Long-Term LULC Monitoring in El Jadida, Morocco (1985–2020): A Machine Learning-Based Comparative Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Images Acquisition and Processing
- -
- Normalized Difference Vegetation Index (NDVI = (NIR − Red)/(NIR + Red)): Utilized to quantify vegetation density and photosynthetic activity.
- -
- Normalized Difference Water Index (NDWI = (Green − NIR)/(Green + NIR) Employed to identify water bodies and monitor vegetation water content.
- -
- Normalized Difference Moisture Index (NDMI = (NIR − SWIR1)/(NIR + SWIR1) Sensitive to vegetation water stress and moisture content in canopies.
- -
- Soil-Adjusted Vegetation Index (SAVI = ((NIR − Red)/(NIR + Red + 0.5)) * 1.5): Introduced a soil brightness correction factor (L = 0.5) to minimize the influence of bare soil on vegetation signals in arid regions.
- -
- Modified Soil-Adjusted Vegetation Index (MSAVI = (2 * NIR + 1 − sqrt ((2 * NIR + 1)2 − 8 * (NIR − Red)))/2): An iterative improvement upon SAVI that dynamically adjusts the soil background correction.
- -
- Normalized Difference Built-up Index (NDBI = (SWIR1 − NIR)/(SWIR1 + NIR)): Calculated to highlight impervious surfaces and built-up areas.
- -
- Dry Bare Soil Index (DBSI = ((SWIR1 − Green)/(SWIR1 + Green)) − NDVI): Employed to improve classification accuracy by isolating barren land in arid and semi-arid environments.
2.2.2. Ground Data
2.3. Predictive Modeling
2.4. Accuracy Assessment of Models
3. Results and Discussion
3.1. Overall Statistics of Machine Learning Models
3.2. Separability of Classes by Machine Learning Classifiers
3.3. Predictor Variable Importance and Class Correlation in the RF Model
3.4. Model Performance Comparison
3.5. Temporal Dynamics of Land Cover Classes
3.6. Spatio-Temporal Dynamics of LULC
3.7. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Mundia, C.N.; Aniya, M. Dynamics of landuse/cover changes and degradation of Nairobi City, Kenya. Land Degrad. Dev. 2006, 17, 97–108. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Bouasria, A.; Bouslihim, Y.; Mrabet, R.; Devkota, K. National baseline high-resolution mapping of soil organic carbon in Moroccan cropland areas. Geoderma Reg. 2025, 40, e00941. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Richardson, G.; Knudby, A.; Crowley, M.A.; Sawada, M.; Chen, W. Machine learning approaches to landsat change detection analysis. Can. J. Remote Sens. 2025, 51, 2448169. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Xie, G.; Niculescu, S. Mapping and monitoring of land cover/land use (LCLU) changes in the crozon peninsula (Brittany, France) from 2007 to 2018 by machine learning algorithms (support vector machine, random forest, and convolutional neural network) and by post-classification comparison (PCC). Remote Sens. 2021, 13, 3899. [Google Scholar]
- Kasahun, M.; Legesse, A. Machine learning for urban land use/cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla town. Heliyon 2024, 10, e39146. [Google Scholar] [CrossRef] [PubMed]
- Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sens. 2019, 11, 1713. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Bouasria, A.; Rahimi, A.; El Mjiri, I.; Namr, K.I.; Ettachfini, E.M.; Bounif, M. Comparative study between two methods of crop classification in the irrigated area of Sidi Bennour. In Proceedings of the 2021 IEEE Third International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; pp. 500–503. [Google Scholar]
- Bouasria, A.; Rahimi, A.; El Mjiri, I.; Namr, K.I.; Ettachfini, E.M.; Bounif, M. Use of Remote Sensing Data to Estimate Sugar Beet Crop Yield in the Doukkala Irrigated Perimeter. In Proceedings of the 2021 IEEE Third International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; pp. 504–507. [Google Scholar]
- Devkota, K.P.; Bouasria, A.; Devkota, M.; Nangia, V. Predicting wheat yield gap and its determinants combining remote sensing, machine learning, and survey approaches in rainfed Mediterranean regions of Morocco. Eur. J. Agron. 2024, 158, 127195. [Google Scholar] [CrossRef]
