Environmental Sensitivity Index Assessment Based on Factors in Oil Spill Impact in Coastal Zone Using Spatial Data and Analytical Hierarchy Process Approach: A Case Study in Myanmar
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data Collection
2.3. Spatial Framework Development
2.4. Structure of Environmental Sensitivity Index
2.4.1. Data Standardization
2.4.2. Calculation of Sensitivity Index
2.5. Physical Sensitivity Index Calculation
2.6. Biological Sensitivity Index Calculation
2.6.1. Habitat Sensitivity Index
2.6.2. Species Index
2.6.3. Protected Area Index
2.6.4. Chlorophyll-a Index
2.6.5. Final Biological Sensitivity Index
2.7. Socio-Economic Sensitivity Index Calculation
2.7.1. Beach Index
2.7.2. Fishing Ground Index
2.7.3. Human Population Density Index
2.7.4. Final Socio-Economic Sensitivity Index Calculation
2.8. Final ESI Analysis
2.9. Analytical Hierarchy Process
3. Results
3.1. Weighting Result
3.2. Spatial Distribution of Physical Sensitivity Index
3.3. Spatial Distribution of Biological Sensitivity Index
3.4. Spatial Distribution of Socio-Economic Sensitivity Index
3.5. Final Spatial Distribution of Environmental Sensitivity Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Main Components | Sub-Components | Factors | ESI Score | References |
|---|---|---|---|---|
| Biological | Habitat | Coral reef | 4 | [23,31] |
| Mangrove | 5 | [23,24,31] | ||
| Mudflat | 4 | [24] | ||
| Seagrass bed | 3 | [24,31] | ||
| Protected area | National-level protected area | 5 | Local expert opinion | |
| Community-proposed conserved area | 4 | Local expert opinion | ||
| Chlorophyll-a | <0.1 mg/m3 | 1 | Local expert opinion | |
| 0.1–0.3 mg/m3 | 2 | Local expert opinion | ||
| 0.3–1.0 mg/m3 | 3 | Local expert opinion | ||
| 1.0–10.0 mg/m3 | 4 | Local expert opinion | ||
| >10.0 mg/m3 | 5 | Local expert opinion | ||
| Species | Dolphin | Local expert opinion | ||
| Dugong | Local expert opinion | |||
| Porpoise | Local expert opinion | |||
| Sea otter | Local expert opinion | |||
| Whale | Local expert opinion | |||
| Jungle cat | Local expert opinion | |||
| Fishing cat | Local expert opinion | |||
| Monkey | Local expert opinion | |||
| Pangolin | Local expert opinion | |||
| Clouded leopard | Local expert opinion | |||
| Turtle | Local expert opinion | |||
| Lizard | Local expert opinion | |||
| Ray | Local expert opinion | |||
| Shark/Whale shark | Local expert opinion | |||
| Shore bird | Local expert opinion | |||
| Socio- Economic | Fishing ground | Bottom-set gill net | Local expert opinion | |
| Cast net | Local expert opinion | |||
| Crab trap | Local expert opinion | |||
| Dip net | Local expert opinion | |||
| Drift gill net | Local expert opinion | |||
| Fence net | Local expert opinion | |||
| Hand line | Local expert opinion | |||
| Mud crab trap | Local expert opinion | |||
| One-boat sein | Local expert opinion | |||
| Squid trap | Local expert opinion | |||
| Stationary lift net | Local expert opinion | |||
| Stow net | Local expert opinion | |||
| Bottom long line | Local expert opinion | |||
| Trawl | Local expert opinion | |||
| Beach | Current/Potential tourism | 4 | Local expert opinion |

References
- Iskakov, B.; Nurakynov, S.; Dabas, J.; Zhantayev, Z.; Balakay, L.; Dedova, T.; Yelisseyeva, A.; Sydyk, N. Enhancing Environmental Sensitivity and Vulnerability Assessments for Oil Spill Responses in the Caspian Sea. Sustainability 2024, 16, 9566. [Google Scholar] [CrossRef]
