Analysis of Hotel Reviews and Ratings with Geographical Factors in Seoul: A Quantitative Approach to Understanding Tourist Satisfaction
Abstract
1. Introduction
2. Literature Review
3. Data and Methods
3.1. Study Area and Data Preprocessing
3.2. Aspect-Based Sentiment Analysis
4. Results
4.1. Sentiment Scores
4.2. Hotel Ratings
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Wang, J.; Xia, Y.; Li, Q.; Pan, Y. Sensing hotel customers’ distribution and their sentiment variations using online travel agent data: A case of Shanghai star-rated hotels. Ann. GIS 2024, 30, 323–343. [Google Scholar] [CrossRef]
- Latinopoulos, D. Analysing the role of urban hotel location in guests’ satisfaction. Anatolia 2020, 31, 1–15. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Oh, H. Service quality, customer satisfaction, and customer value: A holistic perspective. Int. J. Hosp. Manag. 1999, 18, 67–82. [Google Scholar] [CrossRef]
- Baker, D.A.; Crompton, J.L. Quality, satisfaction and behavioral intentions. Ann. Tour. Res. 2000, 27, 785–804. [Google Scholar] [CrossRef]
- Abrate, G.; Quinton, S.; Pera, R. The relationship between price paid and hotel review ratings: Expectancy–disconfirmation or placebo effect? Tour. Manag. 2021, 85, 104314. [Google Scholar] [CrossRef]
- Li, H.Y.; Meng, Q.; Hudson, S. Are hotel guests altruistic? How positive review disconfirmation affects online review behavior. J. Hosp. Tour. Res. 2021, 47, 528–548. [Google Scholar] [CrossRef]
- Geetha, M.; Singha, P.; Sinha, S. Relationship between customer sentiment and online hotel ratings. Tour. Manag. 2017, 61, 43–54. [Google Scholar] [CrossRef]
- Lai, X.; Wang, F.; Wang, X. Asymmetric relationship between customer sentiment and online hotel ratings: The moderating effects of review characteristics. Int. J. Contemp. Hosp. Manag. 2021, 33, 2137–2156. [Google Scholar] [CrossRef]
- Al-Natour, S.; Turetken, O. Exploring the role of sentiment in online hotel reviews. J. Hosp. Tour. Technol. 2020, 11, 55–72. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X. Geography matters in online hotel reviews. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41-B2, 573–576. [Google Scholar] [CrossRef]
- Chen, C.-M.; Chen, P.-J.; Lee, H.-T. Integrating the Kano model and importance-performance analysis to improve customer satisfaction in hotels. Sustainability 2021, 13, 601. [Google Scholar] [CrossRef]
- Lu, W.; Stepchenkova, S. User-Generated Content as a Research Mode in Tourism and Hospitality Applications: Topics, Methods, and Software. J. Hosp. Mark. Manag. 2015, 24, 119–154. [Google Scholar] [CrossRef]
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tour. Manag. 2017, 58, 51–65. [Google Scholar] [CrossRef]
- Kádár, B.; Gede, M. Where do tourists go? Visualizing and analysing the spatial distribution of geotagged photography. Cartogr. Int. J. Geogr. Inf. Geovisualization 2013, 48, 78–88. [Google Scholar] [CrossRef]
- Carreon, J.R.; Lee, K.; Lee, S. Sentiment analysis of TripAdvisor reviews: An approach to hotel performance evaluation. Sustainability 2019, 11, 6735. [Google Scholar] [CrossRef]
- Gunasekar, S.; Sudhakar, B. Determinants of hotel customer satisfaction using online reviews. J. Contemp. Issues Bus. Gov. 2019, 25, 39–48. [Google Scholar]
- Hale, S.A. User reviews and language: How language influences ratings. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY, USA, 2016; pp. 1208–1214. [Google Scholar] [CrossRef]
- Chua, A.Y.K.; Banerjee, S. Reliability of reviews on the Internet: The case of TripAdvisor. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 23–25 October 2013; Volume 2, pp. 453–457. [Google Scholar]
- Han, S.; Anderson, C.K. The platform matters: Selection and measurement bias in online reviews. J. Hosp. Tour. Res. 2025. [Google Scholar] [CrossRef]
- Hong, J.E. Qualitative analysis of users’ negative reviews on TripAdvisor: International tourists’ reviews on Gyeongbokgung Palace in Seoul, Korea. Int. J. Geospat. Environ. Res. 2020, 7, 4. [Google Scholar]
- Liu, B. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers. 2012. Available online: https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf (accessed on 15 March 2025).