- Mutale, B.; Withanage, N.C.; Mishra, P.K.; Shen, J.; Abdelrahman, K.; Fnais, M.S. A performance evaluation of random forest, artificial neural network, and support vector machine learning algorithms to predict spatio-temporal land use-land cover dynamics: A case from Lusaka and Colombo. Front. Environ. Sci. 2024, 12, 1431645. [Google Scholar] [CrossRef]
- Zaman, A.; Khan, S.A.; Mohammad, N.; Ateya, A.A.; Ahmad, S.; ElAffendi, M.A. Distributed denial of service attack detection in software-defined networks using decision tree algorithms. Future Internet 2025, 17, 136. [Google Scholar] [CrossRef]
- Tesfaye, W.; Elias, E.; Warkineh, B.; Tekalign, M.; Abebe, G. Modeling of land use and land cover changes using google earth engine and machine learning approach: Implications for landscape management. Environ. Syst. Res. 2024, 13, 31. [Google Scholar] [CrossRef]
- Fu, H.; Li, J.; Lu, J.; Lin, X.; Kang, J.; Zou, W.; Ning, X.; Sun, Y. Prediction of Soybean Yield at the County Scale Based on Multi-Source Remote-Sensing Data and Deep Learning Models. Agriculture 2025, 15, 1337. [Google Scholar] [CrossRef]
- Kadri, N.; Jebari, S.; Augusseau, X.; Mahdhi, N.; Lestrelin, G.; Berndtsson, R. Analysis of four decades of land use and land cover change in semiarid Tunisia using Google Earth Engine. Remote Sens. 2023, 15, 3257. [Google Scholar] [CrossRef]
- Selka, I.; Mokhtari, A.M.; Aoul, K.A.T.; Bengusmia, D.; KACEMI, M.; Djebbar, K.E.-B. Assessing the impact of land use and land cover changes on surface temperature dynamics using google earth engine: A case study of tlemcen municipality, northwestern Algeria (1989–2019). ISPRS Int. J. Geoinf. 2024, 13, 237. [Google Scholar] [CrossRef]
- Hind, M.; M’hammed, S.; Djamal, A.; Zoubida, N. Assessment of land use–land cover changes using GIS, remote sensing, and CA–Markov model: A case study of Algiers, Algeria. Appl. Geomat. 2022, 14, 811–825. [Google Scholar] [CrossRef]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sens. 2019, 11, 332. [Google Scholar] [CrossRef]
- Youssef, Y.M.; Gemail, K.S.; Atia, H.M.; Mahdy, M. Insight into land cover dynamics and water challenges under anthropogenic and climatic changes in the eastern Nile Delta: Inference from remote sensing and GIS data. Sci. Total Environ. 2024, 913, 169690. [Google Scholar] [CrossRef]
- El Mjiri, I.; Rahimi, A.; Bouasria, A. Soil artificialization assessment by using time series remote sensing data (case El Jadida). In Proceedings of the 2021 IEEE Third International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; pp. 452–455. [Google Scholar]
- Skittou, M.; Madhoum, O.; Khannous, A.; Merrouchi, M.; Gadi, T.; Khyati, S. Predictive Deep Neural Network Model of Doukkala Coastal Domain Land Use with Remote Sensing Data. In Technical and Technological Solutions Towards a Sustainable Society and Circular Economy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 77–89. [Google Scholar]
- Bounif, M.; Bouasria, A.; Rahimi, A.; El Mjiri, I. Study of agricultural land use variability in Doukkala irrigated area between 1998 and 2020. In Proceedings of the 2021 IEEE Third International Sustainability and Resilience Conference: Climate Change, Virtual, 15–17 November 2021; pp. 170–175. [Google Scholar]
- Ouchra, H.; Belangour, A.; Erraissi, A. Unsupervised learning for land cover mapping of casablanca using multispectral imaging. In Proceedings of the 2024 IEEE ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; pp. 1841–1847. [Google Scholar]
- Erraissi, A.; Ouchra, H.; Banane, M. Integrating Remote Sensing and Machine Learning for Accurate Detection of Agricultural Zones in El Jadida, Morocco. In International Conference on Optimization, Learning Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 35–49. [Google Scholar]
- El Mjiri, I.; Rahimi, A.; Bouasria, A. Urban Sprawl Evolution and Soil Artificialization Assessment by Using Satellite Data from 1985 to 2019: Case of El Jadida Metropolitan in Morocco. In Proceedings of the 2020 Second International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, Sakheer, Bahrain, 11–12 November 2020. [Google Scholar] [CrossRef]
- Bouasria, A.; Fekkak, A.; Haissen, F.; Jouhari, A.; Berrada, I. Using long-term bare earth composite image and machine learning in lithological mapping of Adrar Souttouf mafic complex (Oulad Dlim massif, Southern Morocco). Remote Sens. Appl. 2025, 38, 101516. [Google Scholar]