- Wang, Y.; Du, P.; Liu, B.; Wu, X. Geographic information system-based comprehensive oil spill risk assessment in China’ s Bohai Sea. Front. Mar. Sci. 2023, 10, 1141962. [Google Scholar] [CrossRef]
- Venesjärvi, R.; Jolma, A.; Helle, I. Sensitivity index for conservation priority ranking in the oil spill response: A case study for the coastal and marine species and habitat types in the Baltic Sea. Ecotoxicol. Environ. Saf. 2023, 257, 114936. [Google Scholar] [CrossRef] [PubMed]
- Adesipo, A.A.; Freese, D.; Nwadinigwe, A.O. Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Sci. Afr. 2020, 8, e00403. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, H.; Guo, Y. The Impact of Marine Oil Spills on the Ecosystem. Int. J. Eng. Sci. Technol. 2024, 2, 2857–2958. [Google Scholar] [CrossRef]
- D’Affonseca, F.M.; Vieira Reis, F.A.G.; Corrêa, C.V.d.S.; Wieczorek, A.; Giordano, L.d.C.; Marques, M.L.; Rodrigues, F.H.; Costa, D.M.; Kolya, A.d.A.; Veiga, V.M.; et al. Environmental sensitivity index maps to manage oil spill risks: A review and perspectives. Ocean Coast. Manag. 2023, 239, 106590. [Google Scholar] [CrossRef]
- Palomino, E. SDG 14 Life Below Water. In Actioning the Global Goals for Local Impact; Springer: Singapore, 2020; pp. 229–246. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, X.; Zhuang, J. The positive relationship between ocean acidification and pollution. Mar. Pollut. Bull. 2015, 91, 14–21. [Google Scholar] [CrossRef]
- Pawar, P.R. Anthropogenic threats to coastal and marine biodiversity: A review. Int. J. Mod. Biol. Res. 2016, 4, 35–45. [Google Scholar]
- Hemmati, A.; Amiri, F.; Kouhgardi, E. Environmental sensitivity index mapping for the oil spill at a heavily industrialized area on the Northern Coast of the Persian Gulf. J. Coast. Conserv. 2024, 28, 17. [Google Scholar] [CrossRef]
- Onyegeme-Okerenta, B.M.; West, O.L.; Chuku, L.C. Concentration, dietary exposure and human health risk assessment of total petroleum and polycyclic aromatic hydrocarbons in seafood from coastal communities in Rivers State, Nigeria. Sci. Afr. 2022, 16, e01186. [Google Scholar] [CrossRef]
- Perairan, J.I.; Perikanan, P.; Gautama, D.A.; Muntasib, E.K.S.H.; Yonvitner, Y. Environmental sensitivity spatial analysis for oil spill mitigation in rote Ndao district waters. DEPIK 2024, 13, 483–493. [Google Scholar] [CrossRef]
- Utomo, S.W.; Risdianto, R.K.; Tambunan, R.P.; Hernawan, U. Environmental sensitivity index analysis for coastal protection of oil spill in Fakfak, Papua, Indonesia. Glob. Nest J. 2021, 23, 241–248. [Google Scholar] [CrossRef]
- Flores-Medina, P.W.; Sepp-Neves, A.A.; Coppini, G.; Morales-Caselles, C. Strategic environmental sensitivity mapping for oil spill contingency planning in the Peruvian marine-coastal zone. Sci. Total Environ. 2022, 852, 158356. [Google Scholar] [CrossRef] [PubMed]
- Zöckler, C.; Aung, C. The Mangroves of Myanmar. In Sabkha Ecosystems; Springer: Cham, Switzerland, 2019; pp. 253–268. [Google Scholar] [CrossRef]
- Pe, M. On the Sustainable Management of The Bay of Bengal Large Marine Ecosystem Department of Fisheries Fishing Grounds of Myanmar and Landing Sites Prepared by Myint Pe (National Consultant) General Description of Coastal Area. Marine Ecosystems Living Mari. 2004. Available online: http://www.boblme.org/documentRepository/Nat_Myanmar.pdf (accessed on 12 April 2025).
