A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area
Abstract
:1. Introduction
- (1)
- To examine the short-term, i.e., during 4 years, land-use and landcover (LULC) dynamics in the reclaimed mine area;
- (2)
- To quantify the emergence and growth of wetlands in the mining-influenced area and thus identify potential subsidence spots, i.e., spots exhibiting abrupt growth of waterbodies; and
- (3)
- To examine the vegetation productivity dynamics as a surrogate of the ground water table fluctuation and ecological stress.
2. Study Area
3. Materials and Methods
3.1. Satellite Data
3.2. Image Processing
3.3. Land-Use and Landcover Classification and Accuracy Assessment
- Draw n-tree bootstrap model from the satellite imageries;
- For each bootstrap model: grow unpruned classification according to the DN values;
- Generate N number of polygons according to the DN values;
- Choose five classification land-use classes;
- Display land-use classification.
3.4. Wetland Coverage and Surface Flooding
3.5. Vegetation Productivity and Coverage
4. Results and Discussion
4.1. Landscape Dynamics in Kirchheller Heide during 2013–2016
4.2. Emergence and Growth of Waterbodies
4.3. Vegetation Productivity
5. Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brunn, A.; Dittmann, C.; Fischer, C.; Richter, R. Atmospheric correction of 2000 HyMAP data in the framework of the EU-project MINEO. In Proceedings of the International Symposium on Remote Sensing, Toulouse, France, 18–21 September 2001; SPIE: Bellingham, WA, USA, 2001; Volume 454, pp. 382–392. [Google Scholar]
- Dittmann, C.; Vosen, P.; Brunn, A. MINEO (Central Europe) Environment Test Site in Germany—Contamination/Impact Mapping and Modelling—Final Report; The Deutsche Steinkohle AG, Division of Engineering Survey and Geoinformation Services: Recklinghausen, Germany, 2002. [Google Scholar]
- Millán, V.E.G.; Müterthies, A.; Pakzad, K.; Teuwsen, S.; Benecke, N.; Zimmermann, K.; Kateloe, H.-J.; Preuße, A.; Helle, K.; Knoth, C. GMES4Mining: GMES-based Geoservices for Mining to Support Prospection and Exploration and the Integrated Monitoring for Environmental Protection and Operational Security. BHM Berg- und Hüttenmännische Monatshefte 2014, 2, 66–73. [Google Scholar] [CrossRef]
- Brunn, A.; Busch, W.; Dittmann, C.; Fischer, C.; Vosen, P. Monitoring Mining Induced Plant Alteration and Change Detection in a German Coal Mining Area using Airborne Hyperspectral Imagery. In Proceedings of the Spectral Remote Sensing of Vegetation Conference, Las Vegas, NV, USA, 12–14 March 2003. [Google Scholar]
- Wegmuller, U.; Strozzi, T.; Werner, C.; Wiesmann, A.; Benecke, N.; Spreckels, V. Monitoring of mining-induced surface deformation in the Ruhrgebiet (Germany) with SAR interferometry. Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, USA, 24–28 July 2000; Volume 6, pp. 2771–2773. [Google Scholar]
- Eikhoff, J. Developments in the German coal mining industry. In Entwicklungen im Deutsch. Steinkohlenbergbau; Deutsche Steinkohle AG, Division of Engineering Survey and Geoinformation Services: Recklinghausen, Germany, 2007; Volume 143, pp. 10–16. [Google Scholar]
- Frank, O. Aspects of surface and environment protection in German mining areas. Min. Sci. Tech. (China) 2009, 19, 615–619. [Google Scholar] [CrossRef]
- Dittmann, C.; Vosen, P. Test Site Report for the “Kircheller Heide” Area at Bottrop/Germany for the EU-Project MINEO; Deutsche Steinkohle AG, Division of Engineering Survey and Geoinformation Services: Recklinghausen, Germany, 2004. [Google Scholar]
- Prakash, A.; Gupta, R.P. Land-use mapping and change detection in a coal mining area—A case study in the Jharia coalfield, India. Int. J. Remote Sens. 1998, 19, 391–410. [Google Scholar] [CrossRef]
- Wang, C.C.; Lv, Y.; Song, Y. Researches on mining subsidence disaster management GIS’s system. In Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI 2012), Yantai, China, 19–20 May 2012; pp. 2493–2496. [Google Scholar]
- Song, J.; Han, C.; Li, P.; Zhang, J.; Liu, D.; Jiang, M.; Zheng, L.; Zhang, J.; Song, J. Quantitative prediction of mining subsidence and its impact on the environment. Int. J. Min. Sci. Technol. 2012, 22, 69–73. [Google Scholar]
