km level of aggregation.

**Figure 6.**(

**a**) Standardized Moran’s I of regression residual aggregated at different levels of aggregation; (

**b**) Significant clustering of regression residual aggregated at 25 km grid.

Scale | Obs. | $\overline{\mathbf{X}}$ | $\tilde{\mathbf{X}}$ | SD | Min. | Max. | VMR | Histogram |
---|---|---|---|---|---|---|---|---|

1 km | 361,453 | 0.19 | 0 | 1.64 | 0 | 211 | 14.12 | |

5 km | 14,951 | 4.58 | 1 | 25.98 | 0 | 1604 | 147.39 | |

10 km | 3860 | 17.74 | 4 | 87.07 | 0 | 3265 | 427.35 | |

25 km | 671 | 102.06 | 27 | 301.74 | 0 | 4105 | 892.11 |

Location Factor | Description | IRR |
---|---|---|

Agglomeration Location Factors | ||

Firm density | Number of local firms (in 10) | 1.028 *** (0.003) |

Firm density² | Squared number of local firms (in 10) | 0.999 *** (0.000) |

High-tech firms | Proportion of high-tech firms in local stock of firms (in %) | 1.021 *** (0.000) |

Major firms | Distance to next major firm in km | 0.998 *** (0.000) |

Commercial rent | Difference local rent to mean rent in neighborhood (in Euro) | 1.127 *** (0.12) |

Population | Population per cell (in 100) | 1.081 *** (0.003) |

Population² | Squared population per cell (in 100) | 0.999 *** (0.000) |

Population centrality | Urban Centrality Index (in 0.1 UCI) high value ≙ monocentricity | 1.079 *** (0.192) |

Infrastructure Location Factors | ||

Broadband Internet | Availability of ≥50 mb Internet (categories) high value ≙ low availability of Internet | 0.764 *** (0.009) |

Motorway | Distance to nearest motorway access (in km) | 0.977 *** (0.001) |

Railway | Distance to nearest main-line railway station (in km) | 0.998 *** (0.000) |

Airport | Distance to nearest main airport (in km) | 0.998 *** (0.000) |

Public transport | Weighted count of public transport stops | 1.000 (0.001) |

Socio-economic Location Factors | ||

Wages | Median income of full time employee (in 100 Euro) | 1.005 (0.003) |

Universities | Distance to nearest university (in km) | 0.980 *** (0.000) |

Research institutes | Number of research institutes | 1.004 (0.036) |

Educated workforce | Proportion of graduate employees in % | 1.063 ***(0.006) |

Students | Proportion of students in local population in % | 0.986 *** (0.003) |

Business tax | Business tax factor (in 100) high values ≙ high taxes | 0.925 ** (0.023) |

Quality of Life and Amenities Location Factor | ||

Life expectancy | Mean life expectancy of population | 1.092 *** (0.012) |

Crime | Violent and street crime incidents per 1000 inhabitants | 1.021 (0.015) |

Recreation | Number of recreational, community, and sports facilities | 1.056 *** (0.008) |

Culture | Number of cultural facilities | 1.015 0.017 |

Leisure | Number of gastronomy, nightlife, and general leisure facilities | 1.002 (0.002) |

Other | ||

Terrain | Difference in elevation to mean neighborhood elevation (in 100m) high values ≙ hillside location | 0.919 *** (0.004) |

Geocoding control variable | Geocoding match rate (in %) high value ≙ high completeness | 1.018 *** (0.002) |

GoF Measure | Poisson | Negative Binomial |
---|---|---|

Pseudo-R² | 0.58 | 0.33 |

RMSE | 1.36 | 483,735 |

AIC | 211,603 | 179,705 |

BIC | 211,892 | 180,004 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kinne, J.; Resch, B.
Analyzing and Predicting Micro-Location Patterns of Software Firms. *ISPRS Int. J. Geo-Inf.* **2018**, *7*, 1.
https://doi.org/10.3390/ijgi7010001

**AMA Style**

Kinne J, Resch B.
Analyzing and Predicting Micro-Location Patterns of Software Firms. *ISPRS International Journal of Geo-Information*. 2018; 7(1):1.
https://doi.org/10.3390/ijgi7010001

**Chicago/Turabian Style**

Kinne, Jan, and Bernd Resch.
2018. "Analyzing and Predicting Micro-Location Patterns of Software Firms" *ISPRS International Journal of Geo-Information* 7, no. 1: 1.
https://doi.org/10.3390/ijgi7010001