Validation of Recent DSM/DEM/DBMs in Test Areas in Greece Using Spirit Leveling, GNSS, Gravity and Echo Sounding Measurements
Abstract
:1. Introduction
2. Materials
2.1. Study Areas
2.2. Data Used in the Evaluation
2.2.1. DEM, DSM and DBM
2.2.2. GNSS/Leveling and Gravity Data
2.2.3. Echo Sounding Measurements
3. Validation Procedure
4. Results
4.1. Validation of Models in Central Greece
4.2. Validation of Models in Northern Greece
4.3. Bathymetric Models
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavanidis, K.; Stampolidis, A.; Kirmizakis, P.; Tranos, M.; Fedi, M.; Pasteka, R.; Al-Ramadan, K.; Kaka, S.; Tsokas, G.N.; Soupios, P. Gravity Survey on the Oil-Bearing Dammam Dome (Eastern Saudi Arabia) and Its Implications. Remote Sens. 2022, 14, 735. [Google Scholar] [CrossRef]
- Grigoriadis, V.N.; Vergos, G.S.; Barzaghi, R.; Carrion, D.; Koç, Ö. Collocation and FFT-based geoid estimation within the Colorado 1 cm geoid experiment. J. Geod. 2021, 95, 52. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Gurugnanam, B. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga Watershed, Cauvery River, Salem district, Tamil Nadu, India. Appl. Water Sci. 2017, 7, 3875–3883. [Google Scholar] [CrossRef]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Ramillien, G.; Wright, I.C. Predicted seafloor topography of the New Zealand region: A nonlinear list squares inversion of satellite altimetry data. J. Geophys. Res. 2000, 105, 16577–16590. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science 1997, 277, 1956–1962. [Google Scholar] [CrossRef]
- Cesbron, G.; Melet, A.; Almar, R.; Lifermann, A.; Tullot, D.; Crosnier, L. Pan-European Satellite-Derived Coastal Bathymetry—Review, User Needs and Future Services. Front. Mar. Sci. 2021, 8, 740830. [Google Scholar] [CrossRef]
- González-Moradas, M.d.R.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 2020, 237, 111509. [Google Scholar] [CrossRef]
- Jain, A.O.; Thaker, T.; Chaurasia, A.; Patel, P.; Singh, A.K. Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. Geocarto Int. 2018, 11, 1237–1256. [Google Scholar] [CrossRef]
- Mouratidis, A.; Ampatzidis, D. European Digital Elevation Model Validation against Extensive Global Navigation Satellite Systems Data and Comparison with SRTM DEM and ASTER GDEM in Central Macedonia (Greece). ISPRS Int. J. Geo-Inf. 2019, 8, 108. [Google Scholar] [CrossRef]
- Mouratidis, A.; Briole, P.; Katsambalos, K. SRTM 3″ DEM (Versions 1, 2, 3, 4) Validation by Means of Extensive Kinematic GPS Measurements: A Case Study from North Greece. Int. J. Remote Sens. 2010, 31, 6205–6222. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Abrams, M.; Kamarianakis, Y.; Stanislawski, M. Validation of ASTER GDEM for the Area of Greece. Photogramm. Eng. Remote Sens. 2011, 77, 157–165. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.; Li, Y. Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data under Data Coregistration. Remote Sens. 2020, 12, 3435. [Google Scholar] [CrossRef]
- Zhang, K.; Gann, D.; Ross, M.; Robertson, Q.; Sarmiento, J.; Santana, S.; Rhome, J.; Fritz, C. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 2019, 225, 290–306. [Google Scholar] [CrossRef]
- Yahaya, S.I.; El Azzab, D. Vertical accuracy assessment of global digital elevation models and validation of gravity database heights in Niger. Int. J. Remote Sens. 2019, 40, 7966–7985. [Google Scholar] [CrossRef]
- Purinton, B.; Bookhagen, B. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surf. Dyn. 2017, 5, 211–237. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Guth, P.L.; Geoffroy, T.M. LiDAR Point Cloud and ICESat-2 Evaluation of 1 Second Global Digital Elevation Models: Copernicus Wins. Trans. GIS 2021, 25, 2245–2261. [Google Scholar] [CrossRef]
- Sefercik, U.G.; Buyuksalih, G.; Atalay, C.; Jacobsen, K. Validation of Sentinel-1A and AW3D30 DSMs for the Metropolitan Area of Istanbul, Turkey. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 141–155. [Google Scholar] [CrossRef]
- Marešová, J.; Gdulová, K.; Pracná, P.; Moravec, D.; Gábor, L.; Prošek, J.; Barták, V.; Moudrý, V. Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs. Remote Sens. 2021, 13, 3931. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens. Environ. 2021, 261, 112474. [Google Scholar] [CrossRef]
- Miliaresis, G.C.; Paraschou, C.V.E. Vertical Accuracy of the SRTM DTED Level 1 of Crete. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 49–59. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G. Accuracy Assessment of ALOS AW3D30 DSM and Comparison to ALOS PRISM DSM Created with Classical Photogrammetric Techniques. Eur. J. Remote Sens. 2020, 53, 39–52. [Google Scholar] [CrossRef]
- Grigoriadis, V.N.; Tziavos, I.N.; Vergos, G.S.; Natsiopoulos, D.A. A study of global bathymetry models and sounding data in the Axios-Loudias-Aliakmonas River Delta. In Special Issue for Emeritus Professor Myron Miridis—Cartographies of Mind, Soul and Knowledge; Arvanitis, A., Basbas, S., Lafazani, P., Papadopoulou, M., Paraschakis, I., Rossikopoulos, D., Eds.; School of Rural and Surveying Engineering, Aristotle University of Thessaloniki: Thessaloniki, Greece, 2015; pp. 829–841. (In Greek) [Google Scholar]
- NASA; METI; AIST; Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. 2019. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/ASTER/ASTGTM.003 (accessed on 22 October 2021).
