Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021
Abstract
:1. Introduction
2. Datasets and Methodologies
2.1. Datesets
2.2. Methodologies
2.2.1. Scientometric Indexes
2.2.2. Scientometric Network Mapping
- (1)
- Co-authorship analysis
- (2)
- Co-words analysis
- (3)
- Co-citation analysis
3. Results and Analysis
3.1. Influential Journals
3.2. Main Countries and Institutions
3.3. Representative Research Communities
3.3.1. Research Communities in the Southern Hemisphere
3.3.2. Research Communities in Northern America
3.3.3. Research Communities in Europe
3.3.4. Research Communities in Asia
3.4. Hot Topics and Important Papers
3.4.1. Hot Topics
3.4.2. Important Papers
3.5. Research Development and Trends
4. Discussion
4.1. Merits and Shortcomings of This Paper
4.2. Refine the Results from a Geographer’s Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geograhy 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Getis, A. A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Berry, B.J.L.; Marble, D.F. Spatial Analysis: A Reader in Statistical Geography; Prentice-Hall: Englewood Cliffs, NJ, USA, 1968. [Google Scholar]
- Cliff, A.D.; Ord, J.K. The Problem of Spatial Autocorrelation. In Studies in Regional Science; Scott, A.J., Ed.; Pion: London, UK, 1969; pp. 25–55. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion Limited: London, UK, 1973. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Pion: London, UK, 1981. [Google Scholar]
- Upton, G.J.G.; Fingleton, B. Spatial Data Analysis by Example: Point Pattern and Quantitative Data; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Haining, R. Spatial Data Analysis in the Social and Environmental Sciences; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Haining, R.P.; Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Anselin, L.; Florax, R.; Rey, S.J. Advances in Spatial Econometrics: Methodology, Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Ripley, B.D. Statistical Inference for Spatial Processes; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Griffith, D.A. Spatial Autocorrelation: A Prime; Poin: London, UK, 1987. [Google Scholar]
- Griffith, D.A. Advanced Spatial Statistics; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Chun, Y.; Griffith, D.A. Spatial Statistics and Geostatistics: Theory and Applications for Geographic Information Science and Technology; SAGE Publications: Newbury Park, CA, USA, 2013. [Google Scholar]
- Fischer, M.M.; Getis, A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Legendre, P.; Dale, M.R.T.; Fortin, M.; Gurevitch, J.; Hohn, M.; Myers, D.E. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 2002, 25, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P.; Dale, M.R.T.; Fortin, M.; Casgrain, P.; Gurevitch, J. Effects of spatial structures on the results of field experiments. Ecology 2004, 85, 3202–3214. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Ruibal, M.; Lindenmayer, D.B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus FuscipES. Comp. Study 2003, 57, 1182–1195. [Google Scholar]
- Smouse, P.E.; Peakall, R.; Gonzales, E. A heterogeneity test for fine-scale genetic structure. Mol. Ecol. 2008, 17, 3389–3400. [Google Scholar] [CrossRef]
- Fortin, M.J.; Dale, M.R.T. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Teng, S.Q.N.; Xu, C.; Sandel, B.; Svenning, J.C. Effects of intrinsic sources of spatial autocorrelation on spatial regression modelling. Methods Ecol. Evol. 2018, 9, 363–372. [Google Scholar] [CrossRef]
- Getis, A. Reflections on spatial autocorrelation. Reg. Sci. Urban Econ. 2007, 37, 491–496. [Google Scholar] [CrossRef]
- Valcu, M.; Kempenaers, B. Spatial autocorrelation: An overlooked concept in behavioral ecology. Behav. Ecol. 2010, 21, 902–905. [Google Scholar] [CrossRef] [Green Version]
