Irregular Area Cartograms for Local-Level Presentation of Selected SDGs Indicators Based on Earth Observation Data
Abstract
1. Introduction
- Target 11.6: Reduce the environmental impacts of cities (Indicator 11.6.2—Annual mean levels of fine particulate matter);
- Target 11.7: Provide access to safe and inclusive green and public spaces (Indicator 11.7.1—Average share of the built-up area of cities that is open space for public use for all);
- Target 13.2: Integrate climate change measures into national policies, strategies, and planning (Indicator 13.2.2—Total greenhouse gas emissions per year).
2. Related Studies
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.2.1. Air Pollution Data
3.2.2. Green Areas Data
3.3. Map Production
3.3.1. Colour Legend
3.3.2. Choropleth Maps
3.3.3. Area Cartograms
3.4. Preliminary Usability Survey
4. Results
4.1. Air Pollution
4.2. Green Areas
4.3. Preliminary Usability Survey Result
- Proportion of population that has convenient access to public transport (12 answers);
- Proportion of municipal waste generated according to the treatment operation to total municipal generated (11 answers);
- Total greenhouse gas emissions per year (9 answers).
5. Discussion and Conclusions
- Applying irregular area cartograms to represent spatial units with highly variable population sizes at lower administrative levels (e.g., communes, counties). This technique enhances the visibility and interpretability of densely populated urban areas, which are often spatially limited but demographically significant;
- Integrating Earth Observation data into the construction of irregular area cartograms, which enriches the thematic content of the maps and enables more frequent and dynamic monitoring of urban environments compared to conventionally collected statistical datasets. EO-based inputs offer higher temporal resolution and spatial consistency, supporting timely assessments of sustainability indicators;
- Combining irregular area cartograms with other cartographic techniques, such as choropleth maps, proportional symbols, or qualitative and quantitative point signatures. Such hybrid visualizations provide a more comprehensive representation of SDG-related issues by simultaneously conveying multiple dimensions of the data;
- According to an initial survey among potential users, irregular area cartograms help communicate additional information on maps and facilitate swift recognition of spatial patterns. Even so, they continue to be considered difficult to interpret and less intuitive than traditional choropleth maps.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BDOT10k | Topographic Objects Database |
| CAMS | Copernicus Atmosphere Monitoring Service |
| EEA | European Environment Agency |
| EO | Earth observation |
| GIOS | Chief Inspectorate of Environmental Protection |
| GIS | Geographic information system |
| GUGiK | Head Office of Geodesy and Cartography in Poland |
| HR-VPP | High-Resolution Vegetation Phenology and Productivity |
| LAU | Local Administrative Unit |
| NDVI | Normalized Difference Vegetation Index |
| NO2 | Nitrogen oxides |
| NUTS | Nomenclature of Territorial Units for Statistics |
| O3 | Tropospheric ozone |
| PM | Particulate matter |
| SDGs | Sustainable Development Goals |
| SO2 | Sulphur dioxides |
| SP | Statistics Poland |
| UN | United Nations |
| WHO | World Health Organization |
References
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development, A/RES/70/1. 2015. Available online: https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed on 21 October 2015).
- UN DESA. The Sustainable Development Goals Report 2024. 2024. Available online: https://unstats.un.org/sdgs/report/2024/ (accessed on 16 June 2025).
- Lamsal, L.N.; Martin, R.V.; Parrington, M.; Krotkov, N.A.; van Donkelaar, A.; Celarier, E.A.; Sioris, C.E. A Sentinel-5P TROPOMI derived nitrogen dioxide (NO2) product for air quality monitoring. Atmos. Meas. Tech. 2021, 14, 2607–2633. [Google Scholar]
- Kassomenos, P.; Bais, A.; Dandou, A.; Katsafados, P. Machine learning models for predicting urban air quality using satellite and ground-based observations. Atmos. Environ. 2018, 189, 54–66. [Google Scholar] [CrossRef]
- Buczyńska, A.; Szpak, M.; Sobik-Szołtysek, J. Satellite-based assessment of air quality over Poland using Sentinel-5P data. Environ. Pollut. 2020, 263, 114462. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 16 June 2025).