- Takaku, J.; Tadono, T.; Doutsu, M.; Ohgushi, F.; Kai, H. Updates of ‘AW3D30’ ALOS Global Digital Surface Model with Other Open Access Datasets. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B4-2020, 183–189. [Google Scholar] [CrossRef]
- DLR e.V.; Airbus Defense and Space GmbH. Copernicus DEM GLO-30. Provided under COPERNICUS by the European Union and ESA; all rights reserved, 2018. Available online: https://spacedata.copernicus.eu (accessed on 20 May 2021).
- European Union, Copernicus Land Monitoring Service, European Environment Agency. EU-DEM v1.1. 2021. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 1 February 2021).
- Buckley, S.M.; Agram, P.S.; Belz, J.E.; Crippen, R.E.; Gurrola, E.M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.M.; Neumann, M.; et al. NASADEM; National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2020. [Google Scholar]
- GEBCO Gridded Bathymetry Data. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 15 July 2022).
- NASA. NASA Shuttle Radar Topography Mission Global 1 Arc Second. National Aeronautics and Space Administration, Jet Propulsion Laboratory 2013. Available online: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (accessed on 21 May 2021). [CrossRef]
- Hellenic Navy Hydrographic Service. Digital Terrain Model (DTM) of the Greek Seas. Available online: https://www.hnhs.gr/ (accessed on 24 March 2021).
- Lemoine, F.G.; Kenyon, S.C.; Factor, J.K.; Trimmer, R.G.; Pavlis, N.K.; Chinn, D.S.; Cox, C.; Klosko, S.M.; Luthcke, S.B.; Torrence, M.H.; et al. The Development of the Join NASA GSFC and NIMA Geopotential Model EGM96; NASA Technical Publication: Greenbelt, MD, USA, 1998; 1998-206861. [Google Scholar]
- Denker, H.; Barriot, J.-P.; Barzaghi, R.; Fairhead, D.; Forsberg, R.; Ihde, J.; Kenyeres, A.; Marti, U.; Sarrailh, M.; Tziavos, I.N. The Development of the European Gravimetric Geoid Model EGG07. In Observing Our Changing Earth; Sideris, M.G., Ed.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2009; Volume 133. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on 19 March 2021).
- Paradissis, D.; Anastasiou, D.; Papanikolaou, X. Monitoring, Processing and Certification of the Permanent GNSS URANUS Network; Dionysos Satellite Observatory, National Technical University of Athens: Athens, Greece, 2013. (In Greek) [Google Scholar]
- Katsampalos, K.; Kotsakis, C.; Gianniou, M. Hellenic Terrestrial Reference System 2007 (HTRS07): A Regional Realization of ETRS89 over Greece in Support of HEPOS. Bolletino Geod. Sci. Affin. 2010, 69, 329–347. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Altamini, Z. EUREF Technical Note 1: Relationship and Transformation between the International and the European Terrestrial Reference Systems. 2018. Available online: http://etrs89.ensg.ign.fr/pub/EUREF-TN-1.pdf (accessed on 19 March 2021).
