Urban Vitality Measurement Through Big Data and Internet of Things Technologies
Abstract
:1. Introduction
2. Urban Vitality and Its Measurement
2.1. Theoretical Foundations
2.2. Historical Measurement Techniques
3. Technological Advances in Measuring Urban Vitality
3.1. Social Dimension
3.2. Economic Dimension
3.3. Environmental Dimension
4. Methodological Considerations
4.1. Data Collection and Integration
4.2. Data Analysis Techniques
5. Challenges and Limitations
5.1. Privacy and Ethical Considerations
5.2. Reliability and Accuracy
6. Future Directions
6.1. Emerging Technologies
6.2. Interdisciplinary Approaches
6.3. Evidence-Based Urban Planning
7. Conclusions
Funding
Conflicts of Interest
References
- Jacobs, J. The Death and Life of Great American Cities; Vintage: New York, NY, USA, 1961. [Google Scholar]
- Montgomery, J. Making a City: Urbanity, Vitality and Urban Design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Lynch, K. A Theory of Good City Form; MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Gehl, J. A Changing Street Life in a Changing Society. Places 1989, 6, 9–17. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; Project for Public Spaces Inc.: New York, NY, USA, 1980. [Google Scholar]
- Pacione, M. The Use of Objective and Subjective Measures of Quality in Human Geography. Prog. Hum. Geogr. 1982, 6, 493–514. [Google Scholar] [CrossRef]
- Kitchin, R. Big Data, New Epistemologies and Paradigm Shifts. Big Data Soc. 2014, 1, 205395171452848. [Google Scholar] [CrossRef]
- Batty, M. The Pulse of the City. Environ. Plan. B Plan. Des. 2010, 37, 575–577. [Google Scholar] [CrossRef]
- Gao, S. Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age. Spat. Cogn. Comput. 2015, 15, 86–114. [Google Scholar] [CrossRef]
- Heidari, A.; Shishehlou, H.; Darbandi, M.; Navimipour, N.J.; Yalcin, S. A Reliable Method for Data Aggregation on the Industrial Internet of Things Using a Hybrid Optimization Algorithm and Density Correlation Degree. Clust. Comput. 2024, 27, 7521–7539. [Google Scholar] [CrossRef]
- Dourish, P. The Internet of Urban Things. In Code and the City; Kitchin, R., Sung-Yueh, P., Eds.; Routledge: New York, NY, USA, 2016; pp. 27–48. [Google Scholar]
- Hong, S.; Hyoung Kim, S.; Kim, Y.; Park, J. Big Data and Government: Evidence of the Role of Big Data for Smart Cities. Big Data Soc. 2019, 6, 205395171984254. [Google Scholar] [CrossRef]
- Kitchin, R.; Lauriault, T.P. Towards Critical Data Studies: Charting and Unpacking Data Assemblages and Their Work. In Thinking Big Data in Geography: New Regimes, New Research; Thatcher, J., Shears, A., Eckert, J., Eds.; University of Nebraska Press: London, UK, 2014; pp. 3–20. [Google Scholar]
- Lazer, D.; Kennedy, R.; King, G.; Vespignani, A. The Parable of Google Flu: Traps in Big Data Analysis. Science 2014, 343, 1203–1205. [Google Scholar] [CrossRef]
- Longley, P.A.; Webber, R.; Li, C. The UK Geography of the E-Society: A National Classification. Environ. Plan. A Econ. Sp. 2008, 40, 362–382. [Google Scholar] [CrossRef]
- Gehl, J. Life between Buildings: Using Public Space, 6th ed.; Island Press: New York, NY, USA, 2011. [Google Scholar]
- Ravenscroft, N. The Vitality and Viability of Town Centres. Urban Stud. 2000, 37, 2533–2549. [Google Scholar] [CrossRef]
- Kim, Y.-L. Seoul’s Wi-Fi Hotspots: Wi-Fi Access Points as an Indicator of Urban Vitality. Comput. Environ. Urban Syst. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; W. W. Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Traunmueller, M.W.; Johnson, N.; Malik, A.; Kontokosta, C.E. Digital Footprints: Using WiFi Probe and Locational Data to Analyze Human Mobility Trajectories in Cities. Comput. Environ. Urban Syst. 2018, 72, 4–12. [Google Scholar] [CrossRef]
- Montgomery, C. Happy City: Transforming Our Lives Through Urban Design; Farrar, Straus and Giroux: New York, NY, USA, 2013. [Google Scholar]