- Panek-Chwastyk, E.; Dąbrowska-Zielińska, K.; Markowska, A.; Kluczek, M.; Pieniążek, M. Advanced utilization of satellite and governmental data for determining the coverage and condition of green areas in Poland: An experimental statistics supporting the Statistics Poland. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103883. [Google Scholar] [CrossRef]
- Czekajlo, A.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; Lu, Y.; White, J.C.; Van Den Bosch, M. The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102210. [Google Scholar] [CrossRef]
- Jabbar, M.; Yusoff, M.M.; Shafie, A. Assessing the role of urban green spaces for human well-being: A systematic review. GeoJournal 2022, 87, 4405–4423. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, X.; Wang, S.; Gao, X. Assessing the effects of urban green landscape on urban thermal environment dynamics in a semiarid city by integrated use of airborne data, satellite imagery and land surface model. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102674. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Ren, Z.; Zhao, Y.; Liao, Y.; Ge, Y.; Wang, J.; He, J.; Gu, Y.; Wang, Y.; et al. Multi-scale feature fusion and transformer network for urban green space segmentation from high-resolution remote sensing images. Int. J. Appl. Earth Observ. Geoinf. 2023, 124, 103514. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Zhang, L.; Hu, D. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis. Int. J. Appl. Earth Obs. Geoinf 2021, 105, 102610. [Google Scholar] [CrossRef]
- Wu, W.-B.; Ma, J.; Meadows, M.E.; Banzhaf, E.; Huang, T.-Y.; Liu, Y.-F.; Zhao, B. Spatio-temporal changes in urban green space in 107 Chinese cities (1990–2019): The role of economic drivers and policy. Int. J. Appl. Earth Obs. Geoinf 2021, 103, 102525. [Google Scholar] [CrossRef]
- Gelan, E.; Girma, Y. Urban green infrastructure accessibility for the achievement of SDG 11 in rapidly urbanizing cities of Ethiopia. GeoJournal 2022, 87, 2883–2902. [Google Scholar] [CrossRef]
- Giuliani, G.; Petri, E.; Interwies, E.; Vysna, V.; Guigoz, Y.; Ray, N.; Dickie, I. Modelling accessibility to urban green areas using open earth observations data: A novel approach to support the urban SDG in four European Cities. Remote Sens. 2021, 13, 422. [Google Scholar] [CrossRef]
- Lorenzo-Sáez, E.; Lerma-Arce, V.; Coll-Aliaga, E.; Oliver-Villanueva, J.-V. Contribution of green urban areas to the achievement of SDGs. Case study in Valencia (Spain). Ecol. Ind. 2021, 131, 108246. [Google Scholar] [CrossRef]
- Savchenko, A.B.; Borodina, T.L. Green and digital economy for sustainable development of urban areas. Reg. Res. Russ. 2020, 10, 583–592. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Świerk, D.; Szczepańska, M.; Urbański, P. Changes in the area of urban green space in cities of western Poland. Bull. Geogr. Soc.-Econ. Ser. 2018, 39, 65–77. [Google Scholar] [CrossRef]
- Wysmułek, J.; Hełdak, M.; Kucher, A. The analysis of green areas’ accessibility in comparison with statistical data in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4492. [Google Scholar] [CrossRef]
- Dziennik Ustaw. Act of 16 April 2004 on Nature Protection; Dziennik Ustaw: Warsaw, Poland, 2004. [Google Scholar]
- Gavrilidis, A.A.; Popa, A.-M.; Onose, D.A.; Gradinaru, S.R. Planning small for winning big: Small urban green space distribution patterns in an expanding city. Urban For. Urban Green. 2022, 78, 127787. [Google Scholar] [CrossRef]
- Guo, H. Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road, Sustainable Development Goals Series; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Ruiz-Apilánez, B.; Ormaetxea, E.; Aguado-Moralejo, I. Urban Green Infrastructure Accessibility: Investigating Environmental Justice in a European and Global Green Capital. Land 2023, 12, 1534. [Google Scholar] [CrossRef]
- Stessens, P.; Khan, A.Z.; Marijke Huysmans, M.; Canters, F. Analysing urban green space accessibility and quality: A GIS-based model as spatial decision support for urban ecosystem services in Brussels. Ecosyst. Serv. 2017, 28, 328–340. [Google Scholar] [CrossRef]
- Vukmirovic, M.; Gavrilovic, S.; Stojanovic, D. The Improvement of the Comfort of Public Spaces as a Local Initiative in Coping with Climate Change. Sustainability 2019, 11, 6546. [Google Scholar] [CrossRef]
- Carbon Dioxide Emissions 2015—Worldmapper. 2 July 2025. Available online: https://worldmapper.org/maps/carbon-emissions-2015/ (accessed on 20 October 2025).
- Hennig, B. Emissions of Greenhouse Gases. 2012. Available online: https://www.viewsoftheworld.net/ (accessed on 20 October 2025).