- Diniz-Filho, J.A.F.; Bini, L.M. Thirty-five years of spatial autocorrelation analysis in population genetics: An essay in honour of Robert Sokal (1926–2012). Biol. J. Linn. Soc. 2012, 107, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P. Spatial autocorrelation—Trouble or new paradigm. Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Griffith, D.A.; Peresneto, P.R. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 2006, 87, 2603–2613. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhuan, D.; Li, L.; Ge, Y. Spatial sampling design for monitoring the area of cultivated land. Int. J. Remote Sens. 2002, 23, 263–284. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, S.J.; Zhang, W.Z.; Zhan, D.S.; Li, J.M. Does foreign direct investment affect environmental pollution in China’s cities? A spatial econometric perspective. Sci. Total Environ. 2018, 613, 521–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.F.; Liu, Y.; Zhang, G.X.; Chen, Y.Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637, 780–790. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, W.; Yang, K.; Ren, Z.D.; Huang, D.Q.; Zhang, P.; Wang, J. Temporal and spatial analysis of COVID-19 transmission in China and its influencing factors. Int. J. Infect. Dis. 2021, 105, 675–685. [Google Scholar] [CrossRef]
- Fortunato, S.; Bergstrom, C.T.; Borner, K.; Evans, J.A.; Helbing, D.; Milojevic, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B. Science of science. Science 2018, 359, eaao0185. [Google Scholar] [CrossRef] [Green Version]
- Zeng, A.; Shen, Z.; Zhou, J.; Wu, J.; Fan, Y.; Wang, Y.; Stanley, H.E. The science of science: From the perspective of complex systems. Phys. Rep. 2017, 714-715, 98. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An overview of scientometric mapping for the safety science community: Methods, tools, and framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Garfield, E. Historiographic mapping of knowledge domains literature. J. Inf. Sci. 2004, 30, 119–145. [Google Scholar] [CrossRef]
- Glanzel, W. Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Libr. Trends 2002, 50, 461–473. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Assoc Comp, M. Visualizing and Exploring Scientific Literature with CiteSpace. In Proceedings of the Chiir’18: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, New Brunswick, NJ, USA, 11–15 March 2018; pp. 369–370. [Google Scholar] [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R.E.; Banks, S.C.; Peakall, R. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers. Mol. Ecol. 2018, 27, 66–82. [Google Scholar] [CrossRef]
- Blyton, M.D.J.; Shaw, R.E.; Peakall, R.; Lindenmayer, D.B.; Banks, S.C. The role of relatedness in mate choice by an arboreal marsupial in the presence of fine-scale genetic structure. Behav. Ecol. Sociobiol. 2016, 70, 313–321. [Google Scholar] [CrossRef]
- Blyton, M.D.J.; Banks, S.C.; Peakall, R. The effect of sex-biased dispersal on opposite-sexed spatial genetic structure and inbreeding risk. Mol. Ecol. 2015, 24, 1681–1695. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Filho, J.A.F.; Bini, L.M.; Hawkins, B.A. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 2003, 12, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Diniz, J.A.F.; Barbosa, A.; Collevatti, R.G.; Chaves, L.J.; Terribile, L.C.; Lima-Ribeiro, M.S.; Telles, M.P.C. Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. J. Biogeogr. 2016, 43, 167–177. [Google Scholar] [CrossRef]
- Diniz, J.A.F.; Bini, L.M.; Rangel, T.F.; Morales-Castilla, I.; Olalla-Tarraga, M.A.; Rodriguez, M.A.; Hawkins, B.A. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 2012, 35, 239–249. [Google Scholar] [CrossRef]
- Diniz, J.A.F.; Siqueira, T.; Padial, A.A.; Rangel, T.F.; Landeiro, V.L.; Bini, L.M. Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 2012, 121, 201–210. [Google Scholar] [CrossRef]
- Diniz-Filho, J.A.F.; Soares, T.N.; Lima, J.S.; Dobrovolski, R.; Landeiro, V.L.; de Campos Telles, M.P.; Rangel, T.F.; Bini, L.M. Mantel test in population genetics. Genet. Mol. Biol. 2013, 36, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.; Eduardo, A.A.; Oliveira, E.V.D.; Villalobos, F.; Dobrovolski, R.; Pereira, T.C.; Ribeiro, A.D.; Stropp, J.; Rodrigues, J.F.M.; Diniz, J.A.F.; et al. Unveiling geographical gradients of species richness from scant occurrence data. Glob. Ecol. Biogeogr. 2020, 29, 748–759. [Google Scholar] [CrossRef]
