Mixed-Graph Neural Network for Traffic Flow Prediction by Capturing Dynamic Spatiotemporal Correlations
Abstract
1. Introduction
- GCN and GAT are mixed to extract the static and dynamic spatial traffic flow characteristics of road segments within a road network.
- A spatial–temporal block, involving GCN, GAT, and Transformer encoder, is proposed to extract the spatial and temporal traffic flow characteristics of road segments within a road network.
- Experiments on five real datasets show that the proposed model outperforms the baseline models in traffic flow prediction accuracy. In addition, experiments also show that the proposed model has strong performance and extensibility in long-term traffic flow prediction.
2. Related Work
3. Problem Description and Definitions
4. The Basic Principle of the Proposed Model
4.1. Input Layer
4.2. Spatial Characteristics Extraction Layer
4.2.1. GCN
4.2.2. GAT
4.2.3. The Gate Mechanism
4.2.4. The Residual Calculation
4.3. Temporal Characteristics Extraction Layer
4.4. Complexity Analysis
5. Experimental Results and Analysis
5.1. Experimental Settings
5.2. The Traffic Flow Prediction of Different Models
- SVR [43]: Support vector regression is a machine learning algorithm that uses support vector machines for the regression tasks.
- LSTM [44]: The long short-term memory network can extract the time series characteristics with a long time span. It can effectively solve the problems of gradient vanishing and gradient explosion and has good prediction ability.
- STGNN [45]: The Transformer encoder layer and GRU are used to capture temporal correlations. GCN and the latent positional representation are merged and used to capture dynamic spatial correlations.
- AGCRN [46]: The spatial relationship graph is dynamically constructed based on node embeddings. Moreover, the dynamic and temporal spatial correlations are captured by using GCN and GRU, respectively.
- STGCN [31]: The spatial–temporal graph convolutional network uses GCN to capture spatial information, where 1-D causal convolution and gated linear units (GLU) are used to capture temporal information.
- ASTGCN [32]: The spatial–temporal graph convolutional network based on attention mechanism uses the attention mechanism and GCN to extract spatial and temporal characteristics for the traffic data prediction.
- STSGCN [37]: The spatial–temporal synchronous graph convolutional network uses aggregate operation and GCN to extract the heterogeneities in localized spatial-temporal graphs.
- STFGNN [49]: The spatial–temporal fusion graph neural network proposes the fusion graph module and the gated convolution network on spatial-temporal fusion graph for the traffic data prediction.
- STCDN [50]: The spatial–temporal continuous dynamics network uses a neural ordinary differential equation to construct the traffic flow prediction model with encoder-decoder architecture.
5.3. The Long-Term Traffic Flow Prediction
5.4. Robustness and Sensitivity Analysis
5.5. Hyperparameter Analysis and Time Costs
5.6. Entropy Analysis of GAT
5.7. The Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GCN | Graph Convolution Network |
GAT | Graph Attention Network |
RNN | Recurrent Neural Network |
GLU | Gated Linear Units |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
RMSE | Root Mean Square Error |
References
- Jia, Y.; Wu, J.; Xu, M. Traffic flow prediction with rainfall impact using a deep learning method. J. Adv. Transp. 2017, 2017, 6575947. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Xu, X. A piecewise hybrid of ARIMA and SVMs for short-term traffic flow prediction. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017. [Google Scholar]