- Tian, Y.; Zhu, Q.; Lai, K.; Lun, Y.H.V. Analysis of greenhouse gas emissions of freight transport sector in China. J. Transp. Geogr. 2014, 40, 43–52. [Google Scholar] [CrossRef]
- Interactive 2024 Average Air Quality Map of the Greater Cleveland Area—Mold and Air Duct Pros. 28 May 2024. Available online: https://moldandairductpros.com/blog/interactive-2024-average-air-quality-map-of-the-greater-cleveland-area/ (accessed on 20 October 2025).
- Markowska, A. Cartograms—Classification and terminology. Pol. Cartogr. Rev. 2019, 51, 51–65. [Google Scholar] [CrossRef]
- Bertazzon, S.; Shahid, R. Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada. Int. J. Environ. Res. Public Health 2017, 14, 834. [Google Scholar] [CrossRef] [PubMed]
- Daramola, S.O.; Makinde, E.O. Modeling air pollution around major dumpsites in Lagos State using geospatial methods with solutions. Environ. Chall. 2024, 16, 100969. [Google Scholar] [CrossRef]
- Duan, J.; Li, Y.; Li, S.; Yang, Y.; Li, F.; Li, Y.; Wang, J.; Deng, P.; Wu, J.; Wang, W.; et al. Association of Long-term Ambient Fine Particulate Matter (PM2.5) and Incident CKD: Prospective Cohort Study in China. Am. J. Kidney Dis. 2022, 80, 638–647.e1. [Google Scholar] [CrossRef]
- Habermann, M.; Billger, M.; Haeger-Eugensson, M. Land use regression as a method to model air pollution. Previous results for Gothenburg/Sweden. Procedia Eng. 2015, 115, 21–28. [Google Scholar] [CrossRef]
- Lisberg Jensen, E.; Karin Westerberg, K.; Malmqvist, E.; Oudin, A. Through Internet and Friends: Translation of Air Pollution Research in Malmö Municipality, Sweden. Int. J. Environ. Res. Public Health 2020, 17, 4214. [Google Scholar] [CrossRef]
- Liu, X.; Bertazzon, S. Fine Scale Spatio-Temporal Modelling of Urban Air Pollution. In GIScience 2016; Miller, J.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 210–224. [Google Scholar] [CrossRef]
- Mijling, B. High-resolution mapping of urban air quality with heterogeneous observations: A new methodology and its application to Amsterdam. Atmos. Meas. Tech. 2020, 13, 4601–4617. [Google Scholar] [CrossRef]
- Obanya, H.E.; Amaeze, N.H.; Togunde, O.; Otitoloju, A.A. Air Pollution Monitoring Around Residential and Transportation Sector Locations in Lagos Mainland. J. Health Pollut. 2018, 8, 180903. [Google Scholar] [CrossRef] [PubMed]
- Sówka, I.; Cichowicz, R.; Dobrzański, M.; Bezyk, Y. Analysis of Air Pollutants for a Small Paintshop by Means of a Mobile Platform and Geostatistical Methods. Energies 2023, 16, 7716. [Google Scholar] [CrossRef]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population Exposure to PM2.5 in the Urban Area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar] [CrossRef]
- Zhu, T.; Li, F.; Niu, W.; Gao, Z.; Han, Y.; Zhang, X. Health Risk Assessment of Toxic and Harmful Air Pollutants Discharged by a Petrochemical Company in the Beijing-Tianjin-Hebei Region of China. Atmosphere 2021, 12, 1604. [Google Scholar] [CrossRef]
- El Ghazi, I.; Berni, I.; Menouni, A.; Amane, M.; Kestemont, M.-P.; El Jaafari, S. Exposure to Air Pollution from Road Traffic and Incidence of Respiratory Diseases in the City of Meknes, Morocco. Pollutants 2022, 2, 306–327. [Google Scholar] [CrossRef]
