A Monte-Carlo-Based Method for Probabilistic Permafrost Mapping Across Northeast China During 2003 to 2022
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Method
2.2.1. Data Source
2.2.2. TTOP Model
2.2.3. Monte Carlo Simulation
3. Results
3.1. Model Validation
3.2. Spatial and Temporal Changes in MAGT in Northeast China During 2003–2022
3.3. Reliability Analysis of MC-TTOP Simulation Results
4. Discussion
4.1. Local Controls and Transitional Uncertainty
4.2. Limitations and Future Improvement Pathways
5. Conclusions
- (1)
- Temporal change: Permafrost was relatively stable during 2003–2010 but degradation accelerated after 2011, with total permafrost area decreasing to ~2.79 × 105 km2 by 2022.
- (2)
- Spatial hotspots: The strongest degradation occurred in the Hulunbuir Plateau, Sanjiang Plain, Songnen Plain, and the Xiao Xing’anling Mountains.
- (3)
- Uncertainty pattern: Uncertainty in permafrost occurrence is highest in transitional zones near the SLLP, where PZI-based delineations tend to overestimate permafrost extent; therefore, mapped boundaries should be interpreted cautiously in near-threshold areas.
- (4)
- Regional contrast: Compared with the Tibetan Plateau, Northeast China exhibits a more fragmented permafrost thermal regime and higher uncertainty, reflecting stronger influences of local factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MC | Monte Carlo |
| TTOP | Temperature at the Top of Permafrost |
| MAGT | Mean Annual Ground Temperature |
| PZI | Permafrost Zonation Index |
| LULC | Land Use and Land Cover |
| SLLP | Southern Limit of Latitudinal Permafrost |
| XAP | Xing’an Permafrost |
| SD | Standard Deviation |
References
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Plaza, C.; Pegoraro, E.; Bracho, R.; Celis, G.; Crummer, K.G.; Hutchings, J.A.; Hicks Pries, C.E.; Mauritz, M.; Natali, S.M.; Salmon, V.G.; et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 2019, 12, 627–631. [Google Scholar] [CrossRef]
- Hjort, J.; Streletskiy, D.; Doré, G.; Wu, Q.; Bjella, K.; Luoto, M. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 2022, 3, 24–38. [Google Scholar] [CrossRef]
- Smith, S.L.; O’Neill, H.B.; Isaksen, K.; Noetzli, J.; Romanovsky, V.E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 2022, 3, 10–23. [Google Scholar] [CrossRef]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X. Progress, challenges challenges and opportunities of permafrost mapping in China. Adv. Earth Sci. 2019, 34, 1015–1027. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, T.; Zhao, L.; Wu, X.; Li, R.; Xie, C.; Pang, Q.; Hu, G.; Qiao, Y.; Zhao, G.; et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Smith, M.W.; Riseborough, D.W. Climate and the limits of permafrost: A zonal analysis. Permafr. Periglac. Process. 2002, 13, 1–15. [Google Scholar] [CrossRef]
- Luo, D.; Ran, Y.; Wang, K.; Chen, F.; Liu, J. Permafrost-climate relationship and permafrost modeling and mapping. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Cheng, G. Problem on zonation of high-altitude permafrost. Acta Geogr. Sin. 1984, 32, 185–193. [Google Scholar]
- Mahanta, K.K.; Pradhan, I.P.; Gupta, S.K.; Shukla, D.P. Assessing machine learning and statistical methods for rock glacier-based permafrost distribution in northern Kargil region. Permafr. Periglac. Process. 2024, 35, 262–277. [Google Scholar] [CrossRef]
- Huang, S.; Jin, H.; Wang, Y.; Liang, J.; Jin, X.; Yang, L.; Li, X.; He, R.; Lv, L.; Li, A.; et al. Machine Learning Model Mapped Permafrost Distribution in Northeast China During 2000–2020. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–18. [Google Scholar] [CrossRef]
- Jin, H.; Sun, G.; Yu, S.; Jin, R.; He, R. Symbiosis of marshes and permafrost in Da and Xiao Hinggan Mountains in northeastern China. Chin. Geogra. Sci. 2008, 18, 62–69. [Google Scholar] [CrossRef]
