Internet in the Middle of Nowhere: Performance of Geoportals in Rural Areas According to Core Web Vitals
Abstract
:1. Introduction
1.1. Motivation and Aim
1.2. Novelty and Contribution
- •
- How can a user with poor Internet access speed up a geoportal?
- •
- Can a website’s performance be measured for a specific location, at a specific connection speed, and with a specific device (here and now)?
- •
- Results of performance measurements for selected geoportals conducted in rural and urban areas and then juxtaposed;
- •
- Presentation of measuring tools and performance indices combined with methods for ad hoc performance measuring;
- •
- Presentation of potential actions to improve geoportal performance on the device with which it is used, followed by a verification of the effort.
1.3. Organisation of the Article
2. Related Work
2.1. Broadband Availability in Rural Poland
2.2. Advantages of Internet Access in Rural Areas
2.3. Internet Speed in Rural Areas and Its Implications
3. Materials and Methods
3.1. Test Location and Object
3.2. Performance Indices
3.2.1. Largest Contentful Paint (LCP)
3.2.2. First Input Delay (FID)
3.2.3. Cumulative Layout Shift (CLS)
3.2.4. Speed Index and Verification of Measured Values’ Similarity
4. Results
5. Discussion
5.1. Core Web Vitals in Website Quality Tests
5.2. User-Side Performance Improvement
6. Conclusions
Practical Implications and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Broadband Plan. Ministry of Digital Affairs in Poland. Available online: https://www.gov.pl/web/cyfryzacja/narodowy-plan-szerokopasmowy---zaktualizowany (accessed on 24 November 2023).
- Information Society in Poland in 2022. Statistics Poland. Available online: https://stat.gov.pl/en/topics/science-and-technology/information-society/information-society-in-poland-in-2022,1,9.html (accessed on 24 November 2023).
- Dudzińska, M.; Bacior, S.; Prus, B. Considering the level of socio-economic development of rural areas in the context of infrastructural and traditional consolidations in Poland. Land Use Policy 2018, 79, 759–773. [Google Scholar] [CrossRef]
- Wilkin, J.; Hałasiewicz, A. (Eds.) Polska Wieś 2020. In Raport o Stanie Wsi (Rural Poland 2020. The Report on the State of Rural Areas); Wydawnictwo Naukowe SCHOLAR: Warsaw, Poland, 2020. [Google Scholar]
- Janc, K.; Jurkowski, W. Przestrzenne zróżnicowanie jakości Internetu w aspekcie wykluczenia cyfrowego w Polsce. Prace Kom. Geogr. Komun. PTG 2022, 25, 73–84. [Google Scholar] [CrossRef]
- Sanders, C.K.; Scanlon, E. The Digital Divide is a Human Rights Issue: Advancing Social Inclusion Through Social Work Advocacy. J. Hum. Rights Soc. Work. 2021, 6, 130–143. [Google Scholar] [CrossRef]
- Lai, J.; Widmar, N.O.; Bir, C. Eliciting Consumer Willingness to Pay for Home Internet Service: Closing the Digital Divide in the State of Indiana. Appl. Econ. Perspect. Policy 2020, 42, 263–282. [Google Scholar] [CrossRef]
- Jiang, H.; van Genderen, J.; Mazzetti, P.; Koo, H.; Chen, M. Current status and future directions of geoportals. Int. J. Digit. Earth 2019, 13, 1093–1114. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Thurnheer-Wittenwiler, C.; Tobias, S.; Folvig, S.; Fertner, C. Digitalization in land-use planning: Effects of digital plan data on efficiency, transparency and innovation. Eur. Plan. Stud. 2022, 30, 2537–2553. [Google Scholar] [CrossRef]
- Silva, T.C.; Coelho, F.C.; Ehrl, P.; Tabak, B.M. Internet access in recessionary periods: The case of Brazil. Phys. A Stat. Mech. Appl. 2020, 537, 122777. [Google Scholar] [CrossRef]
- Schmidt, D.; Power, S.A. Offline World: The Internet as Social Infrastructure among the Unconnected in Quasi-Rural Illinois. Integr. Psychol. Behav. Sci. 2021, 55, 371–385. [Google Scholar] [CrossRef]
- Ochoa, M.; Nonnecke, B. Increasing Human Development in Rural Mexico through Policies for Internet Access. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 14 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Nguyen, T.; Nguyen, T.T.; Grote, U. Internet use and agricultural productivity in rural Vietnam. Rev. Dev. Econ. 2023, 27, 1309–1326. [Google Scholar] [CrossRef]
- Walton, P. Web Vitals. Available online: https://web.dev/vitals/ (accessed on 24 November 2023).
- Act of 27 March 2003 on spatial planning and development. Unified text Polish Journal of Laws of 2023 item 977 as amended. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20030800717 (accessed on 28 November 2023).
