A Building Group Recognition Method Integrating Spatial and Semantic Similarity
Abstract
:1. Introduction
2. Research Strategy
3. Building Feature Extraction and Similarity Measurement
3.1. Extraction and Similarity Measurement of Building Spatial Geometric Features
- (1)
- Size Similarity
- (2)
- Shape Similarity
- (3)
- Orientation Similarity
- (4)
- Proximity Index
3.2. Extraction and Similarity Measurement of Building Semantic Features
4. Building Group Recognition Method Considering Spatial and Semantic Similarity
4.1. Building Division Based on Spatial Geometric Similarity Constraints
4.2. Building Aggregation Based on Semantic Similarity Constraints
4.3. Optimization of Graph Partitioning
5. Experiments and Results
5.1. Experimental Data and Preprocessing
5.2. Building Grouping and Comparative Analysis
5.3. Quality Evaluation
5.4. Parameter Sensitivity Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z. Digital Map Generalization at the Age of Enlightenment: A Review of the First Forty Years. Cartogr. J. 2007, 44, 80–93. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y. Data-Driven Polyline Simplification Using a Stacked Autoencoder-Based Deep Neural Network. Trans. GIS 2022, 26, 2302–2325. [Google Scholar] [CrossRef]
- He, X.; Zhang, X.; Xin, Q. Recognition of Building Group Patterns in Topographic Maps Based on Graph Partitioning and Random Forest. ISPRS J. Photogramm. Remote Sens. 2018, 136, 26–40. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The Role of Spatial Metrics in the Analysis and Modeling of Urban Land Use Change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Xing, R.; Wu, F.; Gong, X.; Du, J.; Liu, C. An Axis-Matching Approach to Combined Collinear Pattern Recognition for Urban Building Groups. Geocarto Int. 2022, 37, 4823–4842. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Li, Z.; Xu, J.; Han, Z.; Guo, J. Few-Shot Building Footprint Shape Classification with Relation Network. ISPRS Int. J. Geo-Inf. 2022, 11, 311. [Google Scholar] [CrossRef]
- Du, S.; Shu, M.; Feng, C.-C. Representation and Discovery of Building Patterns: A Three-Level Relational Approach. Int. J. Geogr. Inf. Sci. 2016, 30, 1161–1186. [Google Scholar] [CrossRef]
- Yu, W.; Ai, T.; Liu, P.; Cheng, X. The Analysis and Measurement of Building Patterns Using Texton Co-Occurrence Matrices. Int. J. Geogr. Inf. Sci. 2017, 31, 1079–1100. [Google Scholar] [CrossRef]
- He, X.; Deng, M.; Luo, G. Recognizing Building Group Patterns in Topographic Maps by Integrating Building Functional and Geometric Information. ISPRS Int. J. Geo-Inf. 2022, 11, 332. [Google Scholar] [CrossRef]
- Deng, M.; Tang, J.; Liu, Q.; Wu, F. Recognizing Building Groups for Generalization: A Comparative Study. Cartogr. Geogr. Inf. Sci. 2018, 45, 187–204. [Google Scholar] [CrossRef]
- Wang, X.; Burghardt, D. A Mesh-Based Typification Method for Building Groups with Grid Patterns. ISPRS Int. J. Geo-Inf. 2019, 8, 168. [Google Scholar] [CrossRef]
- Wei, Z.; Ding, S.; Cheng, L.; Xu, W.; Wang, Y.; Zhang, L. Linear Building Pattern Recognition in Topographical Maps Combining Convex Polygon Decomposition. Geocarto Int. 2022, 37, 11365–11389. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, T.; Yan, X.; Ai, T.; Jiang, C. A Hybrid Approach to Building Simplification with an Evaluator from a Backpropagation Neural Network. Int. J. Geogr. Inf. Sci. 2022, 36, 280–309. [Google Scholar] [CrossRef]
- Qi, H.B.; Li, Z.L. An Approach to Building Grouping Based on Hierarchical Constraints. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2008, 2008, 449–454. [Google Scholar]
- Regnauld, N. Contextual Building Typification in Automated Map Generalization. Algorithmica 2001, 30, 312–333. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, T.; Stoter, J.; Kraak, M.-J.; Molenaar, M. Building Pattern Recognition in Topographic Data: Examples on Collinear and Curvilinear Alignments. Geoinformatica 2013, 17, 1–33. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Q.; Ma, J.; Lyu, Z.; Huang, Z. A Polygonal Buildings Aggregation Method Considering Obstacle Elements and Visual Clarity. Geocarto Int. 2023, 38, 2266672. [Google Scholar] [CrossRef]
- Liu, P.; Shao, Z.; Xiao, T. Second-Order Texton Feature Extraction and Pattern Recognition of Building Polygon Cluster Using CNN Network. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103794. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, Q.; Wang, L.; Yan, F. On the Spatial Distribution of Buildings for Map Generalization. Cartogr. Geogr. Inf. Sci. 2018, 45, 539–555. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Yang, M.; Tong, X. Graph Convolutional Autoencoder Model for the Shape Coding and Cognition of Buildings in Maps. Int. J. Geogr. Inf. Sci. 2021, 35, 490–512. [Google Scholar] [CrossRef]