- Zöckler, C.; Delany, S.; Barber, J. Sustainable Coastal Zone Management in Myanmar; ArcCona Ecological Consulting Flora Fauna International: Cambridge, UK, 2013; p. 60. [Google Scholar]
- Thein, S.N.S.; Yang, H.L.; Liu, Z.B. Current Situation of Maritime Transport and Logistics in Myanmar. Int. J. Transp. Veh. Eng. 2019, 13, 419–424. [Google Scholar]
- Nwe, M.M.M.; Wu, L.; Ikeya, T.; Okayasu, A. Shoreline Change Analysis At Tanintharyi, Myanmar By Land-Water Boundary Detection on Satellite Images. J. Jpn. Soc. Civ. Eng. Ser. B3 Ocean Eng. 2022, 78, I_799–I_804. [Google Scholar] [CrossRef]
- Ko Ko Naing, K.T. Challenges Facing Myanmar in Developing A National Contingency Plan for Marine Pollution. Kaos GL Derg. 2020, 8, 147–154. [Google Scholar] [CrossRef]
- Saw, T.; Sanda, N.; Hualong, Y. Deep Sea Port Development in Myanmar. J. East China Norm. Univ. (Nat. Sci.) 2019, 2, 2–6. [Google Scholar]
- Rutherford, N. Environmental Sensitivity Index (ESI): State of the Program. In Proceedings of the 2024 International Oil Spill Conference (IOSC), New Orleans, LA, USA, 13–16 May 2024; pp. 1–15. [Google Scholar]
- IPIECA. Sensitivity Mapping. Sensit. Mapp. Vis. Anal. 2012, 2012, 95–102. [Google Scholar]
- Oceanic, N.; Noaa, A.A. Environmental Sensitivity Index Guidelines, Version 4.0; U.S. Department of Commerce: Washington, DC, USA, 2019.
- Davidson, M.A. Environmental Sensitivity Index Guidelines, Version 3.0; U.S. Department of Commerce: Washington, DC, USA, 2002.
- Sensitivity, E.; Guidelines, I. Environmental Sensitivity Index Guidelines, Version 2.0; U.S. Department of Commerce: Washington, DC, USA, 1997.
- Neafie, J.; Albakassova, M.; Bayramov, E. Assessing socio-economic and natural vulnerability to oil spills: A case study of Azerbaijan’s Caspian shoreline. Int. J. Water Resour. Dev. 2024, 41, 152–175. [Google Scholar] [CrossRef]
- Jensen, J.R.; Ramsey, E.W.; Holmes, J.M.; Michel, J.E.; Savitsky, B.; Davis, B.A. Environmental sensitivity index (Esi) mapping for oil spills using remote sensing and geographic information system technology. Int. J. Geogr. Inf. Syst. 1990, 4, 181–201. [Google Scholar] [CrossRef]
- Recuero Virto, L. A preliminary assessment of the indicators for Sustainable Development Goal (SDG) 14 “Conserve and sustainably use the oceans, seas and marine resources for sustainable development”. Mar. Policy 2018, 98, 47–57. [Google Scholar] [CrossRef]
- Wekpe, V.O.; Whitworth, M.; Baily, B. Terrestrial environmental sensitivity index mapping (TESIM) of the coastal areas of the Niger Delta region of Nigeria. Sci. Afr. 2024, 24, e02152. [Google Scholar] [CrossRef]
- Sardi, S.S.; Qurban, M.A.; Li, W.; Kadinjappalli, K.P.; Manikandan, P.K.; Hariri, M.M.; Tawabini, B.S.; Khalil, A.B.; El-Askary, H. Assessment of areas environmentally sensitive to oil spills in the western Arabian Gulf, Saudi Arabia, for planning and undertaking an effective response. Mar. Pollut. Bull. 2020, 150, 110588. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Ma, S.; Yao, N. Chlorophyll-a concentration variations in Bohai sea: Impacts of environmental complexity and human activities based on remote sensing technologies. Big Data Res. 2024, 36, 100440. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Lv, J.; Liu, Q.; Liu, X.; Xie, S.; Wang, F.; Feng, J. Relationship between Chlorophyll a and Environmental Factors in Lakes Based on the Random Forest Algorithm. Water 2022, 14, 3128. [Google Scholar] [CrossRef]
- Franklin, J.B.; Sathish, T.; Vinithkumar, N.V.; Kirubagaran, R. A novel approach to predict chlorophyll-a in coastal-marine ecosystems using multiple linear regression and principal component scores. Mar. Pollut. Bull. 2020, 152, 110902. [Google Scholar] [CrossRef]