- Jugo, I.; Kermek, D.; Meštrović, A. Analysis and Evaluation of Web Application Performance Enhancement Techniques. In Web Engineering; Casteleyn, S., Rossi, G., Winckler, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8541, pp. 40–56. [Google Scholar] [CrossRef]
- Whitacre, B.; Gallardo, R.; Strover, S. Does rural broadband impact jobs and income? Evidence from spatial and first-differenced regressions. Ann. Reg. Sci. 2014, 53, 649–670. [Google Scholar] [CrossRef]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Whitacre, B.; Gallardo, R.; Strover, S. Broadband׳s contribution to economic growth in rural areas: Moving towards a causal relationship. Telecommun. Policy 2014, 38, 1011–1023. [Google Scholar] [CrossRef]
- Mishra, A.K.; Williams, R.P.; Detre, J.D. Internet Access and Internet Purchasing Patterns of Farm Households. Agric. Resour. Econ. Rev. 2009, 38, 240–257. [Google Scholar] [CrossRef]
- Hodge, H.; Carson, D.; Carson, D.; Newman, L.; Garrett, J. Using Internet technologies in rural communities to access services: The views of older people and service providers. J. Rural. Stud. 2017, 54, 469–478. [Google Scholar] [CrossRef]
- Prieger, J.E. The broadband digital divide and the economic benefits of mobile broadband for rural areas. Telecommun. Policy 2013, 37, 483–502. [Google Scholar] [CrossRef]
- Schneir, J.R.; Xiong, Y. A cost study of fixed broadband access networks for rural areas. Telecommun. Policy 2016, 40, 755–773. [Google Scholar] [CrossRef]
- Whitacre, B.E. The Diffusion of Internet Technologies to Rural Communities: A Portrait of Broadband Supply and Demand. Am. Behav. Sci. 2010, 53, 1283–1303. [Google Scholar] [CrossRef]
- LaRose, R.; Gregg, J.L.; Strover, S.; Straubhaar, J.; Carpenter, S. Closing the rural broadband gap: Promoting adoption of the Internet in rural America. Telecommun. Policy 2007, 31, 359–373. [Google Scholar] [CrossRef]
- Price, L.; Shutt, J.; Sellick, J. Supporting rural Small and Medium-sized Enterprises to take up broadband-enabled technology: What works? Local Econ. J. Local Econ. Policy Unit 2018, 33, 515–536. [Google Scholar] [CrossRef]
- Deller, S.; Whitacre, B.; Conroy, T. Rural broadband speeds and business startup rates. Am. J. Agric. Econ. 2022, 104, 999–1025. [Google Scholar] [CrossRef]
- Vanek, J.; Jarolimek, J.; Vogeltanzova, T. Information and communication technologies for regional development in the Czech Republic–broadband connectivity in rural areas. Agris Line Pap. Econ. Inform. 2011, 3, 67–76. [Google Scholar] [CrossRef]
- Hambly, H.; Rajabiun, R. Rural broadband: Gaps, maps and challenges. Telemat. Inform. 2021, 60, 101565. [Google Scholar] [CrossRef]
- Canfield, C.I.; Egbue, O.; Hale, J.; Long, S. Opportunities and challenges for rural broadband infrastructure investment. In Proceedings of the 2019 International Annual Conference of the American Society for Engineering Management, ASEM 2019, Philadelphia, PA, USA, 23–26 October 2019; American Society for Engineering Management (ASEM): Huntsville, AL, USA, 2019. [Google Scholar]
- Zhou, X.; Cui, Y.; Zhang, S. Internet use and rural residents’ income growth. China Agric. Econ. Rev. 2020, 12, 315–327. [Google Scholar] [CrossRef]
- Wan, J.; Nie, C.; Zhang, F. Does broadband infrastructure really affect consumption of rural households?—A quasi-natural experiment evidence from China. China Agric. Econ. Rev. 2021, 13, 832–850. [Google Scholar] [CrossRef]
- Park, S. Digital inequalities in rural Australia: A double jeopardy of remoteness and social exclusion. J. Rural. Stud. 2017, 54, 399–407. [Google Scholar] [CrossRef]
- Zeng, M.; Du, J.; Zhu, X.; Deng, X. Does internet use drive rural household savings? Evidence from 7825 farmer households in rural China. Finance Res. Lett. 2023, 57, 104275. [Google Scholar] [CrossRef]
- Sujarwoto, S.; Tampubolon, G. Spatial inequality and the Internet divide in Indonesia 2010–2012. Telecommun. Policy 2016, 40, 602–616. [Google Scholar] [CrossRef]
- Aldashev, A.; Batkeyev, B. Broadband Infrastructure and Economic Growth in Rural Areas. Inf. Econ. Policy 2021, 57, 100936. [Google Scholar] [CrossRef]
- Galloway, L. Can broadband access rescue the rural economy? J. Small Bus. Enterp. Dev. 2007, 14, 641–653. [Google Scholar] [CrossRef]
- Duvivier, C.; Bussière, C. The contingent nature of broadband as an engine for business startups in rural areas. J. Reg. Sci. 2022, 62, 1329–1357. [Google Scholar] [CrossRef]
- Kolko, J. Broadband and local growth. J. Urban Econ. 2012, 71, 100–113. [Google Scholar] [CrossRef]
- Townsend, L.; Wallace, C.; Fairhurst, G. ‘Stuck Out Here’: The Critical Role of Broadband for Remote Rural Places. Scott. Geogr. J. 2015, 131, 171–180. [Google Scholar] [CrossRef]