- Morfeld, P.; Ambrosy, J.; Bengtsson, U.; Bicker, H.; Kalkowsky, B.; Ksters, A.; Lenaerts, H.; Ruther, M.; Vautrin, H.J.; Piekarski, C. The risk of developing coal workers’ pneumoconiosis in German coal mining under modern mining conditions. Ann. Occup. Hyg. 2002, 46, 251–253. [Google Scholar]
- Carnec, C.; Delacourt, C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. In European Space Agency, (Special Publication) ESA SP; European Space Agency: Paris, France, 2000; pp. 141–149. [Google Scholar]
- Allgaier, F.K. Surface Subsidence over Longwall Panels in the Western United States. In State of the Art of Ground Control in Longwall Mining and Mining Subsidence; Society for Mining Metallurgy & Exploration: Englewood, CO, USA, 1982; pp. 199–209. [Google Scholar]
- Scott, M.J.; Statham, I. Development advice maps: Mining subsidence. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 1998, 15, 391–400. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, F.; Li, J.; Li, H. Impact of coal mining subsidence on farmland in eastern China. Int. J. Surf. Min. Reclam. Environ. 1997, 11, 91–94. [Google Scholar] [CrossRef]
- Zuo, C.; Ma, F.; Hou, J. Representatives of mining subsidence analysis visualization of China. Liaoning Gongcheng Jishu Daxue Xuebao 2014, 33, 788–792. [Google Scholar]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Rajchandar, P.; Bhowmik, A.K.; Cabral, P.; Zamyatin, A.; Almegdadi, O.; Wang, S. Modelling Urban Sprawl Using Remotely Sensed Data: A Case Study of Chennai City, Tamilnadu. Entropy 2017, 19, 163. [Google Scholar]
- Deck, O.; Verdel, T.; Salmon, R. Vulnerability assessment of mining subsidence hazards. Risk Anal. 2009, 29, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, G.; Padmanaban, R. Possibility Studies and Parameter Finding for Interlinking of Thamirabarani and Vaigai Rivers in Tamil Nadu, India. Int. J. Adv. Earth Sci. Eng. 2012, 1, 16–26. [Google Scholar]
- Monishiya, B.G.; Padmanaban, R. Mapping and change detection analysis of marine resources in Tuicorin and Vembar group of Islands using remote sensing. Int. J. Adv. For. Sci. Manag. 2012, 1, 1–16. [Google Scholar]
- Baek, J.; Kim, S.; Park, H.; Kim, K. Analysis of ground subsidence in coal mining area using SAR interferometry. Geosci. J. 2008, 12, 277–284. [Google Scholar] [CrossRef]
- Whittaker, B.N.; Reddish, D.J. Mining Subsidence in Longwall Mining with Special Reference to the Prediction of Surface Strains. In Stability in Underground Mining II; Society for Mining Metallurgy & Exploration: Englewood, CO, USA, 1984. [Google Scholar]
- Kuosmanen, V.; Laitinen, J.; Arkimaa, H. A comparison of hyperspectral airborne HyMAP and spaceborne Hyperion data as tools for studying the environmental impact of talc mining in Lahnaslampi, NE. In Proceedings of the 4th Workshop on Imaging Spectroscopy: ‘Imaging Spectroscopy: New Quality in Environmental Studies’, Warsaw, Poland, 27–29 April 2005. [Google Scholar]
- Lingam, S.S.; Padmanaban, R.; Thomas, V. Inventory of Liquefaction Area and Risk Assessment Region Using Remote Sensing. Int. J. Adv. Remote Sens. GIS 2013, 2, 198–204. [Google Scholar]
- Brunn, A.; Fischer, C.; Dittmann, C.; Richter, R. Quality Assessment, Atmospheric and Geometric Correction of airborne hyperspectral HyMap Data. In Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003. [Google Scholar]
- Lucas, R.; Ellison, J.; Mitchell, A.; Donnelly, B.; Finlayson, M.; Milne, A. Use of stereo aerial photography for quantifying changes in the extent and height of mangroves in tropical Australia. Wetl. Ecol. Manag. 2002, 10, 159–173. [Google Scholar] [CrossRef]
- Ferdinent, J.; Padmanaban, R. Development of a Methodology to Estimate Biomass from Tree Height Using Airborne Digital Image. Int. J. Adv. Remote Sens. GIS 2013, 2, 49–58. [Google Scholar]
- Padmanaban, R. Modelling the Transformation of Land use and Monitoring and Mapping of Environmental Impact with the help of Remote Sensing and GIS. Int. J. Adv. Altern. Energy Environ. Ecol. 2012, 1, 36–38. [Google Scholar]
- Visalatchi, A.; Padmanaban, R. Land Use and Land Cover Mapping and Shore Line Changes Studies in Tuticorin Coastal Area Using Remote Sensing. Int. J. Adv. Earth Sci. Eng. 2012, 1, 1–12. [Google Scholar]
- Hinz, C. Wetterdienst. Available online: http://www.wetterdienst.de/Deutschlandwetter (12 January 2016).