- Wu, X.; Sun, W.; Huai, B.; Wang, L.; Han, C.; Wang, Y.; Mi, W. Seasonal variation and sources of atmospheric polycyclic aromatic hydrocarbons in a background site on the Tibetan Plateau. J. Environ. Sci. 2023, 125, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Zhang, Y.; Lin, C.; Fung, Y.H.; Fung, J.C.H.; Lau, A.K.H. Impacts of pollution heterogeneity on population exposure in dense urban areas using ultra-fine resolution air quality data. J. Environ. Sci. 2023, 125, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Ramacher, M.O.P.; Speyer, O.; Athanasopoulou, E.; Karl, M.; Gerasopoulos, E. Localizing SDG 11.6.2 via Earth Observation, Modelling Applications, and Harmonised City Definitions: Policy Implications on Addressing Air Pollution. Remote Sens. 2023, 15, 1082. [Google Scholar] [CrossRef]
- Ta Bui, L.; Nguyen, P.H.; My Nguyen, D.C. Linking air quality, health, and economic effect models for use in air pollution epidemiology studies with uncertain factors. Atmos. Pollut. Res. 2021, 12, 101118. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Goel, R.; Mohan, D.; Tiwari, G.; Gadepalli, R. Particulate and gaseous emissions in two coastal cities—Chennai and Vishakhapatnam, India. Air Qual. Atmos. Health 2015, 8, 559–572. [Google Scholar] [CrossRef]
- Holnicki, P.; Kałuszko, A.; Nahorski, Z.; Stankiewicz, K.; Trapp, W. Air quality modelling for Warsaw agglomeration. Arch. Environ. Prot. 2017, 43, 48–64. [Google Scholar] [CrossRef]
- Holnicki, P.; Kałuszko, A. Supporting Management of Air Quality in an Urban Area; Research Report RB/5/2014; Systems Research Institute, Polish Academy of Sciences: Warsaw, Poland, 2014; 12p. [Google Scholar]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Nhung, N.T.T.; Jegasothy, E.; Ngan, N.T.K.; Truong, N.X.; Thanh, N.T.N.; Marks, G.B.; Morgan, G.G. Mortality Burden due to Exposure to Outdoor Fine Particulate Matter in Hanoi, Vietnam: Health Impact Assessment. Int. J. Public Health 2022, 67, 1604331. [Google Scholar] [CrossRef] [PubMed]
- Talianu, C.; Vasilescu, J.; Nicolae, D.; Ilie, A.; Dandocsi, A.; Nemuc, A.; Belegante, L. High-resolution air quality maps for Bucharest using a mixed-effects modeling framework. Atmos. Chem. Phys. 2025, 25, 4639–4654. [Google Scholar] [CrossRef]
- Manna, P.; Agrillo, A.; Bancheri, M.; Di Leginio, M.; Ferraro, G.; Langella, G.; Mileti, F.A.; Riitano, N.; Munafò, M. A Geospatial Decision Support System for Supporting the Assessment of Land Degradation in Europe. Land 2024, 13, 89. [Google Scholar] [CrossRef]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Singh, S.; Johnson, G.; Kavouras, I.G. The Effect of Transportation and Wildfires on the Spatiotemporal Heterogeneity of PM2.5 Mass in the New York-New Jersey Metropolitan Statistical Area. Environ. Health Insights 2022, 16, 1–10. [Google Scholar] [CrossRef]
- Wallek, S.; Langner, M.; Schubert, S.; Schneider, C. Modelling Hourly Particulate Matter (PM10) Concentrations at High Spatial Resolution in Germany Using Land Use Regression and Open Data. Atmosphere 2022, 13, 1282. [Google Scholar] [CrossRef]
- Shelestov, A.; Yailymova, H.; Yailymov, B.; Kussul, N. Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator Assessment. Remote Sens. 2021, 13, 4769. [Google Scholar] [CrossRef]
- Gerasopoulos, E. SMURBS Project’s Portfolio of Solutions for Smart Cities. 2019. Available online: https://www.innovationnewsnetwork.com/smurbs-projects-portfolio-of-solutions-for-smart-cities/1023/ (accessed on 16 June 2025).
- Hansman, H. The EPA Has a New Tool For Mapping Where Pollution and Poverty Intersect. To Better Target Its Efforts, the Agency Is Identifying PROBLEM Areas, Where People Are Facing Undue Environmental. 2015. Available online: https://www.smithsonianmag.com/innovation/epa-has-new-tool-mapping-where-pollution-poverty-intersect-180955663/ (accessed on 16 June 2025).
