An Adaptive Simplification Method for Coastlines Using a Skeleton Line “Bridge” Double Direction Buffering Algorithm
Abstract
:1. Introduction
2. Bidirectional Buffer Zone Method
2.1. Basic Principles
2.2. Existing Flaws
3. Skeleton Line “Bridging” Bidirectional Buffer Zone
3.1. Basic Philosophy
3.2. Critical Steps
3.2.1. Determination of Buffer Distance under Visual Constraints
3.2.2. Shoreline Skeleton Line Binary Tree Construction
3.2.3. “Source Tracing” Algorithm Extracts “Bridging” Skeleton Lines
3.2.4. “Bridging” of the Original Result Line and Local Details
4. Experiments and Analysis
4.1. Evaluation of the Effectiveness of the Methodology
4.2. Methods Comparative Analysis and Evaluation
4.2.1. Qualitative Assessment
4.2.2. Quantitative Assessment
5. Conclusions
- (1)
- The original bidirectional buffer zone method tends to have an excessive simplification scale when dealing with bottleneck areas, as it lacks a mechanism to handle these regions. In this paper, the coastline is adaptively simplified by extracting “bridging” skeleton lines, constructing a visual buffer zone based on the “bridging” skeleton lines, and “bridging” the simplified result line of the original bidirectional buffer zone with local details. Additionally, it can adaptively exaggerate and represent local narrow areas. The simplification quality of this method is generally comparable to that of the constrained Delaunay triangulation method.
- (2)
- Compared to existing methods, the proposed method in this paper has higher simplification accuracy, closely follows the original coastline, and does not contain any non-visible detail parts after simplification, meeting the relevant requirements of the “Standard for Nautical Chart Production”.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Li, J. Generalization of Nautical Charts; Surveying and Mapping Press: Beijing, China, 1999. [Google Scholar]
- GB12320-1998; Specifications for Chinese Nautical Charts. The State Bureau of Quality and Technical Supervasion: Beijing, China, 1998.
- Liu, H.; Xie, S.; Wang, F. Study on the Method of Automatic Cartographic Generalization of Coastline. J. Geomat. Sci. Technol. 2010, 27, 225–228. [Google Scholar]
- Liu, Y.; Zhai, J. The Research on Pattern Presentation and Automatic Generalization of Coastlines. Geomat. Spatial Inf. Technol. 2005, 28, 78–81. [Google Scholar]
- Chen, H.; Peng, R.; Zheng, Y.; Li, S. Coastline Generalization Basedon Skeleton Line of Curve Bends. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 1418–1422. [Google Scholar]
- Chen, H.; Zheng, Y.; Guan, H. Improvement of Douglas-Peucker Algorithm Based on Skeleton Line. Hydrogr. Surv. Charting 2011, 31, 18–20. [Google Scholar]
- Visvalingam, M.; Whelan, J.C. Implications of Weighting Metrics for Line Generalization with Visvalingam’s Algorithm. Cartogr. J. 2016, 53, 253–267. [Google Scholar] [CrossRef]
- Ai, T.; Zhou, Q.; Zhang, X.; Huang, Y.; Zhou, M. A Simplification of Ria Coastline with Geomorphologic Characteristics Preserved. Mar. Geod. 2014, 37, 167–186. [Google Scholar] [CrossRef]
- Ai, T.; Ke, S.; Yang, M.; Li, J. Envelope generation and simplification of polylines using Delaunay triangulation. Int. J. Geogr. Inf. Sci. 2017, 31, 297–319. [Google Scholar] [CrossRef]
- Huang, Y.; Yi, T.; Liu, Y.; Zhang, H. Geographic-Feature Oriented Ria Coastline Simplification. Acta Geod. Cartogr. Sin. 2013, 42, 595–601. [Google Scholar]
- Ai, T.H.; Guo, R.Z.; Chen, X.D. Simplification and Aggregation of Polygon Object Supported by Delaunay Triangulation Structure. J. Image Graph. 2001, 6, 703–709. [Google Scholar]
- Ai, T.; Guo, R.; Liu, Y. A Binary Tree Representation of Curve Hierarchical Structure in Depth. Acta Geod. Et Cartogr. Sin. 2001, 30, 343–348. [Google Scholar]
- Poorten, P.V.D.; Jones, C.B. Characterisation and Generalisation of Cartographic Lines Using Delaunay Triangulation. Int. J. Geogr. Inf. Sci. 2002, 16, 773–794. [Google Scholar] [CrossRef]
- Zheng, X.; Xiong, H.; Gong, J.; Yue, L. A Robust Channel Network Extraction Method Combining Discrete Curve Evolution and the Skeleton Construction Technique. Adv. Water Resour. 2015, 83, 17–27. [Google Scholar] [CrossRef]
- Zhai, R.; Fang, W.; Li, Z. Structured Representation of Curve Shape. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 1021–1024. [Google Scholar]
- Zhao, G. Geographic-Feature Oriented Map Generalization of Complex Lake. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2016. [Google Scholar]
- Du, J.; Wu, F.; Li, J.; Xing, R.; Gong, X. A Progressive Simplification Method for the Estuary Coastline. Acta Geod. Cartogr. Sin. 2018, 47, 547–556. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, L.; Jia, S.; Dai, Z. A Collaborative Simplification Method for Multiple Coastlines Based on the Hierarchical Triangulation Network Partition. Acta Geod. Cartogr. Sin. 2018, 47, 547–556. [Google Scholar] [CrossRef]