- Padmanaban, R. Integrating of Urban Growth Modelling and Utility Management System using Spatio Temporal Data Mining. Int. J. Adv. Earth Sci. Eng. 2012, 1, 13–15. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R.S. Classes and Methods for Spatial Data: The sp Package. Econ. Geogr. 2005, 50, 1–21. [Google Scholar]
- Padmanaban, R.; Sudalaimuthu, K. Marine Fishery Information System and Aquaculture Site Selection Using Remote Sensing and GIS. Int. J. Adv. Remote Sens. GIS 2012, 1, 20–33. [Google Scholar]
- Morris, S.; Tuttle, J.; Essic, J. A Partnership Framework for Geospatial Data Preservation in North Carolina. Libr. Trends 2009, 57, 516–540. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A. Package “Raster” R. 2014, pp. 1–27. Available online: https://CRAN.R-project.org/package=raster (accessed on 8 February 2016).
- Hijmans, R.J.; Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. R Package Version 2.4-20. 2012. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 8 February 2016).
- Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol. Model. 2011, 222, 1471–1478. [Google Scholar] [CrossRef]
- Padmanaban, R.; Kumar, R. Mapping and Analysis of Marine Pollution in Tuticorin Coastal Area Using Remote Sensing and GIS. Int. J. Adv. Remote Sens. GIS 2012, 1, 34–48. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Goslee, S.C. Analyzing Remote Sensing Data in R: The landsat Package. J. Stat. Softw. 2011, 43, 1–25. [Google Scholar] [CrossRef]
- Streiner, D.L. An introduction to multivariate statistics. Can. J. Psychiatry 1993, 38, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Bivand, R.S.; Pebesma, E.J.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer Science & Business Media: Berlin, Germany, 2008; Volume 65. [Google Scholar]
- Assal, T.J.; Anderson, P.J.; Sibold, J. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling. Remote Sens. Lett. 2015, 6, 755–764. [Google Scholar] [CrossRef]
- Walston, L.J.; Cantwell, B.L.; Krummel, J.R. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development. Ecography 2009, 32, 943–952. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Kan, E.; Machwitz, M.; Khamzina, A. Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environ. Monit. Assess. 2013, 185, 4775–4790. [Google Scholar] [CrossRef] [PubMed]
- Assal, T.J.; Anderson, P.J.; Sibold, J. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. For. Ecol. Manag. 2016, 365, 137–151. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Assal, T.J.; Sibold, J.; Reich, R. Modeling a Historical Mountain Pine Beetle Outbreak Using Landsat MSS and Multiple Lines of Evidence. Remote Sens. Environ. 2014, 155, 275–288. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating the Kappa coefficient and its variance under stratified random sampling. Photogramm. Eng. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Halabisky, M.; Moskal, L.M.; Gillespie, A.; Hannam, M. Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sens. Environ. 2016, 177, 171–183. [Google Scholar] [CrossRef]
- Clough, B.F.; Ong, J.E.; Gong, W.K. Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Mar. Ecol. Prog. Ser. 1997, 159, 285–292. [Google Scholar] [CrossRef]
- Chevrel, S.; Kopackova, V.; Fischer, C.; Ben Dor, E.; Adar, S.; Shkolnisky, Y.; Misurec, J. Mapping minerals, vegetation health and change detection over the sokolov lignite mine using multidate hyperspectral airborne imagery. In Proceedings of the 1st EAGE/GRSG Remote Sensing Workshop, Paris, France, 3–5 September 2012. [Google Scholar]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D.; Ellis, A.C. Estimating leaf area index of mangroves from satellite data. Aquat. Bot. 1997, 58, 11–19. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Wang, J.; Flores-Verdugo, F. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar. Coast. Shelf Sci. 2005, 62, 377–384. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Flores-Verdugo, F.; Wang, J.; Aspden, L.P. Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquat. Bot. 2004, 80, 13–22. [Google Scholar] [CrossRef]