- Michailidis, A.; Partalidou, M.; Nastis, S.A.; Papadaki-Klavdianou, A.; Charatsari, C. Who goes online? Evidence of internet use patterns from rural Greece. Telecommun. Policy 2011, 35, 333–343. [Google Scholar] [CrossRef]
- Martínez-Domínguez, M.; Mora-Rivera, J. Internet adoption and usage patterns in rural Mexico. Technol. Soc. 2020, 60, 101226. [Google Scholar] [CrossRef]
- Conley, K.L.; Whitacre, B.E. Home Is Where the Internet Is? High-speed Internet’s Impact on Rural Housing Values. Int. Reg. Sci. Rev. 2020, 43, 501–530. [Google Scholar] [CrossRef]
- Preston, P.; Cawley, A.; Metykova, M. Broadband and rural areas in the EU: From technology to applications and use. Telecommun. Policy 2007, 31, 389–400. [Google Scholar] [CrossRef]
- Deller, S.; Whitacre, B. Broadband’s relationship to rural housing values. Pap. Reg. Sci. 2019, 98, 2135–2156. [Google Scholar] [CrossRef]
- Farrington, J.; Philip, L.; Cottrill, C.; Abbott, P.; Blank, G.; Dutton, W.H. Two-Speed Britain: Rural Internet Use; SSRN: Rochester, NY, USA, 2015. [Google Scholar] [CrossRef]
- Blusi, M.; Asplund, K.; Jong, M. Older family carers in rural areas: Experiences from using caregiver support services based on Information and Communication Technology (ICT). Eur. J. Ageing 2013, 10, 191–199. [Google Scholar] [CrossRef]
- Sawada, M.; Cossette, D.; Wellar, B.; Kurt, T. Analysis of the urban/rural broadband divide in Canada: Using GIS in planning terrestrial wireless deployment. Gov. Inf. Q. 2006, 23, 454–479. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Zhu, T.-H.; Jia, W. Does Internet use promote the adoption of agricultural technology? Evidence from 1 449 farm households in 14 Chinese provinces. J. Integr. Agric. 2022, 21, 282–292. [Google Scholar] [CrossRef]
- Digital Quality of Life Index. Surfshark. Available online: https://surfshark.com/dql2023?country=PL (accessed on 24 November 2023).
- Median Country Speeds July 2023. Ookla Analysis. Available online: https://www.speedtest.net/global-index (accessed on 24 November 2023).
- Friedline, T.; Naraharisetti, S.; Weaver, A. Digital Redlining: Poor Rural Communities’ Access to Fintech and Implications for Financial Inclusion. J. Poverty 2020, 24, 517–541. [Google Scholar] [CrossRef]
- I Solodovnik, A.; I Savkin, V.; Amelina, A.V. The role of the Internet of Things as direction for the development of agriculture 4.0 for rural areas. IOP Conf. Ser. Earth Environ. Sci. 2021, 839, 032040. [Google Scholar] [CrossRef]
- Johnson, D.L.; Pejovic, V.; Belding, E.M.; Van Stam, G. Traffic Characterization and Internet Usage in Rural Africa. In Proceedings of the 20th international conference companion on World wide web, Hyderabad, India, 28 March 2011; ACM: New York, NY, USA, 2011; pp. 493–502. [Google Scholar]
- Riddlesden, D.; Singleton, A.D. Broadband speed equity: A new digital divide? Appl. Geogr. 2014, 52, 25–33. [Google Scholar] [CrossRef]
- Whitacre, B.E.; Mills, B.F. Infrastructure and the Rural—Urban Divide in High-speed Residential Internet Access. Int. Reg. Sci. Rev. 2007, 30, 249–273. [Google Scholar] [CrossRef]
- Grimes, A.; Ren, C.; Stevens, P. The need for speed: Impacts of internet connectivity on firm productivity. J. Prod. Anal. 2012, 37, 187–201. [Google Scholar] [CrossRef]
- Ioannou, N.; Katsianis, D.; Varoutas, D. Comparative techno-economic evaluation of LTE fixed wireless access, FTTdp G.fast and FTTC VDSL network deployment for providing 30 Mbps broadband services in rural areas. Telecommun. Policy 2020, 44, 101875. [Google Scholar] [CrossRef]
- Bilaye, P.; Gawande, V.N.; Desai, U.B.; Raina, A.A.; Pant, R.S. Low Cost Wireless Internet Access for Rural Areas using Tethered Aerostats. In Proceedings of the 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Sapporo, Japan, 26–19 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Townsend, L.; Wallace, C.; Fairhurst, G.; Anderson, A. Broadband and the creative industries in rural Scotland. J. Rural. Stud. 2017, 54, 451–458. [Google Scholar] [CrossRef]
- Khalil, M.; Qadir, J.; Onireti, O.; Imran, M.A.; Younis, S. Feasibility, architecture and cost considerations of using TVWS for rural Internet access in 5G. In Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 23–30. [Google Scholar] [CrossRef]
- Zhang, M.; Wolff, R. Crossing the digital divide: Cost-effective broadband wireless access for rural and remote areas. IEEE Commun. Mag. 2004, 42, 99–105. [Google Scholar] [CrossRef]
- Kimbell, L. Rethinking Design Thinking: Part I. Des. Cult. 2011, 3, 285–306. [Google Scholar] [CrossRef]
- RFBenchmark. Available online: https://www.rfbenchmark.eu/ (accessed on 24 November 2023).