- Jin, H.; Huang, S.; Jin, X.; Liang, J.; Li, X.; Li, A.; Lü, L.; Şerban, R.-D.; Gagarin, L.S.; Wang, Y. Changing Southern/Lower Limits of Latitudinal/Mountain Permafrost (SLLP/LLMP) in Northeast China: An Overview. Permafr. Periglac. Process. 2025, 36, 563–579. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Wu, Q.; Wang, X.; Jin, H.; Chen, H.; Ma, D.; Zhang, Z. Degradation and local growth of “Xing’an-Baikal” permafrost responding to climate warming and the consequences. Earth-Sci. Rev. 2024, 255, 104865. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Marchenko, S.S.; Romanovsky, V.E. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 2018, 312, 74–85. [Google Scholar] [CrossRef]
- Wang, W.; Jin, X.; Jin, H.; Li, X.; Wang, X.; He, R.; Li, Y.; Li, X.; Wang, L.; Wang, W.; et al. Evaluation of ground surface deformation in discontinuous permafrost regions along the China-Russia Crude Oil Pipelines in Northeast China using InSAR and ground surveys. Eng. Geol. 2023, 323, 107227. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; Sun, L.; Wang, H.; Huang, Y.; He, R.; Chang, X.; Yu, S.; Zang, S. TTOP-model-based maps of permafrost distribution in Northeast China for 1961–2020. Permafr. Periglac. Process. 2022, 33, 425–435. [Google Scholar] [CrossRef]
- Kim, K.Y.; Haagenson, R.; Kansara, P.; Rajaram, H.; Lakshmi, V. Augmenting daily MODIS LST with AIRS surface temperature retrievals to estimate ground temperature and permafrost extent in High Mountain Asia. Remote Sens. Environ. 2024, 305, 114075. [Google Scholar] [CrossRef]
- Wang, K.; Jafarov, E.; Overeem, I. Sensitivity evaluation of the Kudryavtsev permafrost model. Sci. Total Environ. 2020, 720, 137538. [Google Scholar] [CrossRef]
- Gubler, S.; Endrizzi, S.; Gruber, S.; Purves, R.S. Sensitivities and uncertainties of modeled ground temperatures in mountain environments. Geosci. Model Dev. 2013, 6, 1319–1336. [Google Scholar] [CrossRef]
- Harp, D.R.; Atchley, A.L.; Painter, S.L.; Coon, E.T.; Wilson, C.J.; Romanovsky, V.E.; Rowland, J.C. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis. Cryosphere 2016, 10, 341–358. [Google Scholar] [CrossRef]
- Langer, M.; Westermann, S.; Heikenfeld, M.; Dorn, W.; Boike, J. Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sens. Environ. 2013, 135, 12–24. [Google Scholar] [CrossRef]
- Groenke, B.; Langer, M.; Nitzbon, J.; Westermann, S.; Gallego, G.; Boike, J. Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer. Cryosphere 2023, 17, 3505–3533. [Google Scholar] [CrossRef]
- Jin, H.; Yu, Q.; Lü, L.; Guo, D.; He, R.; Yu, S.; Sun, G.; Li, Y. Degradation of permafrost in the Xing’anling Mountains, northeastern China. Permafr. Periglac. Process. 2007, 18, 245–258. [Google Scholar] [CrossRef]
- Gao, K.; Li, G.; Cao, Y.; Li, C.; Chen, D.; Wu, G.; Du, Q.; Wang, F.; Alexander, F.; Che, F.; et al. Permafrost thawing caused by the China-Russia Crude oil pipeline based on multi-type data and its impacts on geomorphological reshaping and water erosion. Catena 2024, 242, 108134. [Google Scholar] [CrossRef]
- Jin, X.; Huang, S.; Wang, H.; Wang, W.; Li, X.; He, R.; Yang, S.; Yang, X.; Li, S.; Zhang, S.; et al. Quantifying the influencing factors of the thermal state of permafrost in Northeast China. Geoderma 2024, 449, 117003. [Google Scholar] [CrossRef]
- Li, X.; Sun, L.; Han, Y. Effects of wildfires on soil organic carbon in boreal permafrost regions: A review. Permafr. Periglac. Process. 2024, 35, 493–503. [Google Scholar] [CrossRef]
- Wang, M.; Wei, J.; Wang, X.; Luan, Q.; Xu, X. Reconstruction of all-sky daily air temperature datasets with high accuracy in China from 2003 to 2022. Sci. Data 2024, 11, 1133. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, S.; Li, M.; Shen, X.; Lin, Y. Spatial distribution of permafrost in the Xng’an mountains of Northeast China from 2001 to 2018. Land 2021, 10, 1127. [Google Scholar] [CrossRef]
- Zhan, D.; Man, H.; Zang, S.; Li, M. Simulation of frozen ground distribution in northeast China based on a surface frost number model. J. Geogr. Sci. 2022, 32, 1581–1600. [Google Scholar] [CrossRef]