- Thelwall, M. The heart and soul of the web? Sentiment strength detection in the social web with SentiStrength. In Analyzing Social Media Data and Web Networks; Cantijoch, M., Gibson, R., Ward, S., Eds.; Palgrave Macmillan: London, UK, 2017; pp. 119–134. [Google Scholar]
- Medhat, W.; Hassan, A.; Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 2014, 5, 1093–1113. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1253. [Google Scholar] [CrossRef]
- Leung, R.; Law, R.; van Hoof, H.; Buhalis, D. Social Media in Tourism and Hospitality: A Literature Review. J. Travel Tour. Mark. 2013, 30, 3–22. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B. The Impact of Online User Reviews on Hotel Room Sales. Int. J. Hosp. Manag. 2009, 28, 180–182. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill: Columbus, OH, USA, 2005. [Google Scholar]
- Kennedy, P. A Guide to Econometrics, 6th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western: Georgetown, TX, USA, 2015. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics. In A Companion to Theoretical Econometrics; Baltagi, B.H., Ed.; Wiley-Blackwell: Georgetown, TX, USA, 2003. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. A simple test for heteroscedasticity and random coefficient variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Valenzuela-Ortiz, Y.F.; Díaz-Parra, I.; López-Gay, A. Touristification and urban justice: Spatial analysis of Airbnb in natural and protected areas. Cities 2020, 100, 102684. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, H.-S. The impact of hotel customer experience on customer satisfaction through online reviews. Sustainability 2022, 14, 848. [Google Scholar] [CrossRef]
- Susanto, P.C.; Mahaputra, M.R.; Mahaputra, M.R. Service quality and customer satisfaction have an impact on increasing hotel room occupancy ratio: A literature review study. Glob. J. Int. Tour. Manag. 2023, 1, 400–412. [Google Scholar] [CrossRef]
- Song, Y.; Lee, K.; Anderson, W.P.; Lakshmanan, T.R. Industrial agglomeration and transport accessibility in metropolitan Seoul. J. Geogr. Syst. 2012, 14, 299–318. [Google Scholar] [CrossRef]
- Kim, S.H.; Choei, N.Y. An analysis of heterogeneity in tourists’ route via space syntax. Land Hous. Rev. 2020, 11, 39–48. [Google Scholar]
- Xie, K.L.; Zhang, Z. The business value of online consumer reviews and management response to hotel performance. Int. J. Hosp. Manag. 2016, 55, 41–51. [Google Scholar] [CrossRef]
- Hao, Z.; Peng, Y. Comparing nonlinear and threshold effects of bus stop proximity on transit use and carbon emissions in developing cities. Land 2023, 12, 28. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Z.; Tang, J. Understanding Guest Satisfaction with Urban Hotel Location. J. Travel Res. 2017, 56, 243–259. [Google Scholar] [CrossRef]
- Vargas-Calderón, V.; Moros Ochoa, A.; Castro Nieto, G.Y.; Camargo, J.E. Machine learning for assessing quality of service in the hospitality sector based on customer reviews. Inf. Technol. Tour. 2021, 23, 503–526. [Google Scholar] [CrossRef]