- How To Think About Speed Tools. Google Developers. Available online: https://web.dev/speed-tools/ (accessed on 24 November 2023).
- Walton, P. Why Lab and Field Data can be Different (and What to do About it). Google Developers. Available online: https://web.dev/lab-and-field-data-differences/ (accessed on 24 November 2023).
- Nurshuhada, A.; Yusop, R.O.M.; Azmi, A.; Ismail, S.A.; Sarkan, H.M.; Kama, N. Enhancing Performance Aspect in Usability Guidelines for Mobile Web Application. In Proceedings of the 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), Johor Bahru, Malaysia, 2–3 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Akgül, Y. Accessibility, usability, quality performance, and readability evaluation of university websites of Turkey: A comparative study of state and private universities. Univers. Access Inf. Soc. 2021, 20, 157–170. [Google Scholar] [CrossRef]
- Wehner, N.; Amir, M.; Seufert, M.; Schatz, R.; Hobfeld, T. A Vital Improvement? Relating Google’s Core Web Vitals to Actual Web QoE. In Proceedings of the 2022 14th International Conference on Quality of Multimedia Experience (QoMEX), Lippstadt, Germany, 5 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wehner, N.; Seufert, M.; Schatz, R.; Hoßfeld, T. Do you agree? Contrasting Google’s Core Web Vitals and the impact of cookie consent banners with actual web QoE. Qual. User Exp. 2023, 8, 1–18. [Google Scholar] [CrossRef]
- Sarita, K.; Kaur, P.; Kaur, S. Accessibility and Performance Evaluation of Healthcare and E-Learning Sites in India: A Comparative Study Using TAW and GTMetrix. In Applied Computational Technologies; Iyer, B., Crick, T., Peng, S.-L., Eds.; Springer: Singapore, 2022; Volume 303, pp. 172–187. [Google Scholar] [CrossRef]
- Król, K. Performance threshold of the interactive raster map presentation—As illustrated with the example of the jQuery Java Script component. In Proceedings of the Geographic Information Systems Conference and Exhibition GIS ODYSSEY, Perugia, Italy, 10–14 September 2018; pp. 321–327. [Google Scholar] [CrossRef]
- Search Console Help. Core Web Vitals Report. Available online: https://support.google.com/webmasters/answer/9205520?hl=en (accessed on 24 November 2023).
- Hoxmeier, J.; Di Cesare, C. System Response Time and User Satisfaction: An Experimental Study of Browser-Based Applica-tions. AMCIS 2000 Proceedings. 347. Available online: https://aisel.aisnet.org/amcis2000/347 (accessed on 24 November 2023).
- Card, S.K.; Robertson, G.G.; Mackinlay, J.D. The information visualizer, an information workspace. In Proceedings of the SIGCHI Conference on Human factors in computing systems, Boston, MA, USA, 24–28 April 1991; pp. 181–188. [Google Scholar]
- Nayak, J.; Chandwadkar, A. Green Patterns of User Interface Design: A Guideline for Sustainable Design Practices. In HCI International 2021—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Eds.; Springer International Publishing: Cham, Switzaerland, 2021; Volume 1498, pp. 51–57. [Google Scholar] [CrossRef]
- Nielsen Norman Group. Response Times: The 3 Important Limits. Usability Engineering; Academic Press: Cambridge, MA, USA, 1993; Available online: https://www.nngroup.com/articles/response-times-3-important-limits/ (accessed on 28 August 2019).
- Chaudhary, S.; Schafeitel-Tähtinen, T.; Helenius, M.; Berki, E. Usability, security and trust in password managers: A quest for user-centric properties and features. Comput. Sci. Rev. 2019, 33, 69–90. [Google Scholar] [CrossRef]
- Myers, B.A. The importance of percent-done progress indicators for computer-human interfaces. In Proceedings of the ACM CHI’85 Conference, San Francisco, CA, USA, 14–18 April 1985; pp. 11–17. [Google Scholar]
- Jose, J. More Time, Tools, and Details on the Page Experience Update. Google Search Central Blog. Available online: https://developers.google.com/search/blog/2021/04/more-details-page-experience (accessed on 24 November 2023).
- Walton, P. First Input Delay (FID). Available online: https://web.dev/fid/ (accessed on 24 November 2023).