- Sharma, K.; Shah, G.; Singhal, K.; Soni, V. Comprehensive insights into the impact of oil pollution on the environment. Reg. Stud. Mar. Sci. 2024, 74, 103516. [Google Scholar] [CrossRef]
- Fierro, C.; Lloyd, R. Effects of Ocean Acidification on Chlorophyll Content. E-Res. A J. Undergrad. Work. 2014, 1, 6. [Google Scholar]
- Miranda, R.J.; Pinto, T.K.O.; Lopes, R.V.R.; Santos, J.W.; Sampaio, C.L.S.; Santos, R.G.; Pereira, P.H.; Cardoso, A.T.; Malhado, A.C.; Ladle, R.J. Oil Spill Disaster in Southwest Atlantic Coast: An Evaluation of Short-Term Effects on Coral Reef Benthic Assemblages. An. Acad. Bras. Cienc. 2022, 94, e20210401. [Google Scholar] [CrossRef]
- Aung, T.T. Mangroves in Myanmar. In Mangroves Biodiversity, Livelihoods and Conservation; Springer: Singapore, 2022; pp. 331–371. [Google Scholar] [CrossRef]
- Htay, Y.Y.; Htun, S.; Lwin, M.L.; Kyu, T.T. Comparison on the Seagrass Community at the Three Sites Near Dawei, Tanintharyi Region, Myanmar. J. Myanmar Acad. Arts Sci. 2021, XIX, 4B. [Google Scholar]
- Reich, D.; Balouskus, R.; McCay, D.F.; Etkin, D.S.; Michel, J.; Lehto, J. An environmental vulnerability model for oil spill risk analyses: Examples from an assessment for the state of Alaska. In Proceedings of the 37th AMOP Technical Seminar on Environmental Contamination and Response, Ottawa, ON, Canada, 5 May 2014; pp. 65–89. [Google Scholar]
- Rustandi, Y.; Damar, A.; Rakasiwi, G.; Afandy, A.; Hamdani, A.; Mulyana, D. Environmental sensitivity index mapping as a prevention strategy against oil spill pollution: A case study on the coastal area of South Sumatera Province in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Penang, Malaysia, 9–11 September 2019; Volume 414. [Google Scholar] [CrossRef]
- Sekovski, I.; Del, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Du, P.; Liu, B.; Li, Y.; Chen, C. Spatial Differentiation Assessment of the Vulnerability of Marine Protected Areas to Oil Spill Stress in the Bohai Sea. J. Mar. Sci. Eng. 2023, 11, 1877. [Google Scholar] [CrossRef]
- Li, Q.; Guo, F.; Guan, Y. A GIS-Based Evaluation of Environmental Sensitivity for an Urban Expressway in Shenzhen, China. Engineering 2018, 4, 230–234. [Google Scholar] [CrossRef]
- Hernawan, U.; Risdianto, R.K. Oil spill contingency plan (OSCP) by environmental sensitivity index (ESI) analysis at East Barito District, South Barito District and Kapuas District (Tamiang Layang, Buntok and surrounding area), Central Kalimantan Province. In Proceedings of the IOP Conference Series: Earth and Environmental Science, West Java, Indonesia, 17–20 September 2019; Volume 500. [Google Scholar] [CrossRef]
- Aarts, G.; Fieberg, J.; Matthiopoulos, J. Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods Ecol. Evol. 2012, 3, 177–187. [Google Scholar] [CrossRef]
- Rakasiwi, G.; Damar, A.; Rustandi, Y.; Hermanto Wibowo, A. Environmental sensitivity index assessment algorithm in coastal areas: A method. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 12–16 August 2019; Volume 420. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Lee, Z.; Franz, B.A.; Bailey, S.W.; Werdell, P.J.; Proctor, C.W. Improving Satellite Global Chlorophyll a Data Products Through Algorithm Refinement and Data Recovery. J. Geophys. Res. Ocean. 2019, 124, 1524–1543. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Goepel, K.D. AHP Excel Template with Multiple Inputs. 2013. Available online: https://bpmsg.com/wordpress/wp-content/uploads/2012/04/AHPcalc-v2017-03-29.pdf (accessed on 12 April 2025).