- Lee, J.-K. Transport infrastructure investment, accessibility change and firm productivity: Evidence from the Seoul region. J. Transp. Geogr. 2021, 96, 103182. [Google Scholar] [CrossRef]
- Li, H.; Ye, Q.; Law, R. Determinants of customer satisfaction in the hotel industry: An application of online review analysis. Asia Pac. J. Tour. Res. 2013, 18, 784–802. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Q.; Law, R.; Li, Y. The impact of e-word-of-mouth on the online popularity of restaurants: A comparison of consumer reviews and editor reviews. Int. J. Hosp. Manag. 2011, 30, 694–700. [Google Scholar] [CrossRef]
Variable Name | Description | ||
---|---|---|---|
rating | Hotel rating | 4.40 | 0.36 |
open_yr | Year open | 2008.73 | 14.5499 |
n_rooms | Number of rooms in the hotel | 214.08 | 139.32 |
dist_palace | Distance to Gyeongbokgung Palace | 6690.16 | 4556.30 |
dist_icn | Distance to the Incheon Airport | 62,619.63 | 4512.03 |
dist_gmp | Distance to the Gimpo Airport | 27,545.75 | 5104.81 |
bus | Number of bus stops within 600 m | 21.21 | 8.64 |
subway | Number of subway stations within 600 m | 2.84 | 2.21 |
cvs | No. convenience stores within 600 m | 29.05 | 23.04 |
price | Lowest price per room | 180,162.17 | 107,915.68 |
time_icn | Time taken to the Incheon Airport | 443.61 | 1332.20 |
time_gmp | Time taken to Gimpo Airport | 1750.53 | 577.94 |
time_palac | Time taken to Gyeongbokgung Palace | 896.69 | 427.07 |
final_score | Sentiment scores | 4.09 | 1.03 |
Variable | Coefficient | StdError | t-Statistic | p-Value | VIF | |
---|---|---|---|---|---|---|
Intercept | −0.000000 | 0.077334 | −0.000000 | 1.000000 | -------- | |
open_yr | −0.011127 | 0.097382 | −0.114267 | 0.909400 | 1.401114 | |
n_rooms | 0.318195 | 0.094169 | 3.378982 | 0.001276 | *** | 1.364701 |
dist_icn | 1.064026 | 0.468281 | 2.272195 | 0.026610 | ** | 52.358468 |
dist_gmp | −0.932631 | 0.457273 | −2.039553 | 0.045733 | ** | 50.450570 |
dist_palac | −0.283181 | 0.359385 | −0.787959 | 0.433768 | 20.506012 | |
bus | 0.084157 | 0.124011 | 0.678625 | 0.499940 | 2.264772 | |
subway | 0.057737 | 0.092243 | 0.625920 | 0.533702 | 1.753107 | |
cvs | 0.162837 | 0.112168 | 1.451722 | 0.151707 | . | 2.717527 |
price | −0.181539 | 0.150304 | −1.207816 | 0.231780 | 1.345176 | |
hotel rating | 0.614123 | 0.085413 | 7.190067 | 0.000000 | *** | 1.254263 |
time_icn | −0.895202 | 0.321161 | −2.787394 | 0.007074 | *** | 148.303715 |
time_gmp | 0.806061 | 0.310070 | 2.599606 | 0.011688 | ** | 145.752485 |
time_palac | 0.016601 | 0.385984 | 0.043009 | 0.965833 | 23.544065 |
Variable | Coefficient | StdError | z-Statistic | p-Value | |
---|---|---|---|---|---|
Intercept | −0.011014 | 0.037730 | −0.291917 | 0.770350 | |
open_yr | −0.034031 | 0.090731 | −0.375072 | 0.707607 | |
n_rooms | 0.296977 | 0.077913 | 3.811663 | 0.000138 | *** |