- Sagoo, A.; Sullivan, A.; Sekhar, V. The Science Behind Web Vitals. Chromium Blog. Available online: https://blog.chromium.org/2020/05/the-science-behind-web-vitals.html#f6 (accessed on 24 November 2023).
- Walton, P. Largest Contentful Paint (LCP). Available online: https://web.dev/lcp/ (accessed on 24 November 2023).
- Walton, P.; Mihajlija, M. Cumulative Layout Shift (CLS). Available online: https://web.dev/cls/ (accessed on 24 November 2023).
- Speed Index. Performance Audits. Google for Developers. Available online: https://developer.chrome.com/docs/lighthouse/performance/speed-index/ (accessed on 24 November 2023).
- Zwirowicz-Rutkowska, A. Evaluating Spatial Data Infrastructure as a Data Source for Land Surveying. J. Surv. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- De Gaudenzi, R.; Angeletti, P.; Petrolati, D.; Re, E. Future technologies for very high throughput satellite systems. Int. J. Satell. Commun. Netw. 2020, 38, 141–161. [Google Scholar] [CrossRef]
- Sumedrea, S.; Maican, C.I.; Chițu, I.B.; Nichifor, E.; Tecău, A.S.; Lixăndroiu, R.C.; Brătucu, G. Sustainable Digital Communication in Higher Education—A Checklist for Page Loading Speed Optimisation. Sustainability 2022, 14, 10135. [Google Scholar] [CrossRef]
- Nichifor, E.; Lixăndroiu, R.C.; Chițu, I.B.; Brătucu, G.; Trifan, A. How Does Mobile Page Speed Shape in-between Touchpoints in the Customer Journey? A Research Regarding the Most Trusted Retailers in Romania. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1369–1389. [Google Scholar] [CrossRef]
- Król, K.; Zdonek, D. The Quality of Infectious Disease Hospital Websites in Poland in Light of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 642. [Google Scholar] [CrossRef]
- Kalita, M.; Bezboruah, T. Investigation on performance testing and evaluation of PReWebD: A.NET technique for implementing web application. IET Softw. 2011, 5, 357–365. [Google Scholar] [CrossRef]
- Król, K.; Krakowie, U.R.W. Comparative analysis of selected online tools for javascript code minification. a case study of a map application. Geomatics, Landmanagement Landsc. 2020, 2, 119–129. [Google Scholar] [CrossRef]
- Edgar, M. Page Experience: Core Web Vitals and More. In Tech SEO Guide; Apress: Berkeley, CA, USA, 2023; pp. 95–106. [Google Scholar]
- Rey, W.P.; Juanatas, R. Towards a Performance Optimization of Mobile Automated Fingerprint Identification System (MAFIS) for the Philippine National Police. In Proceedings of the 8th International Conference on Computing and Artificial Intelligence, Tianjin, China, 18 March 2022; ACM: New York, NY, USA, 2022; pp. 380–386. [Google Scholar]
- Vasilijević, V.; Kojić, N.; Vugdelija, N. New approach in quantifying user experience in web-oriented applications. In Proceedings of the 4th International Scientific Conference on Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture–ITEMA, Belgrade, Serbia, 2–4 June 2016; pp. 9–16. [Google Scholar] [CrossRef]
- Ogbuju, E.; Ayodeji, B.; Azeez, A. Performance and Accessibility Evaluation of University Websites in Nigeria. In Proceedings of the 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria, 1 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Horák, J.; Ardielli, J.; Růžička, J. Performance Testing of Web Map Services. In New Challenges for Intelligent Information and Database Systems; Nguyen, N.T., Trawiński, B., Jung, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 351, pp. 257–266. [Google Scholar] [CrossRef]
- Cibulka, D. Performance Testing of Web Map Services tn three Dimensions—X, Y, Scale. Slovak J. Civ. Eng. 2013, 21, 31–36. [Google Scholar] [CrossRef]
- Resch, B.; Zimmer, B. User Experience Design in Professional Map-Based Geo-Portals. ISPRS Int. J. GeoInformat. 2013, 2, 1015–1037. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J. Research on performance automation testing technology based on JMeter. In Proceedings of the 2019 International Conference on Robots & Intelligent System (ICRIS), Haikou, China, 15–16 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 55–58. [Google Scholar]