- Du, J.; Wu, F.; Zhu, L.; Liu, C.; Wang, A. An Ensemble Learning Simplification Approach Based on Multiple Machine-learning Algorithms with the Fusionusing of Raster and Vector Data and a Use Case of Coastline Simplification. Acta Geod. Cartogr. Sin. 2022, 51, 373–387. [Google Scholar] [CrossRef]
- He, H.; Qian, H.; Duan, P.; Xie, L.; Luo, D. Automatic Line Simplification Algorithm Selecting and Parameter Setting Based on Case-Based Reasoning. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 344–352. [Google Scholar] [CrossRef]
- Wu, F.; Du, J.; Qian, H.; Zhai, R. Overview of Research Progress and Reflections in Intelligent Map Generalization. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1675–1687. [Google Scholar]
- Duan, P.; Qian, H.; He, H.; Xie, L.; Luo, D. A Line Simplification Method Based on Support Vector Machine. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 744–753. [Google Scholar]
- Ai, T. Some Thoughts on Deep Learning Enabling Cartography. Acta Geod. Cartogr. Sin. 2021, 50, 1170–1182. [Google Scholar]
- Wang, L.; Wu, Y.; Tang, J. A Coastline Generalization Method for Marine Delimitation. Sci. Surv. Mapp. 2015, 40, 18–21. [Google Scholar] [CrossRef]
- Christensen, A.H.J. Cartographic Line Generalization with Waterlines and Medial-Axes. Cartogr. Geogr. Inf. Sci. 1999, 26, 19–32. [Google Scholar] [CrossRef]
- Gao, W.J.; Peng, R.C.; Chen, Y.; Guo, L.X.; Liu, G.H. The research of the double direction buffering algorithm and its application on the generalizing of chart linear feature. Sci. Surv. Mapp. 2009, 34, 187–190. [Google Scholar]
- Dong, J.; Peng, R.; Zhang, L.; Liu, G.; Zhu, Q. Multi-scale Representation of Digital Depth Model Based on Double Direction Rolling Ball Transform according to the Reality Principle. Acta Geod. Cartogr. Sin. 2017, 46, 789–801. [Google Scholar] [CrossRef]
- Dong, J.; Peng, R.; Zhang, L.; Wang, Z. An Algorithm of Filtering Noises in Multi-beam Data Based on Rolling Circle Transform. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 86–92. [Google Scholar]
- Dong, J.; Peng, R.; Zhang, L.; Liu, G.; Zhu, Q. Multi-scale Representation of Digital Depth Model Based on Rolling Ball Transform. J. Geo-Inf. Sci. 2012, 14, 704–711. [Google Scholar] [CrossRef]
- Wen, L. Evaluate, Regulate and Control Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart. Master’s Thesis, Dalian Naval Academy, Dalian, China, 2016. [Google Scholar]
- Ai, T.; Guo, R. Extracting Center-lines and Building Street Network Based on Constrained Delaunay Triangulation. Acta Geod. Et Cartogr. Sin. 2000, 29, 348–354. [Google Scholar]
- Dong, J.; Peng, R.; Chen, Y.; Li, N. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 1120–1123. [Google Scholar]
- Liu, X.; Wu, Y.; Hu, H. A Method of Extracting Multiscale Skeletons for Polygonal Shapes. Acta Geod. Cartogr. Sin. 2013, 42, 588–594. [Google Scholar]
- Shen, L.; Wu, B.; Yang, N. Areal Feature Main Skeleton Extraction Algorithm. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 767–771. [Google Scholar]
- Wang, T.; Wu, H. Extraction of Hierarchical Skeleton of Areal Object Based on Multivariate Analysis. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 533–536. [Google Scholar]
- Wu, F.; Zhu, K. Geometric Accuracy Assessment of Linear Features’ Simplification Algorithms. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 600–603. [Google Scholar]
- Leucci, G.; Persico, R.; De Giorgi, L.; Lazzari, M.; Colica, E.; Martino, S.; D’Amico, S. Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta). Sustainability 2021, 13, 12538. [Google Scholar] [CrossRef]
Scheme | 1:500,000 | 1:750,000 | 1:1,000,000 | 1:1,250,000 | ||||
---|---|---|---|---|---|---|---|---|
Forward | Negative | Forward | Negative | Forward | Negative | Forward | Negative | |
Douglas–Peucker | 1624.62 | 2102.67 | 1723.29 | 3702.88 | 1857.67 | 4962.91 | 2022.38 | 5365.98 |
Bidirectional buffers | 1937.69 | 0.0 | 5222.12 | 0.0 | 5766.89 | 0.0 | 6439.2 | 0.0 |
Triangulation method | 690.48 | 77.54 | 2315.01 | 163.20 | 4180.96 | 164.87 | 5222.37 | 428.33 |
This article | 168.09 | 30.74 | 957.40 | 201.45 | 2221.93 | 244.39 | 3248.87 | 359.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Zhang, L.; Dong, J.; Wei, H.; Wei, S. An Adaptive Simplification Method for Coastlines Using a Skeleton Line “Bridge” Double Direction Buffering Algorithm. ISPRS Int. J. Geo-Inf. 2024, 13, 155. https://doi.org/10.3390/ijgi13050155
Tang L, Zhang L, Dong J, Wei H, Wei S. An Adaptive Simplification Method for Coastlines Using a Skeleton Line “Bridge” Double Direction Buffering Algorithm. ISPRS International Journal of Geo-Information. 2024; 13(5):155. https://doi.org/10.3390/ijgi13050155
Chicago/Turabian StyleTang, Lulu, Lihua Zhang, Jian Dong, Hongcheng Wei, and Shuai Wei. 2024. "An Adaptive Simplification Method for Coastlines Using a Skeleton Line “Bridge” Double Direction Buffering Algorithm" ISPRS International Journal of Geo-Information 13, no. 5: 155. https://doi.org/10.3390/ijgi13050155