- Grigoriadis, V.N.; Andritsanos, V.D.; Natsiopoulos, D. Validation of the Hellenic Gravity Network in the Frame of the ModernGravNet Project. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Mäkinen, J. The permanent tide and the International Height Reference Frame IHRF. J. Geod. 2021, 95, 106. [Google Scholar] [CrossRef]
- Ekman, M. Impacts of geodynamic phenomena on systems for height and gravity. Bull. Geod. 1989, 63, 281–296. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Vienna, Austria, 2005; ISBN 3211235841. [Google Scholar]
- Mesa-Mingorance, J.L.; Ariza-López, F.J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sens. 2020, 12, 2630. [Google Scholar] [CrossRef]
- Yastikli, N.; Sefercik, U.G.; Esirtgen, F. Quantitative assessment of remotely sensed global surface models using various land classes produced from Landsat data in Istanbul. Chin. Geogr. Sci. 2014, 24, 307–316. [Google Scholar] [CrossRef]
- International Hygrographic Organization. IHO Standards for Hydrographic Surveys, Special Publication No. 44, 6.1.0 ed.; International Hydrographic Bureau: Commune de Monaco, Monaco, 2022. [Google Scholar]
Model | Resolution (Arcsec) | Reference System/Ellipsoid | Evaluation |
---|---|---|---|
ASTER GDEM v3 | 1 | WGS84 | H |
AW3D30 DSM v3.2 | 1 | ITRS97/GRS80 | H |
Copernicus DEM | 1 | WGS84 | H |
DTM of the Greek Seas | 15 | WGS84 | D |
EU-DEM | 25 m | ETRS89-LAEA/GRS80 | H |
GEBCO 2020 | 15 | WGS84 | H/D |
NASADEM HGT | 1 | WGS84 | H |
SRTM 1arcsec Global | 1 | WGS84 | H |
SRTM15+ v2.1 | 15 | WGS84 | H/D |
Area | Min | Max | Mean | Std |
---|---|---|---|---|
A/L/A Estuaries | −28.87 | −0.41 | −14.44 | 9.45 |
Katerini | −5.33 | −0.38 | −2.34 | 0.90 |
N. Iraklitsa | −8.03 | −0.82 | −4.18 | 1.45 |
N. Marmaras | −92.29 | −0.45 | −31.34 | 20.80 |
N. Moudania | −10.18 | −0.45 | −3.69 | 1.78 |
Thessaloniki | −24.01 | −5.73 | −14.96 | 2.91 |
All areas | −92.29 | −0.38 | −17.55 | 16.92 |
Model | Min | Max | Mean | Std |
---|---|---|---|---|
ASTER GDEM v3 | −8.12 | 12.02 | 1.82 | 3.32 |
AW3D30 DSM v3.2 | −9.37 | −1.21 | −4.73 | 1.48 |
Copernicus DEM | −4.69 | 3.45 | 1.25 | 1.04 |
EU-DEM | −13.51 | −0.13 | −4.34 | 2.64 |
GEBCO 2020 | −20.13 | 1.58 | −8.82 | 4.83 |
NASADEM HGT | −15.15 | 1.79 | −4.51 | 2.26 |
SRTM 1arcsec Global | −14.43 | 4.38 | −2.95 | 2.24 |
SRTM15+ v2.1 | −20.13 | 1.58 | −8.89 | 4.78 |
Model | Min | Max | Mean | Std |
---|---|---|---|---|
ASTER GDEM v3 | −22.44 | 17.47 | 2.84 | 5.65 |
AW3D30 DSM v3.2 | −2.85 | 3.59 | 0.14 | 1.26 |
Copernicus DEM | −5.23 | 2.03 | −0.68 | 1.38 |
EU-DEM | −16.82 | 14.89 | −1.36 | 3.67 |
GEBCO 2020 | −20.83 | 19.72 | 1.02 | 8.27 |
NASADEM HGT | −9.29 | 3.7 | −0.87 | 2.26 |
SRTM 1arcsec Global | −10.63 | 3.55 | −1.55 | 2.32 |
SRTM15+ v2.1 | −20.13 | 19.72 | 1.02 | 8.27 |
Model | Min | Max | Mean | Std |
---|---|---|---|---|
GEBCO2020 | −28.68 | 36.75 | −3.79 | 8.84 |
SRTM+15 v2.1 | −30.08 | 41.35 | −2.52 | 10.14 |
DTM of the Greek Seas | −22.69 | 29.02 | −3.51 | 6.60 |
Class | Greek Seas DTM | GEBCO 2020 | SRTM15+ |
---|---|---|---|
2 | 29.26 | 8.11 | 8.89 |
1a/1b | 21.46 | 4.64 | 5.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriadis, V.N.; Andritsanos, V.D.; Natsiopoulos, D.A. Validation of Recent DSM/DEM/DBMs in Test Areas in Greece Using Spirit Leveling, GNSS, Gravity and Echo Sounding Measurements. ISPRS Int. J. Geo-Inf. 2023, 12, 99. https://doi.org/10.3390/ijgi12030099
Grigoriadis VN, Andritsanos VD, Natsiopoulos DA. Validation of Recent DSM/DEM/DBMs in Test Areas in Greece Using Spirit Leveling, GNSS, Gravity and Echo Sounding Measurements. ISPRS International Journal of Geo-Information. 2023; 12(3):99. https://doi.org/10.3390/ijgi12030099
Chicago/Turabian StyleGrigoriadis, Vassilios N., Vassilios D. Andritsanos, and Dimitrios A. Natsiopoulos. 2023. "Validation of Recent DSM/DEM/DBMs in Test Areas in Greece Using Spirit Leveling, GNSS, Gravity and Echo Sounding Measurements" ISPRS International Journal of Geo-Information 12, no. 3: 99. https://doi.org/10.3390/ijgi12030099
APA StyleGrigoriadis, V. N., Andritsanos, V. D., & Natsiopoulos, D. A. (2023). Validation of Recent DSM/DEM/DBMs in Test Areas in Greece Using Spirit Leveling, GNSS, Gravity and Echo Sounding Measurements. ISPRS International Journal of Geo-Information, 12(3), 99. https://doi.org/10.3390/ijgi12030099