- Zhu, H.; Xie, Y.; He, W.; Sun, C.; Zhu, K.; Zhou, G.; Ma, N. A Novel Traffic Flow Forecasting Method Based on RNN-GCN and BRB. J. Adv. Transp. 2020, 2020, 7586154. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Zonoozi, A.; Kim, J.J.; Li, X.L.; Cong, G. Periodic-CRN: A convolutional recurrent model for crowd density prediction with recurring periodic patterns. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Yao, R.; Zhang, W.; Zhang, L. Hybrid Methods for Short-Term Traffic Flow Prediction Based on ARIMA-GARCH Model and Wavelet Neural Network. J. Transp. Eng. Part A Syst. 2020, 146, 04020086. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Q.; Chen, G.; Seng, D. A combined method for short-term traffic flow prediction based on recurrent neural network. Alex. Eng. J. 2021, 60, 87–94. [Google Scholar] [CrossRef]
- Ge, W.; Cao, Y.; Ding, Z.; Guo, L. Forecasting Model of Traffic Flow Prediction Model Based on Multi-resolution SVR. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, 15–18 March 2019; ICIAI ’19. pp. 1–5. [Google Scholar] [CrossRef]
- Li, C.; Xu, P. Application on traffic flow prediction of machine learning in intelligent transportation. Neural Comput. Appl. 2021, 33, 613–624. [Google Scholar] [CrossRef]
- Tawfeek, M.H.; El-Basyouny, K. Estimating Traffic Volume on Minor Roads at Rural Stop-Controlled Intersections using Deep Learning. Transp. Res. Rec. 2019, 2673, 108–116. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Z.; Hu, Q.; Zhang, Y. Attention Mechanism With Spatial-Temporal Joint Model for Traffic Flow Speed Prediction. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16612–16621. [Google Scholar] [CrossRef]
- Geng, X.; Li, Y.; Wang, L.; Zhang, L.; Yang, Q.; Ye, J.; Liu, Y. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3656–3663. [Google Scholar]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar] [CrossRef]
- Shu, W.; Cai, K.; Xiong, N.N. A Short-Term Traffic Flow Prediction Model Based on an Improved Gate Recurrent Unit Neural Network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16654–16665. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Lin, X.; Wang, Y.; He, F. Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies. Transp. Res. Part C Emerg. Technol. 2019, 105, 297–322. [Google Scholar] [CrossRef]
- Pan, Z.; Liang, Y.; Wang, W.; Yu, Y.; Zheng, Y.; Zhang, J. Urban traffic prediction from spatio-temporal data using deep meta learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1720–1730. [Google Scholar]
- Chen, W.; Chen, L.; Xie, Y.; Cao, W.; Gao, Y.; Feng, X. Multi-range attentive bicomponent graph convolutional network for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3529–3536. [Google Scholar]
- Li, Y.; Chai, S.; Ma, Z.; Wang, G. A Hybrid Deep Learning Framework for Long-Term Traffic Flow Prediction. IEEE Access 2021, 9, 11264–11271. [Google Scholar] [CrossRef]
- Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4883–4894. [Google Scholar] [CrossRef]
- Guo, K.; Hu, Y.; Qian, Z.; Sun, Y.; Gao, J.; Yin, B. Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1009–1018. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Lin, Z.; Feng, J.; Lu, Z.; Li, Y.; Jin, D. DeepSTN+: Context-Aware Spatial-Temporal Neural Network for Crowd Flow Prediction in Metropolis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1020–1027. [Google Scholar] [CrossRef]
- Yao, H.; Wu, F.; Ke, J.; Tang, X.; Jia, Y.; Lu, S.; Gong, P.; Ye, J.; Li, Z. Deep multi-view spatial-temporal network for taxi demand prediction. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; AAAI Press: Washington, DC, USA, 2018. AAAI’18/IAAI’18/EAAI’18. [Google Scholar]
- Yao, H.; Tang, X.; Wei, H.; Zheng, G.; Li, Z. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Washington, DC, USA, 2019. AAAI’19/IAAI’19/EAAI’19. [Google Scholar] [CrossRef]
- Han, D.; Chen, J.; Sun, J. A parallel spatiotemporal deep learning network for highway traffic flow forecasting. Int. J. Distrib. Sens. Netw. 2019, 15, 15501477198. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; Zhang, C. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; KDD ’20. pp. 753–763. [Google Scholar] [CrossRef]
- Li, N.; Jia, S.; Li, Q. Traffic Message Channel Prediction Based on Graph Convolutional Network. IEEE Access 2021, 9, 135423–135431. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, B.; Wang, Y.; Duan, Z.; Zhao, X. Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network. Sensors 2020, 20, 3776. [Google Scholar] [CrossRef]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; AAAI Press: Washington, DC, USA, 2018. IJCAI’18. pp. 3634–3640. [Google Scholar]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 922–929. [Google Scholar]