- Harik, G.; Alameddine, I.; Maroun, R.; Rachid, G.; Bruschi, D.; Astiaso Garcia, D.; El-Fadel, M. Implications of adopting a biodiversity-based vulnerability index versus a shoreline environmental sensitivity index on management and policy planning along coastal areas. J. Environ. Manag. 2017, 187, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Rustandi, Y.; Damar, A.; Fahrudin, A.; Rakasiwi, G.; Affandy, A.; Hamdani, A.; Mulyana, D. An approach to environmental sensitivity index study at coastal area toward oil spill accident: A case study on the northern and southern coast of Madura Island. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 12–16 August 2019; Volume 420. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on geographical environment unit division based on the method of natural breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2013, 40, 47–50. [Google Scholar] [CrossRef]














| Datasets | Format | Spatial Resolution | Source | Year |
|---|---|---|---|---|
| Shoreline type | Vector | - | Digitized from DigitalGlobe imagery | 2024 |
| Mangrove extent | Raster | 30 m | https://mangrovemyanmar.users.earthengine.app/view/myanmar-mangrove-extent-explorer (22 May 2025). | 2021 |
| Coral reef and seagrass | Vector | - | https://allencoralatlas.org/atlas/#8.29/14.1406/98.3174 (18 March 2025). | 2020 |
| Mudflat | Vector | - | https://myanmarbiodiversityfund.org/ (24 March 2025). | 2020 |
| Species presence | Vector | - | https://myanmarbiodiversityfund.org/ (24 March 2025). | 2020 |
| Protected areas | Vector | - | https://www.protectedplanet.net/country/MMR (23 April 2025). | 2025 |
| Community-proposed protected areas | Vector | - | https://myanmarbiodiversityfund.org/ (24 March 2025). | 2020 |
| Chlorophyll-a | Raster | 5 km | GCOM-C/SGLI L3 Chlorophyll-a Concentration (V3), https://suzaku.eorc.jaxa.jp/GCOM/index.html (28 May 2025). | 2024 |
| Beach | Vector | - | https://www.openstreetmap.org/#map=9/14.181/98.226 (12 April 2025). | 2024 |
| Fishing grounds | Vector | - | https://myanmarbiodiversityfund.org/ (24 March 2025). | 2020 |
| Population density | Raster | 100 m | https://human-settlement.emergency.copernicus.eu/download.php?ds=pop (29 May 2025). | 2023 |
| Administrative boundary | Vector | - | https://www.openstreetmap.org/#map=9/14.181/98.226 (12 April 2025). | 2025 |
| Inshore fishery boundary | Vector | - | Department of Fisheries, Myanmar | 2020 |
| No. | Generalized Shoreline Classification Description | Generalized ESI Score | Explanation |
|---|---|---|---|
| 1 | Open, Artificial Constructions | 1 | Very low sensitivity |
| 2 | Steep and Rocky Shorelines (Sand/Clay/Bedrock) | 2 | Low sensitivity |
| 3 | Beaches (Gravel/Sand) | 3 | Moderate sensitivity |
| 4 | Flats (Sand/Mud) | 4 | High sensitivity |
| 5 | Vegetated (Mangroves/Scrub-Shrub/Grass/Marsh) | 5 | Very high sensitivity |
| Chlorophyll-a Concentration | Chlorophyll-a Index Score | Explanation |
|---|---|---|
| <0.1 mg/m3 | 1 | Very low sensitivity |
| 0.1–0.3 mg/m3 | 2 | Low sensitivity |
| 0.3–1.0 mg/m3 | 3 | Moderate sensitivity |
| 1.0–10.0 mg/m3 | 4 | High sensitivity |
| >10.0 mg/m3 | 5 | Very high sensitivity |
| Human Population Density (No.Pop/km2) | Human Population Density Index | Explanation |
|---|---|---|
| <17.84 | 1 | Very low sensitivity |
| 17.84–65.58 | 2 | Low sensitivity |
| 65.58–161.20 | 3 | Moderate sensitivity |
| 161.20–245.18 | 4 | High sensitivity |
| 245.18–593.61 | 5 | Very high sensitivity |