- Ncongwane, K.; Mayana, L.; Yigiletu, M.; Malatji, S.; Wright, C. The Impact of Air Pollution on Public Health Through the Lens of the South African Weather Service Air Quality Monitoring Programme; Health Application Research: Bethesda, MD, USA, 2021. [Google Scholar]
- Zhou, M.L.; Lu, L.L.; Guo, H.D.; Weng, Q.H.; Cao, S.S.; Zhang, S.C.; Li, Q.T. Urban Sprawl and Changes in Land-Use Efficiency in the Beijing-Tianjin-Hebei Region, China from 2000 to 2020: A Spatiotemporal Analysis Using Earth Observation Data. Remote Sens. 2021, 13, 2850. [Google Scholar] [CrossRef]
- Cherif, I.; Kolintziki, E.; Alexandridis, T.K. Monitoring of Land Degradation in Greece and Tunisia Using Trends. Earth with a Focus on Cereal Croplands. Remote Sens. 2023, 15, 1766. [Google Scholar] [CrossRef]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Global land cover trajectories and transitions. Sci. Rep. 2021, 11, 12814. [Google Scholar] [CrossRef]
- Kuffer, M.; Abascal, A.; Engstrom, R.; Thomson, D.R.; Tregonning, G.; Shonowo, A.; Zhao, Q.; de Albuquerque, J.P.; Elias, E.; Onyambu, F.C.; et al. IDEAMAPS: Modelling sub-domains of deprivation with EO and AI. In Proceedings of the 2IEEE International Symposium on Geoscience and Remote Sensing, IGARRS 2024: Acting for Sustainability and Resilience, Athens, Greece, 7–12 July 2024; IEEE: New York, NY, USA, 2024; pp. 1562–1566, ISBN 979-8-3503-6032-5/979-8-3503-6031-8. [Google Scholar]
- Chen, X.; Yang, T.; Wang, H.; Wang, F.; Wang, Z. Variations and drivers of aerosol vertical characterization after clean air policy in China based on 7-years consecutive observations. J. Environ. Sci. 2023, 125, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M.; Cheng, C.; Hu, T.; Zhu, G.; Li, Y.; et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef]
- Ludwig, C.; Hecht, R.; Lautenbach, S.; Schorcht, M.; Zipf, A. Mapping Public Urban Green Spaces Based on OpenStreetMap and Sentinel-2 Imagery Using Belief Functions. ISPRS Int. J. Geo-Inf. 2021, 10, 251. [Google Scholar] [CrossRef]
- Łaszkiewicz, E.; Wolff, M.; Andersson, E.; Kronenberg, J.; Barton, D.N.; Haase, D.; Langemeyer, J.; Baró, F.; McPhearson, P. Greenery in urban morphology: A comparative analysis of differences in urban green space accessibility for various urban structures across European cities. Ecol. Soc. 2022, 27, 22. [Google Scholar] [CrossRef]
- Rivas Navarro, J.L.; Bravo Rodríguez, B. Creative City in Suburban Areas: Geographical and Agricultural Matrix as the Basis for the New Nodal Space. Spaces Flows Int. J. Urban Extraurban Stud. 2013, 3, 1–16. [Google Scholar] [CrossRef]
- Sanga, Å.O.; Knez, I.; Gunnarsson, B.; Hedblom, M. The effects of naturalness, gender, and age on how urban green space is perceived and used. Urban For. Urban Green. 2016, 18, 268–276. [Google Scholar] [CrossRef]
- Schipperijn, J. Use of Urban Green Space. In Forest & Landscape; Research No. 45-2010; CABI Publishing: Frederiksberg, Denmark, 2010; p. 155. ISBN 978-87-7903-461-7. [Google Scholar]
- Zhang, L.; Cao, H.; Han, R. Residents’ Preferences and Perceptions toward Green Open Spaces in an Urban Area. Sustainability 2021, 13, 1558. [Google Scholar] [CrossRef]
- Zsolt Farkas, J.; Kovács, Z.; Csomós, G. The availability of green spaces for different socio-economic groups in cities: A case study of Budapest, Hungary. J. Maps 2022, 18, 97–105. [Google Scholar] [CrossRef]
- Verde, N.; Patias, P.; Mallinis, G. A Cloud-Based Mapping Approach Using Deep Learning and Very-High Spatial Resolution Earth Observation Data to Facilitate the SDG 11.7.1 Indicator Computation. Remote Sens. 2022, 14, 1011. [Google Scholar] [CrossRef]
- Khomenko, S.; Nieuwenhuijsen, M.; Ambròsa, A.; Wegenere, S.; Muellera, N. Is a liveable city a healthy city? Health impacts of urban and transport planning in Vienna, Austria. Environ. Res. 2020, 183, 109238. [Google Scholar] [CrossRef] [PubMed]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Masi, A.; De Marchi, M. Whose Urban Green? Mapping and Classifying Public and Private Green Spaces in Padua for Spatial Planning Policies. ISPRS Int. J. Geo-Inf. 2021, 10, 538. [Google Scholar] [CrossRef]