- Huang, S.; Ding, Q.; Chen, K.; Hu, Z.; Liu, Y.; Zhang, X.; Gao, K.; Qiu, K.; Yang, Y.; Ding, L. Changes in near-surface permafrost temperature and active layer thickness in Northeast China in 1961–2020 based on GIPL model. Cold Reg. Sci. Technol. 2023, 206, 103709. [Google Scholar] [CrossRef]
- Liang, J.; Huang, S.; Jin, X.; Li, X.; Li, A.; Yang, L.; Wang, W.; Tang, J.; Zhang, Z.; Wang, Y.; et al. Rapid development of thermokarst lakes and driving factors along a highway in Northeast China (2000–2020). Res. Cold Arid. Reg. 2025; in press. [Google Scholar] [CrossRef]
- Liang, J.; Huang, S.; Jin, X.; Yang, L.; Wang, W.; Tang, J.; Zhang, Z.; Li, S.; Li, X.; Zhai, J.; et al. Expansion of thermokarst lakes along the Mo’he county section of National Highway G111 in Northeast China during 1989–2020. Adv. Clim. Change Res. 2025, 16, 1044–1057. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; Zhang, Y.; He, R.; Luo, D.; Wang, Y.; Lü, L.; Zhang, Q. Thermal impacts of boreal forest vegetation on active layer and permafrost soils in northern da Xing’Anling (Hinggan) Mountains, Northeast China. Arct. Antarct. Alp. Res. 2015, 47, 267–279. [Google Scholar] [CrossRef]
- Gao, K.; Li, G.; Wang, F.; Cao, Y.; Chen, D.; Du, Q.; Chai, M.; Fedorov, A.; Lin, J.; Shang, Y.; et al. Evolution of secondary periglacial environment induced by thawing permafrost near China–Russia Crude Oil Pipeline based on airborne LiDAR, geophysics, and field observation. Drones 2024, 8, 360. [Google Scholar] [CrossRef]
- Gouttevin, I.; Menegoz, M.; Dominé, F.; Krinner, G.; Koven, C.; Ciais, P.; Tarnocai, C.; Boike, J. How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J. Geophys. Res. Biogeosci. 2012, 117, G02020. [Google Scholar] [CrossRef]
- Gisnås, K.; Westermann, S.; Schuler, T.V.; Litherland, T.; Isaksen, K.; Boike, J.; Etzelmüller, B. A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. Cryosphere 2014, 8, 2063–2074. [Google Scholar] [CrossRef]
- Grünberg, I.; Wilcox, E.J.; Zwieback, S.; Marsh, P.; Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 2020, 17, 4261–4279. [Google Scholar] [CrossRef]
- Wang, G.; Mao, T.; Chang, J.; Du, J. Impacts of surface soil organic content on the soil thermal dynamics of alpine meadows in permafrost regions: Data from field observations. Geoderma 2014, 232–234, 414–425. [Google Scholar] [CrossRef]
- Jafarov, E.; Schaefer, K. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. Cryosphere 2016, 10, 465–475. [Google Scholar] [CrossRef]








| Land Cover Types | nf | nt | rk |
|---|---|---|---|
| Grasslands | 0.63 | 0.95 | 0.75 |
| Croplands | 0.43 | 0.95 | 0.75 |
| Shrubs | 0.63 | 0.80 | 0.80 |
| Wetland | 0.40 | 0.90 | 0.55 |
| Forest | 0.39 | 0.80 | 0.90 |
| Artificial surfaces | 0.44 | 1.20 | 0.70 |
| Barren | 0.44 | 1.10 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xiao, Y.; Zhao, L.; Wang, S.; Wu, X.; Gao, K.; Shang, Y. A Monte-Carlo-Based Method for Probabilistic Permafrost Mapping Across Northeast China During 2003 to 2022. ISPRS Int. J. Geo-Inf. 2026, 15, 9. https://doi.org/10.3390/ijgi15010009
Xiao Y, Zhao L, Wang S, Wu X, Gao K, Shang Y. A Monte-Carlo-Based Method for Probabilistic Permafrost Mapping Across Northeast China During 2003 to 2022. ISPRS International Journal of Geo-Information. 2026; 15(1):9. https://doi.org/10.3390/ijgi15010009
Chicago/Turabian StyleXiao, Yao, Lei Zhao, Shuqi Wang, Xuyang Wu, Kai Gao, and Yunhu Shang. 2026. "A Monte-Carlo-Based Method for Probabilistic Permafrost Mapping Across Northeast China During 2003 to 2022" ISPRS International Journal of Geo-Information 15, no. 1: 9. https://doi.org/10.3390/ijgi15010009
APA StyleXiao, Y., Zhao, L., Wang, S., Wu, X., Gao, K., & Shang, Y. (2026). A Monte-Carlo-Based Method for Probabilistic Permafrost Mapping Across Northeast China During 2003 to 2022. ISPRS International Journal of Geo-Information, 15(1), 9. https://doi.org/10.3390/ijgi15010009