dist_icn | 0.926400 | 0.388196 | 2.386421 | 0.017013 | ** |
dist_gmp | −0.824747 | 0.364829 | −2.260642 | 0.023781 | ** |
dist_palac | −0.073695 | 0.216523 | −0.340358 | 0.733587 | |
bus_600 | 0.016460 | 0.094790 | 0.173648 | 0.862142 | |
subwy_600 | 0.038380 | 0.080415 | 0.477271 | 0.633169 | |
cvs_600 | 0.135497 | 0.073774 | 1.836663 | 0.066260 | * |
price | −0.156782 | 0.142281 | −1.101923 | 0.270495 | |
hotel rating | 0.574012 | 0.083361 | 6.885838 | 0.000000 | *** |
time_icn | −0.773451 | 0.316124 | −2.446675 | 0.014418 | ** |
time_gmp | 0.685585 | 0.310249 | 2.209790 | 0.027120 | ** |
time_palac | −0.123854 | 0.242348 | −0.511061 | 0.609309 | |
lag y (rho) | 0.444165 | 0.141232 | 3.144936 | 0.001661 | *** |
Lag residual (lambda) | −0.852893 | 0.340537 | −2.504553 | 0.012261 | ** |
Variable | Coefficient | StdError | t-Statistic | p-Value | VIF | |
---|---|---|---|---|---|---|
intercept | 0.000000 | 0.102414 | 0.000000 | 1.000000 | -------- | |
open_yr | 0.300536 | 0.112851 | 2.663122 | 0.009850 | ** | 1.290889 |
n_rooms | 0.095244 | 0.118956 | 0.800665 | 0.426379 | 1.353323 | |
dist_icn | 0.388319 | 0.743406 | 0.522351 | 0.603290 | 52.169336 | |
dist_gmp | −0.712732 | 0.698658 | −1.020144 | 0.311621 | 49.813422 | |
dist_palac | 0.739753 | 0.477086 | 1.550564 | 0.126100 | . | 19.819636 |
bus_600 | −0.262651 | 0.140732 | −1.866321 | 0.066730 | . | 2.178246 |
subwy_600 | 0.067333 | 0.150384 | 0.447744 | 0.655902 | 1.747420 | |
cvs_600 | −0.214063 | 0.189763 | −1.128058 | 0.263640 | 2.660829 | |
price_0617 | 0.154292 | 0.106181 | 1.453111 | 0.151240 | 1.315317 | |
time_icn | 0.067917 | 0.686823 | 0.098886 | 0.921546 | 148.297929 | |
time_gmp | 0.124235 | 0.661658 | 0.187763 | 0.851676 | 145.733126 | |
time_palac | −0.780164 | 0.528366 | −1.476561 | 0.144859 | . | 22.780650 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashyap, A.; Hong, S.-Y. Analysis of Hotel Reviews and Ratings with Geographical Factors in Seoul: A Quantitative Approach to Understanding Tourist Satisfaction. ISPRS Int. J. Geo-Inf. 2025, 14, 334. https://doi.org/10.3390/ijgi14090334
Kashyap A, Hong S-Y. Analysis of Hotel Reviews and Ratings with Geographical Factors in Seoul: A Quantitative Approach to Understanding Tourist Satisfaction. ISPRS International Journal of Geo-Information. 2025; 14(9):334. https://doi.org/10.3390/ijgi14090334
Chicago/Turabian StyleKashyap, Abhilasha, and Seong-Yun Hong. 2025. "Analysis of Hotel Reviews and Ratings with Geographical Factors in Seoul: A Quantitative Approach to Understanding Tourist Satisfaction" ISPRS International Journal of Geo-Information 14, no. 9: 334. https://doi.org/10.3390/ijgi14090334
APA StyleKashyap, A., & Hong, S.-Y. (2025). Analysis of Hotel Reviews and Ratings with Geographical Factors in Seoul: A Quantitative Approach to Understanding Tourist Satisfaction. ISPRS International Journal of Geo-Information, 14(9), 334. https://doi.org/10.3390/ijgi14090334