- Caetano, J.M.; Tessarolo, G.; de Oliveira, G.; Souza, K.D.E.; Diniz, J.A.F.; Nabout, J.C. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE 2018, 13, e0191273. [Google Scholar] [CrossRef] [Green Version]
- Epperson, B.K. Geographical Genetics (MPB-38); Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Epperson, B.K.; Mcrae, B.H.; Scribner, K.T.; Cushman, S.A.; Rosenberg, M.S.; Fortin, M.; James, P.M.A.; Murphy, M.A.; Manel, S.; Legendre, P. Utility of computer simulations in landscape genetics. Mol. Ecol. 2010, 19, 3549–3564. [Google Scholar] [CrossRef]
- Dungan, J.L.; Perry, J.N.; Dale, M.R.T.; Legendre, P.; Citron-Pousty, S.; Fortin, M.J.; Jakomulska, A.; Miriti, M.; Rosenberg, M.S. A balanced view of scale in spatial statistical analysis. Ecography 2002, 25, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.W.S. The Modifiable Areal Unit Problem (MAUP). In WorldMinds: Geographical Perspectives on 100 Problems: Commemorating the 100th Anniversary of the Association of American Geographers 1904–2004; Janelle, D.G., Warf, B., Hansen, K., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 571–575. [Google Scholar]
- Epperson, B.K. Spatial correlations at different spatial scales are themselves highly correlated in isolation by distance processes. Mol. Ecol. Resour. 2010, 10, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.M.; Jetz, W. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef]
- Mertes, K.; Jetz, W. Disentangling scale dependencies in species environmental niches and distributions. Ecography 2018, 41, 1604–1615. [Google Scholar] [CrossRef] [Green Version]
- Domisch, S.; Wilson, A.M.; Jetz, W. Model-based integration of observed and expert-based information for assessing the geographic and environmental distribution of freshwater species. Ecography 2016, 39, 1078–1088. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Model. 2008, 215, 325–336. [Google Scholar] [CrossRef]
- Martinez-Minaya, J.; Conesa, D.; Fortin, M.J.; Alonso-Blanco, C.; Pico, F.X.; Marcer, A. A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Mol. Ecol. Resour. 2019, 19, 929–943. [Google Scholar] [CrossRef] [PubMed]
- Isaak, D.J.; Peterson, E.E.; Hoef, J.M.V.; Wenger, S.J.; Falke, J.A.; Torgersen, C.E.; Sowder, C.; Steel, E.A.; Fortin, M.J.; Jordan, C.E.; et al. Applications of spatial statistical network models to stream data. Wiley Interdiscip. Rev.-Water 2014, 1, 277–294. [Google Scholar] [CrossRef]
- Melles, S.J.; Fortin, M.J.; Lindsay, K.; Badzinski, D. Expanding northward: Influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Glob. Change Biol. 2011, 17, 17–31. [Google Scholar] [CrossRef]
- Sokal, R.R.; Oden, N.L. Spatial autocorrelation in biology: 1. Methodology. Biol. J. Linn. Soc. 1978, 10, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Sokal, R.R.; Oden, N.L. Spatial autocorrelation in biology: 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 1978, 10, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Dray, S.; Pelissier, R.; Couteron, P.; Fortin, M.; Legendre, P.; Peresneto, P.R.; Bellier, E.; Bivand, R.; Blanchet, F.G.; De Caceres, M. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 2012, 82, 257–275. [Google Scholar] [CrossRef]
- Bauman, D.; Drouet, T.; Fortin, M.J.; Dray, S. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 2018, 99, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A.; Arbia, G. Detecting negative spatial autocorrelation in georeferenced random variables. Int. J. Geogr. Inf. Sci. 2010, 24, 417–437. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data. Can. Geogr./Le Géographe Can. 1996, 40, 351–367. [Google Scholar] [CrossRef]
- Griffith, D.A. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2000, 2, 141–156. [Google Scholar] [CrossRef]
- Griffith, D.A. Approximation of Gaussian spatial autoregressive models for massive regular square tessellation data. Int. J. Geogr. Inf. Sci. 2015, 29, 2143–2173. [Google Scholar] [CrossRef]