- Sathyakumar, V.; Ramsankaran, R.A.A.J.; Bardhan, R. Linking remotely sensed Urban Green Space (UGS) distribution patterns and Socio-Economic Status (SES)—A multi-scale probabilistic analysis based in Mumbai, India. GISci. Remote Sens. 2019, 56, 645–669. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Zhu, J.; Chen, L.; Jiae, Y.; Lawrence, J.M.; Jiang, L.; Xie, X.; Wua, J. Using machine learning to examine street green space types at a high spatial resolution: Application in Los Angeles County on socioeconomic disparities in exposure. Sci. Total Environ. 2021, 787, 147653. [Google Scholar] [CrossRef] [PubMed]
- Valente, D.; Marinelli, M.V.; Lovello, E.M.; Giannuzzi, C.G.; Petrosillo, I. Fostering the Resiliency of urban Landscape through the Sustainable Spatial Planning of Green Spaces. Land 2022, 11, 367. [Google Scholar] [CrossRef]
- Zimmermann, K.; Lee, D. Environmental Justice and Green Infrastructure in the Ruhr. From Distributive to Institutional Conceptions of Justice. Front. Sustain. Cities 2021, 3, 670190. [Google Scholar] [CrossRef]
- Artmann, M.; Mueller, C.; Goetzlich, L.; Hof, A. Supply and Demand Concerning Urban Green Spaces for Recreation by Elderlies Living in Care Facilities: The Role of Accessibility in an Explorative Case Study in Austria. Front. Environ. Sci. 2019, 7, 136. [Google Scholar] [CrossRef]
- Jobes, J.; Whicheloe, R. Greening the Grey: Does Urban Green Space Cater for Societal Well-Being and Biodiversity? 2025. Available online: https://iale.uk/greening-grey-does-urban-green-space-cater-societal-well-being-and-biodiversity (accessed on 1 December 2025).
- Rubaszek, J.; Gubański, J.; Podolska, A. Do We Need Public Green Spaces Accessibility Standards for the Sustainable Development of Urban Settlements? The Evidence from Wrocław, Poland. Int. J. Environ. Res. Public Health 2023, 20, 3067. [Google Scholar] [CrossRef]
- Chen, Q.; Zhong, C.P.; Jing, C.F.; Li, Y.Y.; Cao, B.L.; Cheng, Q.H. Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 670. [Google Scholar] [CrossRef]
- de Sousa Silva, C.; Viegas, I.; Panagopoulos, T.; Bell, S. Environmental Justice in Accessibility to Green Infrastructure in Two European Cities. Land 2018, 7, 134. [Google Scholar] [CrossRef]
- Heikinheimoa, V.; Tenkanena, H.; Bergrotha, C.; Järva, O.; Hiippalaa, T.; Toivonena, T. Understanding the use of urban green spaces from user-generated geographic information. Landsc. Urban Plan. 2020, 201, 103845. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Kan, Z. Analysis of urban green space accessibility and distribution inequity in the City of Chicago. Urban For. Urban Green. 2021, 59, 127029. [Google Scholar] [CrossRef]
- Lwin, K.K.; Murayama, Y. Modelling of urban green space walkability: Eco-friendly walk score calculator, Computers. Environ. Urban Syst. 2011, 35, 408–420. [Google Scholar] [CrossRef]
- Torres Toda, M.; Miri, M.; Alonso, L.; Gomez-Roig, M.D.; Foraster, M.; Dadvand, P. Exposure to greenspace and birth weight in a middle-income country. Environ. Res. 2020, 189, 109866. [Google Scholar] [CrossRef]
- Viinikka, A.; Tiitu, M.; Heikinheimo, V.; Halonen, J.I.; Nyberg, E.; Vierikko, K. Associations of neighborhood-level socioeconomic status, accessibility, and quality of green spaces in Finnish urban regions. Appl. Geogr. 2023, 157, 102973. [Google Scholar] [CrossRef]
- Ben, S.; Zhu, H.; Lu, J.; Wang, R. Valuing the Accessibility of Green Spaces in the Housing Market: A Spatial Hedonic Analysis in Shanghai, China. Land 2023, 12, 1660. [Google Scholar] [CrossRef]
- Bernabeu-Bautista, A.; Serrano-Estrada, L.; Martí, P. The role of successful public spaces in historic centres. Insights from social media data. Cities 2023, 137, 104337. [Google Scholar] [CrossRef]
- Borie, M.; Gina Ziervogel, G.; Taylor, F.E.; Millington, J.D.A.; Sitas, R.; Pelling, M. Mapping (for) resilience across city scales: An opportunity to open-up conversations for more inclusive resilience policy? Environ. Sci. Policy 2019, 99, 1–9. [Google Scholar] [CrossRef]
- Halecki, W.; Stachura, T.; Fudała, W.; Stec, A.; Kuboń, S. Assessment and planning of green spaces in urban parks: A review. Sustain. Cities Soc. 2023, 88, 104280. [Google Scholar] [CrossRef]
- Wang, Q.; Lan, Z. Park green spaces, public health and social inequalities: Understanding the interrelationships for policy implications. Land Use Policy 2019, 83, 66–74. [Google Scholar] [CrossRef]