- Basaraner, M.; Cetinkaya, S. Performance of Shape Indices and Classification Schemes for Characterising Perceptual Shape Complexity of Building Footprints in GIS. Int. J. Geogr. Inf. Sci. 2017, 31, 1952–1977. [Google Scholar] [CrossRef]
- Ma, W.; Wang, B.; Liu, C.; Li, Q.; Yang, C.; Pan, J.; Zhou, B.; Wang, Y. Complex Buildings Orientation Recognition and Description Based on Vector Reconstruction. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103486. [Google Scholar] [CrossRef]
- Hangouët, J.F.; Müller, J.C. Approche et Méthodes Pour l’automatisation de La Généralisation Cartographique; Application En Bord de Ville. Ph.D. Thesis, Université de Marne La Vallée, Paris, France, 1999. [Google Scholar]
- Yan, H.; Weibel, R.; Yang, B. A Multi-Parameter Approach to Automated Building Grouping and Generalization. Geoinformatica 2008, 12, 73–89. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Yang, M.; Tong, X.; Liu, Q. A Graph Deep Learning Approach for Urban Building Grouping. Geocarto Int. 2022, 37, 2944–2966. [Google Scholar] [CrossRef]
- Wang, W.; Du, S.; Guo, Z.; Luo, L. Polygonal Clustering Analysis Using Multilevel Graph-Partition. Trans. GIS 2015, 19, 716–736. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Yang, M.; Yin, H. A Graph Convolutional Neural Network for Classification of Building Patterns Using Spatial Vector Data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [Google Scholar] [CrossRef]
- Zhao, R.; Ai, T.; Yu, W.; He, Y.; Shen, Y. Recognition of Building Group Patterns Using Graph Convolutional Network. Cartogr. Geogr. Inf. Sci. 2020, 47, 400–417. [Google Scholar] [CrossRef]
- Wang, X.; Burghardt, D. Using Stroke and Mesh to Recognize Building Group Patterns. Int. J. Cartogr. 2020, 6, 71–98. [Google Scholar] [CrossRef]
- Toussaint, G.T.; Bhattacharya, B.K. Optimal Algorithms for Computing the Minimum Distance between Two Finite Planar Sets. Pattern Recognit. Lett. 1983, 2, 79–82. [Google Scholar] [CrossRef]
- Wang, J.; Luo, H.; Li, W.; Huang, B. Building Function Mapping Using Multisource Geospatial Big Data: A Case Study in Shenzhen, China. Remote Sens. 2021, 13, 4751. [Google Scholar] [CrossRef]
- Psyllidis, A.; Gao, S.; Hu, Y.; Kim, E.-K.; McKenzie, G.; Purves, R.; Yuan, M.; Andris, C. Points of Interest (POI): A Commentary on the State of the Art, Challenges, and Prospects for the Future. Comput. Urban Sci. 2022, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, R.; Yang, J.; Li, Y.; Jiang, H.; Liao, W.; Sun, M. Identify Urban Building Functions with Multisource Data: A Case Study in Guangzhou, China. Int. J. Geogr. Inf. Sci. 2022, 36, 2060–2085. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, J.; Wang, Y.; Wang, L.; Wu, W.; Su, F. A Study on the Method for Functional Classification of Urban Buildings by Using POI Data. J. Geo Inf. Sci. 2020, 22, 1339–1348. [Google Scholar] [CrossRef]
- Salton, G.; McGill, M. Introduction to Modern Information Retrieval; McGraw-Hill: New York, NY, USA, 1 September 1983. [Google Scholar]
- Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef]
- Choi, K.; Suh, Y. A New Similarity Function for Selecting Neighbors for Each Target Item in Collaborative Filtering. Knowl. Based Syst. 2013, 37, 146–153. [Google Scholar] [CrossRef]
- Chrisochoides, N.; Sukup, F. Task Parallel Implementation of the Bowyer-Watson Algorithm; Advanced Computing Research Institue cornell University: Ithaca, NY, USA, 1 February 1996. [Google Scholar]
- Prim, R.C. Shortest Connection Networks And Some Generalizations. Bell Syst. Tech. J. 1957, 36, 1389–1401. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Comm. Stats. Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- AssunÇão, R.M.; Neves, M.C.; Câmara, G.; Da Costa Freitas, C. Efficient Regionalization Techniques for Socio-economic Geographical Units Using Minimum Spanning Trees. Int. J. Geogr. Inf. Sci. 2006, 20, 797–811. [Google Scholar] [CrossRef]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations; University of California Press: Berkeley, CA, USA, 1967. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Jiang, B. Spatial Clustering for Mining Knowledge in Support of Generalization Processes in GIS. Available online: https://www.semanticscholar.org/paper/Spatial-Clustering-for-Mining-Knowledge-in-Support-Jiang/6256915c5d224dcf618cc92afe55b8b06f7e2663 (accessed on 1 March 2024).