- Wang, Z.; Lin, F.X.; Zhong, L.; Chishtie, M. How far can client-only solutions go for mobile browser speed? In Proceedings of the 21st international conference on World Wide Web, Lyon, France, 16 April 2012; ACM: New York, NY, USA, 2012; pp. 31–40. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Liu, Y.; Xie, T.; Huang, G. Demystifying the Imperfect Client-Side Cache Performance of Mobile Web Browsing. IEEE Trans. Mob. Comput. 2016, 15, 2206–2220. [Google Scholar] [CrossRef]
Item | Scope of Study | Selected Keywords | Reference |
---|---|---|---|
1. | Demonstration of the influence of broadband on three main rural economy sectors: retail, agriculture, and manufacturing. | broadband infrastructure in rural areas, high-speed Internet, economic growth | [36,37,43] |
2. | Profile of rural Internet users. Characterisation of critical challenges linked to broadband projects in rural areas. | rural broadband, broadband investment, rural communities, development of rural areas, digital skills, Internet usage patterns | [29,30,38,41,42,44] |
3. | Characterisation of relationships between broadband availability and property value in rural areas. | broadband availability, rural housing values, rural housing prices | [27,43,45] |
4. | Analysis of differences in the availability, quality, and use of the Internet in deep rural, shallow rural, and rural/urban areas. | low-speed broadband connection, digital divides, urban-rural digital divide | [7,25,46] |
5. | Analysis of the impact of broadband availability on rural socioeconomic development and agricultural production. | electronic commerce, purchasing patterns, broadband technologies, rural businesses, economic development, economic well-being, household income, agricultural productivity | [13,18,20,22,37,44] |
6. | Analysis of digital exclusion and social benefits of broadband availability in rural areas. | online service system, digital divide, digital service delivery, social support networks, overall development of rural areas, wireless communication, wireless Internet Access, highly digitalised society, digital exclusion | [21,33,47] |
Test Results | Download Speed | Upload Speed | ||
---|---|---|---|---|
Rural Areas Radio Link (Mbps) | City Broadband (Mbps) | Rural Areas Radio link (Mbps) | City Broadband (Mbps) | |
speedtest.net.pl | 10.33 | 320.10 | 2.58 | 134.65 |
Examples of download speed * | ||||
Fibre optic access | 243.2 | 108.9 | ||
Household access | 129.1 | 50.2 | ||
Mobile access | 46.7 | 11.9 |
Item | URL* | Technology | Function |
---|---|---|---|
W1 | https://sip.gison.pl/grybow | GISON | Grybów Municipality Geoportal |
W2 | https://mapy.geoportal.gov.pl | Viewer for maps of the Geoportal of the Polish Head Office of Geodesy and Cartography (GUGiK) | National Geoportal. Central Node of the Spatial Information Infrastructure |
W3 | https://wms.zgkikm.wroc.pl | GEO-INFO i.Map | Board of Geodesy, Cartography, and City Cadastre in Wrocław |
W4 | https://polska.e-mapa.net | GEO-SYSTEM (e-map) | Open Spatial Data Geoportal |
W5 | https://miip.geomalopolska.pl/imap | Lesser Poland Spatial information Infrastructure (MIIP) | Lesser Poland Geoportal |
Core Web Vitals | Good | Needs Improvement | Poor |
---|---|---|---|
LCP | ≤2.5 s | ≤4 s | >4 s |
FID | ≤100 ms | ≤300 ms | >300 ms |
INP | ≤200 ms | ≤500 ms | >500 ms |
CLS | ≤0.1 | ≤0.25 | >0.25 |
Speed Index (s) | Colour Coding |
---|---|
0–3.4 | Green (fast) |
3.4–5.8 | Orange (moderate) |
>5.8 | Red (slow) |
Item | Geoportal *** | Performance ** | Overall Performance Test Result | ||
---|---|---|---|---|---|
Mobile | Desktop | Mobile | Desktop | ||
W1 | https://sip.gison.pl/grybow | 31 | 63 | fail | fail |
W2 | https://mapy.geoportal.gov.pl | 70 | 25 | fail | pass |
W3 | https://wms.zgkikm.wroc.pl | 27 | 48 | fail | fail |
W4 | https://polska.e-mapa.net | 41 | 47 | fail | fail |
W5 | https://miip.geomalopolska.pl/imap | 27 | 28 | fail | fail |
Item | Geoportal *** | Performance ** | Overall Performance Test Result | ||
---|---|---|---|---|---|
Mobile | Desktop | Mobile | Desktop | ||
W1 | https://sip.gison.pl/grybow | 33 | 51 | fail | fail |
W2 | https://mapy.geoportal.gov.pl | 64 | 25 | fail | pass |
W3 | https://wms.zgkikm.wroc.pl | 27 | 44 | fail | fail |
W4 | https://polska.e-mapa.net | 44 | 45 | fail | fail |
W5 | https://miip.geomalopolska.pl/imap | 27 | 27 | fail | fail |
Geoportal | Quality Indices | ||||||
---|---|---|---|---|---|---|---|
Geoportal | LCP (s) | CLS | TBT(s) | Speed Index (s) | Total Time (s) | Page Weight (KB) | Total Requests |