- Bouasria, A.; Namr, K.I.; Rahimi, A.; Ettachfini, E.M.; Rerhou, B. Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks. Geo-Spat. Inf. Sci. 2022, 25, 353–364. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Boutafoust, R.; Rahimi, A.; Bouasria, A.; Bouslihim, Y.; Bounif, M. Evaluating the performance of multispectral indices and machine learning for extracting small-scale, non-permanent inland water bodies (Dayas) in Western Morocco. Sustain. Water Resour. Manag. 2025, 11, 90. [Google Scholar] [CrossRef]
- Roy, A.; Inamdar, A.B. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 2019, 5, e01478. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Sicre, C.M.; Dedieu, G. Effect of training class label noise on classification performances for land cover mapping with satellite image time series. Remote Sens. 2017, 9, 173. [Google Scholar] [CrossRef]
- Bouslihim, Y.; John, K.; Miftah, A.; Azmi, R.; Aboutayeb, R.; Bouasria, A.; Razouk, R.; Hssaini, L. The effect of covariates on Soil Organic Matter and pH variability: A digital soil mapping approach using random forest model. Ann. GIS 2024, 30, 215–232. [Google Scholar] [CrossRef]
- Rana, V.K.; Suryanarayana, T.M.V. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens. Appl. 2020, 19, 100351. [Google Scholar] [CrossRef]
- Fischer, M.M. Neural networks: A class of flexible non-linear models for regression and classification. In Handbook of Research Methods and Applications in Economic Geography; Edward Elgar Publishing: Cheltenham, UK, 2015; pp. 172–192. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yu, H.; Kim, S. SVM tutorial—Classification, regression and ranking. In Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 479–506. [Google Scholar]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Yuan, H.; Van Der Wiele, C.F.; Khorram, S. An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 2019, 20, 1–32. [Google Scholar]
- Salas, E.A.L.; Kumaran, S.S. Hyperspectral Bare Soil Index (HBSI): Mapping soil using an ensemble of spectral indices in machine learning environment. Land 2023, 12, 1375. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIsci Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Aslan, N.; Koc-San, D. The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries. ISPRS Int. J. Geoinf. 2021, 10, 416. [Google Scholar] [CrossRef]
- Garzón, J.; Molina, I.; Velasco, J.; Calabia, A. A remote sensing approach for surface urban heat island modeling in a tropical colombian city using regression analysis and machine learning algorithms. Remote Sens. 2021, 13, 4256. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Tran, V.-D.; Huynh, T.-C. From Data to Insights: Modeling Urban Land Surface Temperature Using Geospatial Analysis and Interpretable Machine Learning. Sensors 2025, 25, 1169. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban land use and land cover change analysis using random forest classification of landsat time series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Melnyk, O.; Brunn, A. Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine. Earth 2025, 6, 28. [Google Scholar] [CrossRef]
- Chafik, H.; Berrada, M.; Legdou, A.; Amine, A.; Lahssini, S. Exploitation of spectral indices NDVI, NDWI & SAVI in random forest classifier model for mapping weak rosemary cover: Application on Gourrama region, Morocco. In Proceedings of the 2020 IEEE International Conference of Moroccan Geomatics (Morgeo), Casablanca, Morocco, 11–13 May 2020; pp. 1–6. [Google Scholar]
- Benmokhtar, S.; Robin, M.; Maanan, M.; Bazairi, H. Mapping and quantification of the dwarf eelgrass zostera noltei using a random forest algorithm on a spot 7 satellite image. ISPRS Int. J. Geoinf. 2021, 10, 313. [Google Scholar] [CrossRef]
- El Mjiri, I.; Rahimi, A.; Bouasria, A. Remote sensing and GIS at the heart of the smart management of El Jadida City (Morocco). In Proceedings of the 4th Smart Cities Symposium (SCS 2021), Virtual, 21–23 November 2021. [Google Scholar]