- Touya, G.; Zhang, X.; Lokhat, I. Is Deep Learning the New Agent for Map Generalization? Int. J. Cartogr. 2019, 5, 142–157. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Comparing Partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
Reclassified POI Category | Original POI Categories | Reclassified POI Category | Original POI Categories |
---|---|---|---|
Life | Auto services, educational and cultural services (partial), living services, healthcare services (partial) | Education and Culture | Educational and cultural services (partial) |
Dining | Dining services | Healthcare | Healthcare services (partial) |
Residential | Commercial residential | Public Facilities | Public facilities, transportation facilities services |
Finance | Financial and insurance services | Company | Companies, commercial residential (partial) |
Accommodation | Accommodation services | Shopping | Shopping services |
Leisure | Sports and leisure services, scenic spots | Government | Government agencies and social organizations |
Adjustment Parameter | |||||
---|---|---|---|---|---|
0.5 | 0.6 | 0.65 | 0.7 | 0.75 | |
1 | 0.408 | 0.474 | 0.513 | 0.549 | 0.526 |
0.95 | 0.531 | 0.558 | 0.574 | 0.562 | 0.565 |
0.90 | 0.635 | 0.701 | 0.666 | 0.648 | 0.628 |
0.85 | 0.515 | 0.540 | 0.549 | 0.548 | 0.527 |
0.8 | 0.522 | 0.524 | 0.535 | 0.517 | 0.510 |
0.75 | 0.496 | 0.491 | 0.489 | 0.490 | 0.476 |
Adjustment Parameter | |||||
---|---|---|---|---|---|
0.5 | 0.6 | 0.65 | 0.7 | 0.75 | |
1 | 0.590 | 0.518 | 0.457 | 0.461 | 0.533 |
0.95 | 0.654 | 0.547 | 0.476 | 0.466 | 0.557 |
0.90 | 0.631 | 0.545 | 0.501 | 0.537 | 0.434 |
0.85 | 0.319 | 0.310 | 0.277 | 0.255 | 0.273 |
0.8 | 0.312 | 0.267 | 0.270 | 0.247 | 0.248 |
0.75 | 0.307 | 0.257 | 0.250 | 0.252 | 0.228 |
Dataset | Number of Buildings | Number of POIs |
---|---|---|
Experimental Area I | 2076 | 14,513 |
Experimental Area II | 1769 | 5066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, W.; Tang, J.; Deng, M.; Ding, C. A Building Group Recognition Method Integrating Spatial and Semantic Similarity. ISPRS Int. J. Geo-Inf. 2025, 14, 154. https://doi.org/10.3390/ijgi14040154
Liu H, Wang W, Tang J, Deng M, Ding C. A Building Group Recognition Method Integrating Spatial and Semantic Similarity. ISPRS International Journal of Geo-Information. 2025; 14(4):154. https://doi.org/10.3390/ijgi14040154
Chicago/Turabian StyleLiu, Huimin, Wenpei Wang, Jianbo Tang, Min Deng, and Chen Ding. 2025. "A Building Group Recognition Method Integrating Spatial and Semantic Similarity" ISPRS International Journal of Geo-Information 14, no. 4: 154. https://doi.org/10.3390/ijgi14040154
APA StyleLiu, H., Wang, W., Tang, J., Deng, M., & Ding, C. (2025). A Building Group Recognition Method Integrating Spatial and Semantic Similarity. ISPRS International Journal of Geo-Information, 14(4), 154. https://doi.org/10.3390/ijgi14040154