W1 | 11.46 | 0.092 | 4.29 | 10.441 | 13.134 | 2.827 | 101 |
W2 | 5.006 | 0 | 0 | 7.995 | 8.704 | 702 | 49 |
W3 | — | — | — | — | — | — | — |
W4 | — | 0 | 0 | 10.272 | 10.300 | 480 | 57 |
W5 | 24.649 | 0 | 3.376 | 24.263 | 30.297 | 1.897 | 111 |
Geoportal | Quality Indices | ||||||
---|---|---|---|---|---|---|---|
Geoportal | LCP (s) | CLS | TBT(s) | Speed Index (s) | Total Time (s) | Page Weight (KB) | Total Requests |
W1 | 11.547 | 0.092 | 4.439 | 10.795 | 22.501 | 3.430 | 118 |
W2 | 5.707 | 0 | 0 | 8.912 | 10.059 | 703 | 49 |
W3 | — | — | — | — | — | — | — |
W4 | 7.784 | 0 | 0.051 | 10.263 | 10.313 | 480 | 57 |
W5 | 24.482 | 0 | 3.414 | 24.284 | 31.134 | 1.838 | 110 |
Geoportal | Quality Indices | ||||||
---|---|---|---|---|---|---|---|
Geoportal | LCP (s) | CLS | TBT(s) | Speed Index (s) | Total Time (s) | Page Weight (KB) | Total Requests |
W1 | 8.867 | 0.082 | 0.375 | 8.776 | 18.313 | 3.767 | 138 |
W2 | 24.193 | 0.079 | 12.817 | 15.051 | 28.832 | 6.029 | 244 |
W3 | — | — | — | — | — | — | — |
W4 | 5.996 | 0.021 | 1.775 | 9.422 | 11.176 | 2.273 | 327 |
W5 | 13.204 | 0 | 1.339 | 12.700 | 15.576 | 1.952 | 107 |
Geoportal | Quality Indices | ||||||
---|---|---|---|---|---|---|---|
Geoportal | LCP (s) | CLS | TBT(s) | Speed Index (s) | Total Time (s) | Page Weight (KB) | Total Requests |
W1 | 6.886 | 0.082 | 0.374 | 6.905 | 16.890 | 3.767 | 138 |
W2 | 31.238 | 0.039 | 16.959 | 19.442 | 36.212 | 6.443 | 248 |
W3 | — | — | — | — | — | — | — |
W4 | 5.691 | 0.021 | 1.590 | 9.105 | 10.908 | 2.289 | 330 |
W5 | 13.194 | 0 | 1.514 | 12.506 | 15.532 | 1.844 | 108 |
Core Web Vital Metric | First Contentful Paint (FCP) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Measurement Mode | M | D | M | D | M | D | M | D | M | D |
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 3.8 | 0.9 | 3.3 | 3.5 | 21.6 | 3.8 | 3.2 | 0.9 | 24.4 | 9.4 |
Core Web Vital metric | Largest Contentful Paint (LCP) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 19.4 | 4.7 | 5.9 | 33.1 | 23.9 | 4.4 | 4.6 | 3.3 | 26.1 | 9.9 |
Core Web Vital metric | Cumulative Layout Shift (CLS) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Results for desktop | 0 | 0.001 | 0 | 0.064 | 0.01 | 0.001 | 0 | 0.024 | 0 | 0 |
Core Web Vital metric | Speed Index | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 11.5 | 3.0 | 6.3 | 13.5 | 21.6 | 4.3 | 5.4 | 4.9 | 27.8 | 9.4 |
Core Web Vital Metric | First Contentful Paint (FCP) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Measurement Mode | M | D | M | D | M | D | M | D | M | D |
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 4.5 | 0.7 | 4.1 | 9.2 | 21.5 | 4 | 3.2 | 1.1 | 24 | 9.8 |
Core Web Vital metric | Largest Contentful Paint (LCP) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 19.2 | 4.1 | 4.9 | 18.1 | 23.3 | 4.5 | 5 | 3.1 | 27.2 | 10.6 |
Core Web Vital metric | Cumulative Layout Shift (CLS) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Results for desktop | 0 | 0.001 | 0 | 0 | 0.005 | 0.001 | 0 | 0.018 | 0 | 0 |
Core Web Vital metric | Speed Index | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 11.8 | 2.7 | 5.9 | 9.7 | 24.6 | 5.9 | 5.6 | 5.9 | 27.6 | 10.0 |
Core Web Vital Metric | Largest Contentful Paint (LCP) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Measurement Mode | M | D | M | D | M | D | M | D | M | D |
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 5.6 | 4 | 3.6 | 0.7 | 6 | 4 | 3.6 | 3.9 | 5.8 | 2.8 |
Core Web Vital metric | First Input Delay (FID) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (ms) | 14 | 2 | 19 | N/A * | 17 | 1 | 18 | 2 | 22 | 3 |
Core Web Vital metric | Cumulative Layout Shift (CLS) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement result | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.13 | 0.02 | 0.06 | 0.14 |
Core Web Vital metric | First Contentful Paint (FCP) | |||||||||
Geoportal | W1 | W2 | W3 | W4 | W5 | |||||
Measurement results (s) | 1.5 | 1 | 1.9 | 0.8 | 5.5 | 3.4 | 3.4 | 1.5 | 4.7 | 2.3 |
Geoportal | Quality Indices | |||
---|---|---|---|---|
Performance (%) | Structure (%) | GTmetrix Grade | Fully Loaded Time (s) | |
W1 | 42 | 47 | F | 13.7 |
W2 | 24 | 63 | F | 15.9 |
W3 | — | — | — | — |
W4 | 27 | 70 | F | 25.3 |
W5 | 15 | 72 | F | 16.4 |
Item | Scope of Study | Selected Keywords | Reference |
---|---|---|---|