| Scale | Definition | Explanation of Status for the Compared Parameters |
|---|---|---|
| 1 | Equally important | The two factors contribute equally to the objective. |
| 2 | Moderately more important | Experience and judgment slightly favor one factor over the other. |
| 5 | Strongly more important | Experience and judgment strongly favor one factor over the other. |
| 7 | Very strongly more important | The factor is favored very strongly over another, where its dominance is demonstrated in practice. |
| 9 | Extremely more important | The evidence favoring one factor over another is of the highest possible order of affirmation. |
| 2, 4, 6, 8 | Express intermediate values | The referred factors are nearly of equal importance. |
| Components | Factors | Weight Value | CR Value |
|---|---|---|---|
| Biological Sensitivity | Habitat | 24% | 7.4% |
| Species | 13% | ||
| Chlorophyll-a | 43% | ||
| Protected area | 20% | ||
| Total | 100% | ||
| Socio-Economic Sensitivity | Beach | 14% | 0.0% |
| Fishing ground | 69% | ||
| Population density | 17% | ||
| Total | 100% | ||
| Environmental Sensitivity | Physical Sensitivity | 22% | 8.4% |
| Biological Sensitivity | 39% | ||
| Socio-Economic Sensitivity | 39% | ||
| Total | 100% |
| Biological Sensitivity | Habitat | Species | Chlorophyll-a | Protected Area | Weights | CR Value |
|---|---|---|---|---|---|---|
| Habitat | 1 | 3 1/5 | 2/5 | 1 | 24.08% | 7.4% |
| Species | 1/3 | 1 | 1/3 | 1 | 13.16% | |
| Chlorophyll-a | 2 1/2 | 3 2/9 | 1 | 1 5/7 | 42.97% | |
| Protected Area | 1 | 1 | 4/7 | 1 | 19.79% | |
| Socio-economic sensitivity | Beach | Fishing ground | Population | Weights | CR value | |
| Beach | 1 | 1/5 | 4/5 | 13.98% | 0% | |
| Fishing Ground | 4 8/9 | 1 | 4 | 68.74% | ||
| Population | 1 1/4 | 1/4 | 1 | 17.28% | ||
| Environmental sensitivity | Physical sensitivity | Biological sensitivity | Socio-Eco sensitivity | Weights | CR value | |
| Physical Sensitivity | 1 | 3/4 | 3/7 | 21.94% | 8.40% | |
| Biological Sensitivity | 1 1/3 | 1 | 1 1/3 | 38.81% | ||
| Socio-Eco Sensitivity | 2 3/8 | 3/4 | 1 | 39.26% | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thu, T.M.; Songsom, V.; Suteerasak, T.; Latt, K.T. Environmental Sensitivity Index Assessment Based on Factors in Oil Spill Impact in Coastal Zone Using Spatial Data and Analytical Hierarchy Process Approach: A Case Study in Myanmar. ISPRS Int. J. Geo-Inf. 2025, 14, 460. https://doi.org/10.3390/ijgi14120460
Thu TM, Songsom V, Suteerasak T, Latt KT. Environmental Sensitivity Index Assessment Based on Factors in Oil Spill Impact in Coastal Zone Using Spatial Data and Analytical Hierarchy Process Approach: A Case Study in Myanmar. ISPRS International Journal of Geo-Information. 2025; 14(12):460. https://doi.org/10.3390/ijgi14120460
Chicago/Turabian StyleThu, Tin Myo, Veeranum Songsom, Thongchai Suteerasak, and Kyaw Thinn Latt. 2025. "Environmental Sensitivity Index Assessment Based on Factors in Oil Spill Impact in Coastal Zone Using Spatial Data and Analytical Hierarchy Process Approach: A Case Study in Myanmar" ISPRS International Journal of Geo-Information 14, no. 12: 460. https://doi.org/10.3390/ijgi14120460
APA StyleThu, T. M., Songsom, V., Suteerasak, T., & Latt, K. T. (2025). Environmental Sensitivity Index Assessment Based on Factors in Oil Spill Impact in Coastal Zone Using Spatial Data and Analytical Hierarchy Process Approach: A Case Study in Myanmar. ISPRS International Journal of Geo-Information, 14(12), 460. https://doi.org/10.3390/ijgi14120460