- Huang, R.; Huang, C.; Liu, Y.; Dai, G.; Kong, W. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Yokohama, Japan, 11–17 July 2020; Bessiere, C., Ed.; International Joint Conferences on Artificial Intelligence Organization: Montreal, QC, Canada, 2020; Volume 7, pp. 2355–2361. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Meng, G.; Xiang, S.; Pan, C. Spatio-Temporal Graph Structure Learning for Traffic Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1177–1185. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Wu, T.; Chen, F.; Wan, Y. Graph Attention LSTM Network: A New Model for Traffic Flow Forecasting. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 241–245. [Google Scholar]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 914–921. [Google Scholar]
- Liu, L.; Zhen, J.; Li, G.; Zhan, G.; He, Z.; Du, B.; Lin, L. Dynamic spatial-temporal representation learning for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7169–7183. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Liu, M.; Huang, H.; Feng, H.; Sun, L.; Du, B.; Fu, Y. Pristi: A conditional diffusion framework for spatiotemporal imputation. In Proceedings of the 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 2–7 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1927–1939. [Google Scholar]
- Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3438–3445. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Wang, Y.; Jin, W.; Wang, X.; Tang, J.; Jia, C.; Yu, J. Traffic Flow Prediction via Spatial Temporal Graph Neural Network. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; WWW ’20. pp. 1082–1092. [Google Scholar] [CrossRef]
- Bai, L.; Yao, L.; Li, C.; Wang, X.; Wang, C. Adaptive graph convolutional recurrent network for traffic forecasting. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Red Hook, Online, 6–12 December 2020. NIPS ’20. [Google Scholar]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, 10–16 August 2019; International Joint Conferences on Artificial Intelligence Organization: Montreal, QC, Canada, 2019; Volume 7, pp. 1907–1913. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Li, M.; Zhu, Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 4189–4196. [Google Scholar]
- Xie, Y.; Xiong, Y.; Zhang, J.; Chen, C.; Zhang, Y.; Zhao, J.; Jiao, Y.; Zhao, J.; Zhu, Y. Temporal super-resolution traffic flow forecasting via continuous-time network dynamics. Knowl. Inf. Syst. 2023, 65, 4687–4712. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Y. Understanding the message passing in graph neural networks via power iteration clustering. Neural Netw. 2021, 140, 130–135. [Google Scholar] [CrossRef] [PubMed]
Datasets | # of Nodes | # of Timesteps | Time Periods |
---|---|---|---|
PEMS03 | 358 | 26,208 | 1 September 2018–30 November 2018 |
PEMS04 | 307 | 16,992 | 1 January 2018–28 February 2018 |
PEMS07 | 883 | 28,224 | 1 May 2017–31 August 2017 |
PEMS08 | 170 | 17,856 | 1 July 2016–31 August 2016 |
BJTaxi | 290 | 22,484 | 1 February 2016–31 August 2016 |
Hyperparameters | PEMS03 | PEMS04 | PEMS07 | PEMS08 | BJTaxi |
---|---|---|---|---|---|
Batch size | 32 | 32 | 32 | 32 | 32 |
K of spatial characteristics extraction layers | 2 | 2 | 2 | 2 | 2 |
of GCN and GAT | 64 | 256 | 256 | 64 | 64 |
Heads of graph attention network | 8 | 8 | 8 | 8 | 8 |
Heads of Transformer encoder | 8 | 8 | 8 | 8 | 8 |
Layers of Transformer encoder | 3 | 5 | 4 | 3 | 3 |
Learning rate | 0.001 | 0.0001 | 0.0005 | 0.001 | 0.001 |
Models | SVR | LSTM | STGNN | AGCRN | GWN | STGCN | ASTGCN | STSGCN | STFGNN | STCDN | Proposed Model | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Datasets | Metrics | |||||||||||
PEMS03 | MAE | 22.01 | 21.33 | 20.71 | 15.85 | 19.85 | 18.28 | 17.85 | 17.48 | 16.77 | 16.33 | 15.07 |
MAPE (%) | 22.93 | 13.33 | 19.16 | 15.74 | 19.31 | 17.52 | 17.65 | 16.78 | 16.30 | 15.87 | 15.26 | |