- Reades, J.; Calabrese, F.; Sevtsuk, A.; Ratti, C. Cellular Census: Explorations in Urban Data Collection. IEEE Pervasive Comput. 2007, 6, 30–38. [Google Scholar] [CrossRef]
- Landry, C. Urban Vitality: A New Source of Urban Competitiveness. Archis 2000, 12, 1–2. [Google Scholar]
- Kitchin, R.; McArdle, G. What Makes Big Data, Big Data? Exploring the Ontological Characteristics of 26 Datasets. Big Data Soc. 2016, 3, 205395171663113. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Xia, J.; Zhou, Y.; Lai, Y.; Jiang, J.; Li, Q. Portraying the Spatial Dynamics of Urban Vibrancy Using Multisource Urban Big Data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G.O. The Varying Relationships between Multidimensional Urban Form and Urban Vitality in Chinese Megacities: Insights from a Comparative Analysis. Ann. Am. Assoc. Geogr. 2022, 112, 141–166. [Google Scholar] [CrossRef]
- Rabari, C.; Storper, M. The Digital Skin of Cities: Urban Theory and Research in the Age of the Sensored and Metered City, Ubiquitous Computing and Big Data. Camb. J. Reg. Econ. Soc. 2014, 8, 27–42. [Google Scholar] [CrossRef]
- Manfredini, F.; Pucci, P.; Tagliolato, P. Mobile Phone Network Data: New Sources for Urban Studies? In Geographic Information Analysis for Sustainable Development and Economic Planning: New Technologies; Borruso, G., Bertazzon, S., Favretto, A., Murgante, B., Torre, C.M., Eds.; IGI Global: Hershey, PA, USA, 2013; pp. 115–128. [Google Scholar]
- Louail, T.; Lenormand, M.; Cantú, O.G.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.; Barthelemy, M. From Mobile Phone Data to the Spatial Structure of Cities. Sci. Rep. 2014, 4, 5276. [Google Scholar] [CrossRef]
- Dong, L.; Duarte, F.; Duranton, G.; Santi, P.; Barthelemy, M.; Batty, M.; Bettencourt, L.; Goodchild, M.; Hack, G.; Liu, Y.; et al. Defining a City—Delineating Urban Areas Using Cell-Phone Data. Nat. Cities 2024, 1, 117–125. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Song, C.; Chen, J.; Shu, H.; Wu, M.; Guo, S.; Huang, Q.; Pei, T. Quantifying Human Mobility Resilience to the COVID-19 Pandemic: A Case Study of Beijing, China. Sustain. Cities Soc. 2023, 89, 104314. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-L.; Jun, B. Inside out: Human Mobility Big Data Show How COVID-19 Changed the Urban Network Structure in the Seoul Metropolitan Area. Camb. J. Reg. Econ. Soc. 2022, 15, 537–550. [Google Scholar] [CrossRef]
- Yabe, T.; Jones, N.K.W.; Rao, P.S.C.; Gonzalez, M.C.; Ukkusuri, S.V. Mobile Phone Location Data for Disasters: A Review from Natural Hazards and Epidemics. Comput. Environ. Urban Syst. 2022, 94, 101777. [Google Scholar] [CrossRef]
- Cohn, N. Real-Time Traffic Information and Navigation. Transp. Res. Rec. J. Transp. Res. Board 2009, 2129, 129–135. [Google Scholar] [CrossRef]
- Kan, Z.; Tang, L.; Kwan, M.-P.; Ren, C.; Liu, D.; Li, Q. Traffic Congestion Analysis at the Turn Level Using Taxis’ GPS Trajectory Data. Comput. Environ. Urban Syst. 2019, 74, 229–243. [Google Scholar] [CrossRef]
- Marin, A.; Sasidharan, S. Heterogeneous MNC Subsidiaries and Technological Spillovers: Explaining Positive and Negative Effects in India. Res. Policy 2010, 39, 1227–1241. [Google Scholar] [CrossRef]
- Arribas-Bel, D.; Kourtit, K.; Nijkamp, P.; Steenbruggen, J. Cyber Cities: Social Media as a Tool for Understanding Cities. Appl. Spat. Anal. Policy 2015, 8, 231–247. [Google Scholar] [CrossRef]
- Lu, R.; Wu, L.; Chu, D. Portraying the Influence Factor of Urban Vibrancy at Street Level Using Multisource Urban Data. ISPRS Int. J. Geo-Inf. 2023, 12, 402. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, N.; Zhao, X.; Gao, X.; Zhuang, S.; Li, M. Evaluating Urban Vitality of Street Blocks Based on Multi-Source Geographic Big Data: A Case Study of Shenzhen. Int. J. Environ. Res. Public Health 2023, 20, 3821. [Google Scholar] [CrossRef]