- Valença Pinto, L.; Miguel Inacio, M.; Carla Sofia Santos Ferreira, C.S.; Dinis Ferreira, A.; Pereira, P. Ecosystem services and well-being dimensions related to urban green spaces—A systematic review. Sustain. Cities Soc. 2022, 85, 104072. [Google Scholar] [CrossRef]
- Talavera, R. Improving Pedestrian Accessibility to Public Space through Space Syntax Analysis. In Proceedings of the Eighth International Space Syntax Symposium Santiago, Santiago, Chile, 3–6 January 2012. [Google Scholar]
- Zulian, G.; Marando, F.; Mentaschi, L.; Alzetta, C.; Wilk, B.; Maes, J. Green balance in urban areas as an indicator for policy support: A multi-level application. One Ecosyst. 2022, 7, e72685. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Estable-Reifs, A.M.; Pellicer, H. Toward the Renewal of the Sustainable Urban Indicators’ System after a Global Health Crisis. Practical Application in Granada, Spain. Energies 2021, 14, 6188. [Google Scholar] [CrossRef]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Nat. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef]
- Kharas, H.; Fengler, W.; Vashold, L. Have We Reached Peak Greenhouse Gas Emissions? 2023. Available online: https://www.brookings.edu/articles/have-we-reached-peak-greenhouse-gas-emissions/ (accessed on 16 June 2025).
- Liu, X.; Yuan, M. Assessing progress towards achieving the transport dimension of the SDGs in China. Sci. Total Environ. 2023, 858, 159752. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Crippa1, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.G.J.; Peters, J.A.H.W.; et al. ED-GAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef]
- Zanaty, N.; Ali, E.M.; Abou El-Magd, I. Estimation of national sources and sinks of greenhouse gases based on satellite observations. Egypt. J. Remote Sens. Space Sci. 2023, 26, 1071–1079. [Google Scholar] [CrossRef]
- Whetstone, J.; Mueller, K.; Prothero, J. GReenhouse Gas and AirPollutants Emissions System (GRA2PES) Report, National Institute of Standards and Technology, U.S. Department of Commerce. 2025. Available online: https://www.nist.gov/programs-projects/greenhouse-gas-and-air-pollutants-emissions-system-gra2pes (accessed on 16 June 2025).
- World Meteorological Organization. Executive Council Approves GlobalGreenhouse Gas Watch Implementation Plan. 2025. Available online: https://wmo.int/media/news/executive-council-approves-global-greenhouse-gas-watch-implementation-plan (accessed on 16 June 2025).
- Sapkota, T.B.; Khanamb, F.; Mathivanan, G.P.; Vetter, S.; Hussainb, S.G.; Pilat, A.-L.; Shahrin, S.; Hossain, M.K.; Sarker, N.R.; Krupnik, T.J. Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Sci. Total Environ. 2021, 786, 147344. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. CAMS Reanalysis (EAC4). Copernicus Atmosphere Monitoring Service. 2024. Available online: https://atmosphere.copernicus.eu (accessed on 16 June 2025).
- Markowska, A.; Korycka-Skorupa, J. An evaluation of GIS tools for generating area cartograms. Pol. Cartogr. Rev. 2015, 47, 19–29. [Google Scholar] [CrossRef]
- Gastner, M.T.; Newman, M.E.J. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. USA 2004, 101, 7499–7504. [Google Scholar] [CrossRef]
- Heilmann, H.S.; Stauffer, S.; Meyer, M.D. RecMap: Rectangular Cartogram Generation. R Package Version 1.0.2. 2015. Available online: https://cran.r-project.org/web/packages/recmap/index.html (accessed on 16 June 2025).
- Fink, C. Cartogram3: QGIS3 Plugin to Create Anamorphic Maps. 2022. Available online: https://github.com/austromorph/cartogram3 (accessed on 16 June 2025).
- Jeworutzki, S.; Giraud, T.; Lambert, N.; Bivand, R.; Pebesma, E.; Nowosad, J. Cartogram: Create Cartograms with R (Version 0.3.0). CRAN. 2023. Available online: https://cran.r-project.org/web/packages/cartogram/index.html (accessed on 16 June 2025). [CrossRef]
- Gastner, M.T.; Seguy, V.; More, P. Fast flow-based algorithm for creating density-equalizing map projections. Proc. Natl. Acad. Sci. USA 2018, 115, E2156–E2164. [Google Scholar] [CrossRef] [PubMed]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- GEO. Earth Observations in Service of the 2030 Agenda for Sustainable Development. 2016. Available online: https://www.spaceoffice.nl/files/documenten/SDGs/2.%20Earth%20observation%20in%20service%20of%20the%202030%20Agenda_GEO.pdf (accessed on 16 June 2025).