RMSE | 35.28 | 35.11 | 32.62 | 28.18 | 32.94 | 30.73 | 29.88 | 29.21 | 28.34 | 26.14 | 26.44 | |
PEMS04 | MAE | 28.66 | 27.14 | 26.50 | 19.74 | 25.45 | 22.27 | 22.42 | 21.19 | 19.83 | 20.41 | 19.36 |
MAPE (%) | 19.15 | 18.20 | 17.51 | 13.10 | 17.29 | 14.36 | 15.87 | 13.90 | 13.02 | 13.85 | 12.83 | |
RMSE | 44.59 | 41.59 | 39.38 | 32.22 | 39.70 | 35.02 | 34.75 | 33.65 | 31.88 | 31.24 | 31.48 | |
PEMS07 | MAE | 32.97 | 29.98 | - | 21.89 | 26.85 | 27.41 | 25.98 | 24.62 | 22.07 | 22.40 | 21.39 |
MAPE (%) | 15.43 | 13.20 | - | 9.38 | 12.12 | 12.23 | 11.84 | 10.21 | 9.21 | 10.10 | 9.17 | |
RMSE | 50.15 | 45.84 | - | 35.76 | 42.78 | 41.02 | 39.65 | 39.03 | 35.80 | 35.22 | 35.26 | |
PEMS08 | MAE | 23.25 | 22.20 | 20.57 | 16.13 | 19.13 | 18.04 | 18.86 | 17.13 | 16.64 | 16.48 | 15.17 |
MAPE (%) | 14.71 | 14.20 | 13.37 | 10.17 | 12.68 | 11.16 | 12.49 | 10.96 | 10.60 | 10.51 | 9.65 | |
RMSE | 36.15 | 34.06 | 31.22 | 25.59 | 31.05 | 27.94 | 28.55 | 26.81 | 26.22 | 24.90 | 24.59 | |
BJTaxi | MAE | 31.87 | 30.91 | 27.77 | 19.56 | 25.37 | 23.44 | 22.59 | 19.39 | 18.73 | 18.83 | 17.62 |
MAPE (%) | 22.46 | 21.12 | 20.97 | 17.26 | 19.29 | 18.87 | 18.57 | 16.78 | 15.11 | 15.32 | 14.20 | |
RMSE | 49.74 | 47.51 | 44.13 | 33.47 | 38.66 | 34.23 | 34.13 | 34.98 | 30.47 | 28.93 | 28.01 |
Time Intervals | 18 | 24 | 30 | 36 | |
---|---|---|---|---|---|
Datasets | Metrics | ||||
MAE | 16.22 | 16.92 | 17.59 | 18.41 | |
PEMS03 | MAPE (%) | 16.18 | 16.00 | 16.75 | 18.07 |
RMSE | 27.74 | 28.92 | 30.54 | 31.59 | |
MAE | 20.09 | 20.84 | 21.42 | 21.65 | |
PEMS04 | MAPE (%) | 13.32 | 13.84 | 14.04 | 14.29 |
RMSE | 32.83 | 33.97 | 35.08 | 35.50 | |
MAE | 22.57 | 23.78 | 24.31 | 25.08 | |
PEMS07 | MAPE (%) | 10.36 | 10.85 | 10.90 | 11.49 |
RMSE | 37.49 | 39.73 | 41.10 | 42.36 | |
MAE | 16.28 | 16.73 | 17.37 | 18.01 | |
PEMS08 | MAPE (%) | 10.44 | 10.65 | 11.18 | 12.25 |
RMSE | 26.26 | 27.35 | 28.39 | 29.27 | |
MAE | 18.31 | 18.98 | 19.73 | 20.87 | |
BJTaxi | MAPE (%) | 15.16 | 15.57 | 16.39 | 17.14 |
RMSE | 29.38 | 31.05 | 32.44 | 33.68 |
Traffic Scenarios | Peak Hours | Off-Peak Hours | |
---|---|---|---|
Datasets | Metrics | ||
PEMS04 | MAE | 21.85 (↑) | 9.36 (↓) |
MAPE (%) | 11.05 (↓) | 20.26 (↑) | |
RMSE | 34.19 (↑) | 16.63 (↓) | |
PEMS08 | MAE | 15.85 (↑) | 13.60 (↓) |
MAPE (%) | 8.47 (↓) | 12.41 (↑) | |
RMSE | 24.63 (↑) | 24.50 (↓) |
Missing Pattern | Point Missing | Block Missing | |
---|---|---|---|
Datasets | Metrics | ||
PEMS04 | MAE | 19.88 (2.6% ↑) | 19.61 (1.3% ↑) |
MAPE (%) | 12.95 (0.9% ↑) | 12.89 (0.5% ↑) | |
RMSE | 32.27 (2.5% ↑) | 32.30 (2.6% ↑) | |
PEMS08 | MAE | 15.33 (1.1% ↑) | 15.40 (1.5% ↑) |
MAPE (%) | 9.75 (1.0% ↑) | 9.92 (2.8% ↑) | |
RMSE | 24.85 (1.1% ↑) | 24.84 (1.0% ↑) |
Datasets | G2T | G2T-noGAT | G2T-noGCN | ||||
---|---|---|---|---|---|---|---|
Complete | 19.36 | 19.61 | 0.25 | - | 19.98 | 0.62 | - |
Peak hours | 23.36 | 26.76 | 3.40 | 13.60 | 27.02 | 3.66 | 5.90 |
Off-peak hours | 8.52 | 9.23 | 0.71 | 2.84 | 9.93 | 1.41 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Li, P.; Cai, Z.; Guo, L.; Zhang, B. Mixed-Graph Neural Network for Traffic Flow Prediction by Capturing Dynamic Spatiotemporal Correlations. ISPRS Int. J. Geo-Inf. 2025, 14, 379. https://doi.org/10.3390/ijgi14100379
Su X, Li P, Cai Z, Guo L, Zhang B. Mixed-Graph Neural Network for Traffic Flow Prediction by Capturing Dynamic Spatiotemporal Correlations. ISPRS International Journal of Geo-Information. 2025; 14(10):379. https://doi.org/10.3390/ijgi14100379
Chicago/Turabian StyleSu, Xing, Pengcheng Li, Zhi Cai, Limin Guo, and Boya Zhang. 2025. "Mixed-Graph Neural Network for Traffic Flow Prediction by Capturing Dynamic Spatiotemporal Correlations" ISPRS International Journal of Geo-Information 14, no. 10: 379. https://doi.org/10.3390/ijgi14100379
APA StyleSu, X., Li, P., Cai, Z., Guo, L., & Zhang, B. (2025). Mixed-Graph Neural Network for Traffic Flow Prediction by Capturing Dynamic Spatiotemporal Correlations. ISPRS International Journal of Geo-Information, 14(10), 379. https://doi.org/10.3390/ijgi14100379