- Wang, B.; Loo, B.P.Y.; Liu, J.; Lei, Y.; Zhou, L. Urban Vibrancy and Air Pollution: Avoidance Behaviour and the Built Environment. Int. J. Urban Sci. 2024, 28, 611–630. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Romanillos, G.; Aparicio, D.; Martín-Caro, M.S.H.; García-Palomares, J.C.; Gutiérrez, J. Towards a New Urban Geography of Expenditure: Using Bank Card Transactions Data to Analyze Multi-Sector Spatiotemporal Distributions. Cities 2022, 131, 103894. [Google Scholar] [CrossRef]
- Kim, S.A.; Kim, H. Structural Relationship between COVID-19, Night-Time Economic Vitality, and Credit-Card Sales: The Application of a Formative Measurement Model in PLS-SEM. Buildings 2022, 12, 1606. [Google Scholar] [CrossRef]
- Kim, Y.-L. Data-Driven Approach to Characterize Urban Vitality: How Spatiotemporal Context Dynamically Defines Seoul’s Nighttime. Int. J. Geogr. Inf. Sci. 2020, 34, 1235–1256. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Zhong, C.; Zhang, X.; Xu, Y.; Li, Q. Exploring Metro Vibrancy and Its Relationship with Built Environment: A Cross-City Comparison Using Multi-Source Urban Data. Geo-Spat. Inf. Sci. 2022, 25, 182–196. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.; Yoo, C. Unveiling the Spatial Heterogeneity of Public Transit Resilience during and after the COVID-19 Pandemic. J. Public Transp. 2024, 26, 100091. [Google Scholar] [CrossRef]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using Mobility Data as Proxy for Measuring Urban Vitality. J. Spat. Inf. Sci. 2018, 16, 137–162. [Google Scholar] [CrossRef]
- Park, M.; Kim, H. Interaction of Urban Configuration, Temperature, and De Facto Population in Seoul, Republic of Korea: Insights from Two-Stage Least-Squares Regression Using S-DoT Data. Land 2023, 12, 2110. [Google Scholar] [CrossRef]
- Park, M.S.; Baek, K. Quality Management System for an IoT Meteorological Sensor Network—Application to Smart Seoul Data of Things (S-DoT). Sensors 2023, 23, 2384. [Google Scholar] [CrossRef]
- English, N.; Zhao, C.; Brown, K.L.; Catlett, C.; Cagney, K. Making Sense of Sensor Data: How Local Environmental Conditions Add Value to Social Science Research. Soc. Sci. Comput. Rev. 2022, 40, 179–194. [Google Scholar] [CrossRef]
- Ahn, Y. Disparities of Compound Exposure of Particulate Matter (PM2.5) and Heat Index Using Citywide Monitoring Networks. Sustain. Cities Soc. 2024, 113, 105626. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban Land Uses and Traffic “Source-Sink Areas”: Evidence from GPS-Enabled Taxi Data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences; Sage Publications: London, UK, 2014. [Google Scholar]
- Zook, M. Crowd-Sourcing the Smart City: Using Big Geosocial Media Metrics in Urban Governance. Big Data Soc. 2017, 4, 205395171769438. [Google Scholar] [CrossRef]
- Offenhuber, D.; Auinger, S.; Seitinger, S.; Muijs, R. Los Angeles Noise Array—Planning and Design Lessons from a Noise Sensing Network. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 609–625. [Google Scholar] [CrossRef]
- Kontokosta, C.E. The Quantified Community and Neighborhood Labs: A Framework for Computational Urban Science and Civic Technology Innovation. J. Urban Technol. 2016, 23, 67–84. [Google Scholar] [CrossRef]
- Catlett, C.E.; Beckman, P.H.; Sankaran, R.; Galvin, K.K. Array of Things: A Scientific Research Instrument in the Public Way: Platform Design and Early Lessons Learned. In Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering, Pittsburgh, PA, USA, 18–21 April 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 26–33. [Google Scholar]
- Seoul Metropolitan Government Analysis of City Data “S-DoT” Collected by 1,100 Sensors in Seoul Is Released 2021. Available online: https://english.seoul.go.kr/analysis-of-city-data-s-dot-collected-by-1100-sensors-in-seoul-is-released/ (accessed on 9 December 2024).