- Kovacs, J.M.; King, J.M.L.; Flores de Santiago, F.; Flores-Verdugo, F. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environ. Monit. Assess. 2009, 157, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, A.K.; Cabral, P. Cyclone Sidr Impacts on the Sundarbans Floristic Diversity. Earth Sci. Res. 2013, 2, 62–79. [Google Scholar] [CrossRef]
- Meza Diaz, B.; Blackburn, G.A. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. Int. J. Remote Sens. 2003, 24, 53–73. [Google Scholar] [CrossRef]
No | LULC Classes | Land Uses Involved in the Class |
---|---|---|
1 | Settlement | Urban built-up and roads |
2 | Dense vegetation | Forests, gardens and shrubs |
2 | Waterbodies | Rivers, lakes, ponds, open water and streams |
3 | Agriculture | Farms and Agriculture parcels |
4 | Bare land | Non-irrigated properties and Dry lands |
LULC Classes | 2013 | 2014 | 2015 | 2016 | ||||
---|---|---|---|---|---|---|---|---|
Producer Accuracy | User Accuracy | Producer Accuracy | User Accuracy | Producer Accuracy | User Accuracy | Producer Accuracy | User Accuracy | |
Settlement | 87.02 | 82.21 | 86.01 | 82.12 | 88.22 | 79.71 | 92.02 | 88.19 |
Dense Vegetation | 83.05 | 83.85 | 82.14 | 85.34 | 81.76 | 81.96 | 83.14 | 87.02 |
Agriculture land | 86.78 | 91.76 | 83.21 | 94.21 | 83.45 | 92.12 | 88.46 | 96.75 |
Water bodies | 86.95 | 91.35 | 81.11 | 89.55 | 87.65 | 88.76 | 82.11 | 85.88 |
Bare land | 91.21 | 84.12 | 88.54 | 79.32 | 89.31 | 83.66 | 81.43 | 83.23 |
Kappa | 0.87 | 0.84 | 0.86 | 0.85 |
LULC Classes | Area in km2 | Differences (km2) 2013–2016 | Differences (%) 2013–2016 | |||
---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | |||
Settlement | 12.70 | 13.04 | 13.25 | 13.40 | 0.69 | 0.05 |
Dense vegetation | 30.78 | 30.27 | 29.72 | 29.10 | −1.67 | −0.05 |
Waterbodies | 0.29 | 0.31 | 0.32 | 0.35 | 0.06 | 0.20 |
Agriculture | 9.24 | 9.16 | 9.02 | 8.95 | −0.29 | −0.03 |
Bare land | 4.74 | 5.03 | 5.75 | 5.95 | 1.21 | 0.26 |
Vegetation Productivity Classes | NDVI Values | Changes in Area Coverage % (km2) | ||
---|---|---|---|---|
From 2013 to 2014 | From 2014 to 2015 | From 2015 to 2016 | ||
Highly Productive | 0.97–1 | −6% (0.55) | –8% (0.36) | –12% (0.27) |
0.54–0.97 | –45% (7.56) | –67% (6.49) | –78% (4.36) | |
0.42–0.54 | –34% (11.25) | –62% (8.84) | –79% (4.85) | |
0.42–1 | –28% (19.36) | –45.66 (15.69) | –56% (9.48) | |
Medium Productive | 0.34–0.42 | 62% (5.30) | 71% (6.07) | 74% (6.33) |
0.29–0.34 | 35% (3.20) | 42% (3.83) | 67% (6.11) | |
0.24–0.29 | 51% (29.00) | 64% (3.64) | 72% (4.10) | |
0.16–0.24 | 35% (8.00) | 38% (0.87) | 42% (0.96) | |
0.08–0.16 | 21% (0.60) | 29% (0.83) | 44% (1.25) | |
0.08–0.42 | 40% (12.80) | 48% (15.24) | 59% (18.75) | |
Lowly Productive | 0–0.08 | 12% (0.18) | 61% (0.29) | 86% (0.55) |
−1–0 | 16% (0.21) | 57% (0.34) | 66% (0.56) | |
−1–0.08 | 14% (0.39) | 59% (0.63) | 76% (1.10) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padmanaban, R.; Bhowmik, A.K.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. https://doi.org/10.3390/ijgi6120401
Padmanaban R, Bhowmik AK, Cabral P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS International Journal of Geo-Information. 2017; 6(12):401. https://doi.org/10.3390/ijgi6120401
Chicago/Turabian StylePadmanaban, Rajchandar, Avit K. Bhowmik, and Pedro Cabral. 2017. "A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area" ISPRS International Journal of Geo-Information 6, no. 12: 401. https://doi.org/10.3390/ijgi6120401
APA StylePadmanaban, R., Bhowmik, A. K., & Cabral, P. (2017). A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS International Journal of Geo-Information, 6(12), 401. https://doi.org/10.3390/ijgi6120401