1 | Characterisation of performance testing parameters, performance testing methods, and approaches to improving the performance of web applications. | load speed, load time, interactivity, responsiveness, visual stability | [94] |
2 | Characterisation of techniques and tools for measuring website performance found in Google for Developers. | web vitals, user experience, web application, Lighthouse, PageSpeed Insights | [95] |
3 | Assessment of website quality with performance indices with a complementary subjective user assessment. | quality of experience, Core Web Vitals, web technologies | [69] |
4 | Analysis of benefits of improved website performance focused on Technical SEO. | SEO performance, mobile usability, search engine optimisation | [93] |
5 | Assessment of website quality using performance indices and user experience. | quality of experience, Core Web Vitals, improving user experience, loading time | [70] |
6 | Assessment of websites with such indices as Core Web Vitals. | Google Lighthouse, performance, accessibility, search engine optimisation | [96] |
7 | Website performance analysis with Google PageSpeed Insights. | Core Web Vitals, page loading speed, visual stability | [88] |
8 | A method for testing and measuring the availability of network viewing services (WMS) for end-users. Latency of application, overall latency (response time), error occurrence, availability, and performance tests. | network services, INSPIRE, map Server, performance testing, benchmarking | [97] |
9 | Performance testing of web mapping services. The paper describes map service tests in which it is possible to determine the performance characteristics of a map service depending on the location and scale of the map. | Web Map Service, performance testing, map scale, response time | [98] |
10 | Recommendations regarding efficiency and effectiveness. Emphasis on the need for a buffer mechanism to preload map data to improve geoportal smoothness. Map performance as a major user experience criterion. | map-based geo-portals, user experience, geo-datasets | [99] |
Item | Geoportal | GTmetrix | |||
---|---|---|---|---|---|
Structure | Increase/Decline | Fully Loaded Time (s) | Increase/Decline | ||
W1 | https://sip.gison.pl/grybow | 49 | ↓ | 16.2 | ↓ |
W2 | https://mapy.geoportal.gov.pl | 65 | ↑ | 16.3 | ↓ |
W3 | https://wms.zgkikm.wroc.pl | — | — | — | — |
W4 | https://polska.e-mapa.net | 71 | ↑ | 23.8 | ↑ |
W5 | https://miip.geomalopolska.pl/imap | 73 | ↑ | 16.8 | ↓ |
Item | Geoportal | Pingdom | GiftOfSpeed | ||
---|---|---|---|---|---|
Performance Grade | Load Time (s) | Speed Score | Fully Loaded (s) | ||
W1 | https://sip.gison.pl/grybow | 76 | 1.07 | 55 | 21.27 |
W2 | https://mapy.geoportal.gov.pl | 72 | 3.13 | 33 | 29.91 |
W3 | https://wms.zgkikm.wroc.pl | — | — | — | — |
W4 | https://polska.e-mapa.net | 74 | 0.36 | 60 | 6.12 |
W5 | https://miip.geomalopolska.pl/imap | 74 | 3.32 | 40 | 15.25 |
Item | Geoportal | Pingdom | GiftOfSpeed | ||
---|---|---|---|---|---|
Performance Grade | Load Time (s) | Speed Score | Fully Loaded (s) | ||
W1 | https://sip.gison.pl/grybow | 76 | 1.07 | 53 | 13.13 |
W2 | https://mapy.geoportal.gov.pl | 73 | 2.12 | 33 | 29.36 |
W3 | https://wms.zgkikm.wroc.pl | — | — | — | — |
W4 | https://polska.e-mapa.net | 74 | 0.46 | 59 | 6.12 |
W5 | https://miip.geomalopolska.pl/imap | 74 | 3.83 | 39 | 17.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król, K.; Sroka, W. Internet in the Middle of Nowhere: Performance of Geoportals in Rural Areas According to Core Web Vitals. ISPRS Int. J. Geo-Inf. 2023, 12, 484. https://doi.org/10.3390/ijgi12120484
Król K, Sroka W. Internet in the Middle of Nowhere: Performance of Geoportals in Rural Areas According to Core Web Vitals. ISPRS International Journal of Geo-Information. 2023; 12(12):484. https://doi.org/10.3390/ijgi12120484
Chicago/Turabian StyleKról, Karol, and Wojciech Sroka. 2023. "Internet in the Middle of Nowhere: Performance of Geoportals in Rural Areas According to Core Web Vitals" ISPRS International Journal of Geo-Information 12, no. 12: 484. https://doi.org/10.3390/ijgi12120484
APA StyleKról, K., & Sroka, W. (2023). Internet in the Middle of Nowhere: Performance of Geoportals in Rural Areas According to Core Web Vitals. ISPRS International Journal of Geo-Information, 12(12), 484. https://doi.org/10.3390/ijgi12120484