- Gitelman, L. Raw Data Is Oxymoron; The MIT Press: Cambridge, MA, USA, 2013; ISBN 9780262518284. [Google Scholar]
- Yang, C.; Raskin, R.; Goodchild, M.F.; Gahegan, M. Geospatial Cyberinfrastructure: Past, Present and Future. Comput. Environ. Urban Syst. 2010, 34, 264–277. [Google Scholar] [CrossRef]
- Dodge, S.; Gao, S.; Tomko, M.; Weibel, R. Progress in Computational Movement Analysis–towards Movement Data Science. Int. J. Geogr. Inf. Sci. 2020, 34, 2395–2400. [Google Scholar] [CrossRef]
- Chun, Y.; Kwan, M.-P.; Griffith, D.A. Uncertainty and Context in GIScience and Geography: Challenges in the Era of Geospatial Big Data. Int. J. Geogr. Inf. Sci. 2019, 33, 1131–1134. [Google Scholar] [CrossRef]
- Batty, M. A Perspective on City Dashboards. Reg. Stud. Reg. Sci. 2015, 2, 29–32. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Noyman, A.; Doorley, R.; Xiong, Z.; Alonso, L.; Grignard, A.; Larson, K. Reversed Urbanism: Inferring Urban Performance through Behavioral Patterns in Temporal Telecom Data. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1480–1498. [Google Scholar] [CrossRef]
- Crooks, A.T.; Malleson, N.; Wise, S.; Heppenstall, A.J. Big Data, Agents and the City. In Big Data for Regional Science; Schintler, L.A., Chen, Z., Eds.; Routledge: New York, NY, USA, 2018; pp. 204–213. [Google Scholar]
- Cugurullo, F. Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Front. Sustain. Cities 2020, 2, 38. [Google Scholar] [CrossRef]
- Bettencourt, L.; West, G. A Unified Theory of Urban Living. Nature 2010, 467, 912–913. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yabuki, N.; Fukuda, T. Exploring the Association between Street Built Environment and Street Vitality Using Deep Learning Methods. Sustain. Cities Soc. 2022, 79, 103656. [Google Scholar] [CrossRef]
- Dalton, C. For Fun and Profit: The Limits and Possibilities of Google-Maps-Based Geoweb Applications. Environ. Plan. A Econ. Sp. 2015, 47, 1029–1046. [Google Scholar] [CrossRef]
- Huang, H.; Yao, X.A.; Krisp, J.M.; Jiang, B. Analytics of Location-Based Big Data for Smart Cities: Opportunities, Challenges, and Future Directions. Comput. Environ. Urban Syst. 2021, 90, 101712. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Newlands, G.; Lee, M.K.; Wolf, C.T.; Kinder, E.; Sutherland, W. Algorithmic Management in a Work Context. Big Data Soc. 2021, 8, 205395172110203. [Google Scholar] [CrossRef]
- Zuboff, S. The Age of Surveillance Capitalism; Hachette Book Group: New York, NY, USA, 2019. [Google Scholar]
- Kitchin, R. Civil Liberties or Public Health, or Civil Liberties and Public Health? Using Surveillance Technologies to Tackle the Spread of COVID-19. Sp. Polity 2020, 24, 362–381. [Google Scholar] [CrossRef]
- World Bank. World Development Report 2021: Data for Better Lives; The World Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Kitchin, R.; Stehle, S. Can Smart City Data Be Used to Create New Official Statistics? J. Off. Stat. 2021, 37, 121–147. [Google Scholar] [CrossRef]
- Dalton, C.; Wilmott, C.; Fraser, E.; Thatcher, J. “Smart” Discourses, the Limits of Representation, and New Regimes of Spatial Data. Ann. Am. Assoc. Geogr. 2020, 110, 485–496. [Google Scholar] [CrossRef]
- Calabrese, F.; Kloeckl, K.; Ratti, C. WikiCity: Real-Time Location-Sensitive Tools for the City. In Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City; Foth, M., Ed.; IGI Global: London, UK, 2009; pp. 390–413. [Google Scholar]
- Symons, J.; Alvarado, R. Can We Trust Big Data? Applying Philosophy of Science to Software. Big Data Soc. 2016, 3, 2053951716664747. [Google Scholar] [CrossRef]
- Ou, Y.; Kim, E.; Liu, X.; Nam, K.-M. Delineating Functional Regions from Road Networks: The Case of South Korea. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 1677–1694. [Google Scholar] [CrossRef]
- Kwan, M.-P. Algorithmic Geographies: Big Data, Algorithmic Uncertainty, and the Production of Geographic Knowledge. Ann. Am. Assoc. Geogr. 2016, 106, 274–282. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kominers, S.D.; Luca, M.; Naik, N. Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life. Econ. Inq. 2018, 56, 114–137. [Google Scholar] [CrossRef]
- Lai, Y.; Kontokosta, C.E. Quantifying Place: Analyzing the Drivers of Pedestrian Activity in Dense Urban Environments. Landsc. Urban Plan. 2018, 180, 166–178. [Google Scholar] [CrossRef]
- Collini, L.; Rabuel, L.; Carlberg, M.; Foley, P.; Gemmell, A. Study on Mapping Data Flows. 2021. Available online: https://digital-strategy.ec.europa.eu/en/library/study-mapping-data-flows (accessed on 9 December 2024).