- El Mjiri, I.; Rahimi, A.; Bouasria, A. Quantification and prediction of urban sprawl and surface temperature and assessment of their impacts on the environment: Case El Jadida (Morocco). Int. J. Glob. Warm. 2022, 26, 374–390. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Z.; Zhang, F.; Li, J.; Liufu, Y.; Cao, L.; Lin, J. Spatiotemporal Variations of Cropland Quality and Morphology Under the Requisition–Compensation Balance Policy. Land 2025, 14, 1235. [Google Scholar] [CrossRef]
- Xiong, S.; Yang, F. Dual-Dimensional Management for Human–Environment Coordination in Lake-Ring Urban Agglomerations: A Spatiotemporal Interaction Perspective of Human Footprint and Ecological Quality. Appl. Sci. 2025, 15, 7444. [Google Scholar] [CrossRef]
- Kouassi, J.-L.; Gyau, A.; Diby, L.; Bene, Y.; Kouamé, C. Assessing land use and land cover change and farmers’ perceptions of deforestation and land degradation in South-West Côte d’Ivoire, West Africa. Land 2021, 10, 429. [Google Scholar] [CrossRef]
- Tuğaç, M.G.; Şimşek, F.F.; Torunlar, H. Classification of Agricultural Crops with Random Forest and Support Vector Machine Algorithms Using Sentinel-2 and Landsat-8 Images. Int. J. Environ. Geoinform. 2024, 11, 106–118. [Google Scholar] [CrossRef]
- Sultan, M.; Saleous, N.; Issa, S.; Dahy, B.; Sami, M. Optimizing Land Use Classification Using Google Earth Engine: A Comparative Analysis of Machine Learning Algorithms. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2025, 10, 863–869. [Google Scholar] [CrossRef]





| RF | SVM | NNET | |
|---|---|---|---|
| Overall Accuracy | 0.903 | 0.802 | 0.813 |
| CI (LB, UB) | (0.88, 0.919) | (0.779, 0.824) | (0.791, 0.834) |
| Kappa | 0.859 | 0.703 | 0.722 |
| Bare Soil | Beach | Buildings | Cropland | Forest | Water | PA (%) | |
|---|---|---|---|---|---|---|---|
| Bare soil | 190 | 0 | 15 | 17 | 0 | 0 | 85.6 |
| Beach | 0 | 0 | 0 | 0 | 0 | 0 | - |
| Buildings | 18 | 1 | 171 | 11 | 0 | 1 | 84.7 |
| Cropland | 23 | 0 | 30 | 575 | 4 | 0 | 91 |
| Forest | 0 | 0 | 0 | 2 | 51 | 0 | 96.2 |
| Water | 0 | 0 | 0 | 0 | 0 | 157 | 100 |
| UA (%) | 82.3 | 0 | 79.2 | 95 | 92.7 | 99.4 | - |
| F1-score (%) | 83.9 | - | 81.8 | 93 | 94.4 | 99.7 | - |
| Bare Soil | Beach | Buildings | Cropland | Forest | Water | PA (%) | |
|---|---|---|---|---|---|---|---|
| Bare soil | 72 | 0 | 5 | 17 | 1 | 0 | 75.8 |
| Beach | 0 | 0 | 0 | 0 | 0 | 0 | - |
| Buildings | 55 | 1 | 171 | 22 | 0 | 0 | 68.7 |
| Cropland | 104 | 0 | 40 | 566 | 5 | 0 | 79.2 |
| Forest | 0 | 0 | 0 | 0 | 49 | 0 | 100 |
| Water | 0 | 0 | 0 | 0 | 0 | 158 | 100 |
| UA (%) | 31.2 | 0 | 79.2 | 93.6 | 89.1 | 100 | - |
| F1-score (%) | 44.2 | - | 73.5 | 85.8 | 94.2 | 100 | - |
| Bare Soil | Beach | Buildings | Cropland | Forest | Water | PA (%) | |
|---|---|---|---|---|---|---|---|
| Bare soil | 111 | 0 | 37 | 22 | 2 | 0 | 75.8 |
| Beach | 0 | 0 | 0 | 0 | 0 | 0 | - |
| Buildings | 25 | 0 | 149 | 19 | 0 | 0 | 68.7 |
| Cropland | 95 | 1 | 30 | 562 | 3 | 0 | 79.2 |
| Forest | 0 | 0 | 0 | 2 | 50 | 0 | 100 |
| Water | 0 | 0 | 0 | 0 | 0 | 158 | 100 |
| UA (%) | 31.2 | 0 | 79.2 | 93.6 | 89.1 | 100 | - |
| F1-score (%) | 44.2 | - | 73.5 | 85.8 | 94.2 | 100 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mjiri, I.; Rahimi, A.; Bouasria, A.; Bounif, M.; Boulanouar, W. Long-Term LULC Monitoring in El Jadida, Morocco (1985–2020): A Machine Learning-Based Comparative Analysis. ISPRS Int. J. Geo-Inf. 2025, 14, 445. https://doi.org/10.3390/ijgi14110445
El Mjiri I, Rahimi A, Bouasria A, Bounif M, Boulanouar W. Long-Term LULC Monitoring in El Jadida, Morocco (1985–2020): A Machine Learning-Based Comparative Analysis. ISPRS International Journal of Geo-Information. 2025; 14(11):445. https://doi.org/10.3390/ijgi14110445
Chicago/Turabian StyleEl Mjiri, Ikram, Abdelmejid Rahimi, Abdelkrim Bouasria, Mohammed Bounif, and Wardia Boulanouar. 2025. "Long-Term LULC Monitoring in El Jadida, Morocco (1985–2020): A Machine Learning-Based Comparative Analysis" ISPRS International Journal of Geo-Information 14, no. 11: 445. https://doi.org/10.3390/ijgi14110445
APA StyleEl Mjiri, I., Rahimi, A., Bouasria, A., Bounif, M., & Boulanouar, W. (2025). Long-Term LULC Monitoring in El Jadida, Morocco (1985–2020): A Machine Learning-Based Comparative Analysis. ISPRS International Journal of Geo-Information, 14(11), 445. https://doi.org/10.3390/ijgi14110445