- IAEG-SDGs. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. 2016. Available online: https://unstats.un.org/sdgs/iaeg-sdgs/ (accessed on 16 June 2025).
- Siekierska, E.; Williams, P.; Mueller, A. Visualization of Integrated Knowledge for Sustainable Development Decision Making, Natural Resources Canada. Canada. 2005. Available online: https://coilink.org/20.500.12592/4nks3tl (accessed on 20 October 2025).
- Chen, J.; Li, Z. Chinese Pilot Project Tracks Progress Towards SDGs. 2018. Available online: https://www.nature.com/articles/d41586-018-07309-w (accessed on 16 June 2025).
- Zhou, X.; Moinuddin, M. Sustainable Development Goals Interlinkages and Network Analysis: A Practical Tool for SDG Integration and Policy Coherence; Research Report No. RR1602; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2017. [Google Scholar]
- Gong, X. SDG Viz: A Web-based System for Visualizing Sustainable Development Indicators. In Proceedings of the 29th International Cartographic Conference (ICC 2019), Tokyo, Japan, 15–20 July 2019; Volume 2, pp. 1–8. [Google Scholar] [CrossRef]
- Kraak, M.J.; Roth, R.E.; Ricker, B.; Kagawa, A.; Le Sourd, G. Mapping for a Sustainable World; United Nations: New York, NY, USA, 2020. [Google Scholar]












| Color | PM2.5 Range (µg/m3) | PM10 Range (µg/m3) | Nitrogen Oxide (NOx) Range (µg/m3) | Air Quality Description |
|---|---|---|---|---|
| Green | 0–12 | 0–20 | 0–40 | Good air quality |
| Yellow | 12–35 | 20–50 | 40–90 | Moderate air quality |
| Orange | 35–55 | 50–100 | 90–180 | Unhealthy for sensitive groups |
| Red | 55–150 | 100–200 | 180–280 | Unhealthy |
| Purple | >150 | >200 | >280 | Very unhealthy/Hazardous |
| Tools | Software/Language | Cartogram Type | Summary |
|---|---|---|---|
| ScapeToad | Java | Irregular— Gastner-Newman | Desktop application, diffusion algorithm [110] |
| Cartogram Geoprocessing Tool | ArcGIS Toolbox | Irregular— Gastner-Newman | Implements Gastner-Newman algorithm within ArcGIS environment |
| RecMap | R | Rectangular or Mosaic | Produces cartograms using rectangular subdivision with attribute scaling [111] |
| Tilegrams | JavaScript | Hexagonal | Uses equal-sized hexagons or squares; suitable for web presentations (Pitch Interactive) |
| cartogram 3 | Python (PyQGIS) QGIS Plugin | Irregular— Gastner-Newman | Integrates cartogram generation into open-source QGIS environment [112] |
| cartogram: Create Cartograms with R | R | Irregular—gridded | Is actively maintained and suitable for creating gridded cartograms [113] |
| go-cart | C++ | Irregular—Flow-Based | Create an area cartogram, using Flow-Based-Algorithm [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, A.; Dukaczewski, D. Irregular Area Cartograms for Local-Level Presentation of Selected SDGs Indicators Based on Earth Observation Data. ISPRS Int. J. Geo-Inf. 2025, 14, 500. https://doi.org/10.3390/ijgi14120500
Markowska A, Dukaczewski D. Irregular Area Cartograms for Local-Level Presentation of Selected SDGs Indicators Based on Earth Observation Data. ISPRS International Journal of Geo-Information. 2025; 14(12):500. https://doi.org/10.3390/ijgi14120500
Chicago/Turabian StyleMarkowska, Anna, and Dariusz Dukaczewski. 2025. "Irregular Area Cartograms for Local-Level Presentation of Selected SDGs Indicators Based on Earth Observation Data" ISPRS International Journal of Geo-Information 14, no. 12: 500. https://doi.org/10.3390/ijgi14120500
APA StyleMarkowska, A., & Dukaczewski, D. (2025). Irregular Area Cartograms for Local-Level Presentation of Selected SDGs Indicators Based on Earth Observation Data. ISPRS International Journal of Geo-Information, 14(12), 500. https://doi.org/10.3390/ijgi14120500