- Guo, X.; Yang, Y.; Cheng, Z.; Wu, Q.; Li, C.; Lo, T.; Chen, F. Spatial Social Interaction: An Explanatory Framework of Urban Space Vitality and Its Preliminary Verification. Cities 2022, 121, 103487. [Google Scholar] [CrossRef]
- Imottesjo, H.; Kain, J.H. The Urban CoBuilder—A Mobile Augmented Reality Tool for Crowd-Sourced Simulation of Emergent Urban Development Patterns: Requirements, Prototyping and Assessment. Comput. Environ. Urban Syst. 2018, 71, 120–130. [Google Scholar] [CrossRef]
- Mora, L.; Deakin, M.; Zhang, X.; Batty, M.; de Jong, M.; Santi, P.; Appio, F.P. Assembling Sustainable Smart City Transitions: An Interdisciplinary Theoretical Perspective. J. Urban Technol. 2021, 28, 1–27. [Google Scholar] [CrossRef]
- McFarlane, C.; Söderström, O. On Alternative Smart Cities: From a Technology-Intensive to a Knowledge-Intensive Smart Urbanism. City 2017, 21, 312–328. [Google Scholar] [CrossRef]
- Cardullo, P.; Di Feliciantonio, C.; Kitchin, R. The Right to the Smart City; Emerald Group Publishing: Bingley, UK, 2019. [Google Scholar]
- Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P. Scaling and Allometry in the Building Geometries of Greater London. Eur. Phys. J. B 2008, 63, 303–314. [Google Scholar] [CrossRef]
- Batty, M. The Size, Scale, and Shape of Cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, Innovation, Scaling, and the Pace of Life in Cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.; Choi, M.Y.; Lee, K.; Kim, K. How Complexity Emerges in Urban Systems: Theory of Urban Morphology. Phys. Rev. E 2016, 93, 052309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L. Controllability of Complex Networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Yu, B.; Sun, J.; Wang, Z.; Jin, S. Influencing Factors of Street Vitality in Historic Districts Based on Multisource Data: Evidence from China. ISPRS Int. J. Geo-Inf. 2024, 13, 277. [Google Scholar] [CrossRef]
Dimension | Data | Proxy | Reference |
---|---|---|---|
Social | Mobile phone activity | Pedestrian mobility | Manfredini et al., 2013 [28] Louail et al., 2014 [29] Dong et al., 2024 [30] Liu et al., 2023 [31] Kim and Jun, 2022 [32] Yabe et al., 2022 [33] |
Car navigation | Vehicular mobility | Cohn, 2009 [34] Kan et al., 2019 [35] Liu et al., 2012 [36] | |
Social media check-in | Social activity | Arribas-Bel et al., 2015 [37] Lu et al., 2023 [38] Wang et al., 2023 [39] Wang et al., 2024 [40] | |
Economic | Bank card transaction | Consumption | Carpio-Pinedo et al., 2022 [41] Kim and Kim, 2022 [42] Kim, 2020 [43] |
Smart card | Public transportation | Tu et al., 2022 [44] Li et al., 2024 [45] Sulis et al., 2018 [46] | |
Environmental | Temperature | Weather | Park and Kim, 2023 [47] Park and Baek, 2023 [48] |
Fine particulate | Air pollution | English et al., 2020 [49] Ahn, 2024 [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-L. Urban Vitality Measurement Through Big Data and Internet of Things Technologies. ISPRS Int. J. Geo-Inf. 2025, 14, 14. https://doi.org/10.3390/ijgi14010014
Kim Y-L. Urban Vitality Measurement Through Big Data and Internet of Things Technologies. ISPRS International Journal of Geo-Information. 2025; 14(1):14. https://doi.org/10.3390/ijgi14010014
Chicago/Turabian StyleKim, Young-Long. 2025. "Urban Vitality Measurement Through Big Data and Internet of Things Technologies" ISPRS International Journal of Geo-Information 14, no. 1: 14. https://doi.org/10.3390/ijgi14010014
APA StyleKim, Y.-L. (2025). Urban Vitality Measurement Through Big Data and Internet of Things Technologies. ISPRS International Journal of Geo-Information, 14(1), 14. https://doi.org/10.3390/ijgi14010014