- Griffith, D.A.; Chun, Y.W.; Hauke, J. A Moran eigenvector spatial filtering specification of entropy measures. Pap. Reg. Sci. 2022, 101, 259–279. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; Konig, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Cerasoli, F.; Thuiller, W.; Gueguen, M.; Renaud, J.; D’Alessandro, P.; Biondi, M. The role of climate and biotic factors in shaping current distributions and potential future shifts of European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conserv. Divers. 2020, 13, 47–62. [Google Scholar] [CrossRef]
- Carl, G.; Kuhn, I. Spind: A package for computing spatially corrected accuracy measures. Ecography 2017, 40, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Carl, G.; Levin, S.C.; Kuhn, I. spind: An R Package to Account for Spatial Autocorrelation in the Analysis of Lattice Data. Biodivers. Data J. 2018, 6, e20760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.J.; Huang, Y.Y.; Zhou, Y.Q. Spatial spillover effect and driving forces of carbon emission intensity at the city level in China. J. Geogr. Sci. 2019, 29, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.D.; Yang, J.; Sun, W.; Xiao, X.M.; Cecilia, J.X.; Jin, C.; Li, X.M. Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature. Sustain. Cities Soc. 2020, 63, 102443. [Google Scholar] [CrossRef]
- Guo, A.D.; Yang, J.; Xiao, X.M.; Xia, J.H.; Jin, C.; Li, X.M. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.F.; Kong, X.S.; Jing, Y.; Cai, E.X.; Zhang, L.Y.; Liu, Y.; Wang, Z.Y.; Liu, Y.L. Spatial Patterns and Driving Forces of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area. Sustainability 2019, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.H.; He, Q.S.; Liu, Y.F.; Chen, W.Q.; Gao, Y. Inequality of public health and its role in spatial accessibility to medical facilities in China. Appl. Geogr. 2018, 92, 50–62. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Fu, W.J.; Zhao, K.L.; Zhang, C.S.; Wu, J.S.; Tunney, H. Outlier identification of soil phosphorus and its implication for spatial structure modeling. Precis. Agric. 2016, 17, 121–135. [Google Scholar] [CrossRef]
- Yu, S.Y.; Chen, Z.L.; Zhao, K.L.; Ye, Z.Q.; Zhang, L.Y.; Dong, J.Q.; Shao, Y.F.; Zhang, C.S.; Fu, W.F. Spatial Patterns of Potentially Hazardous Metals in Soils of Lin’an City, Southeastern China. Int. J. Environ. Res. Public Health 2019, 16, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Wu, Y.C.; Serrao, E.A.; Zhang, J.P.; Jiang, Z.J.; Huang, C.; Cui, L.J.; Thorhaug, A.; Huang, X.P. Fine-scale genetic structure and flowering output of the seagrass Enhalus acoroides undergoing disturbance. Ecol. Evol. 2019, 9, 5186–5195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.; Riofrio, M.L.; Iriondo, J.M. Complex fine-scale spatial genetic structure in Epidendrum rhopalostele: An epiphytic orchid. Heredity 2019, 122, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoe, A.L.; Nice, C.C.; Busbee, R.W.; Hood, G.R.; Egan, S.P.; Ott, J.R. Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol. Ecol. 2019, 28, 4197–4211. [Google Scholar] [CrossRef]
- Sin, Y.C.K.; Kristensen, N.P.; Gwee, C.Y.; Chisholm, R.A.; Rheindt, F.E. Bird diversity on shelf islands does not benefit from recent land-bridge connections. J. Biogeogr. 2022, 49, 189–200. [Google Scholar] [CrossRef]
- Vacher, J.P.; Graitson, E.; Cauwenbergh, J.; Ursenbacher, S. Conservation genetics of a wide-ranged temperate snake: Same species, different locations, and different behaviour. Conserv. Genet. 2022, 23, 167–177. [Google Scholar] [CrossRef]
- Meirmans, P.G. genodiveversion 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 2020, 20, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Natsukawa, H.; Yuasa, H.; Komuro, S.; Sergio, F. Raptor breeding sites indicate high plant biodiversity in urban ecosystems. Sci. Rep. 2021, 11, 21139. [Google Scholar] [CrossRef]
- Dembicz, I.; Velev, N.; Boch, S.; Janisova, M.; Palpurina, S.; Pedashenko, H.; Vassilev, K.; Dengler, J. Drivers of plant diversity in Bulgarian dry grasslands vary across spatial scales and functional-taxonomic groups. J. Veg. Sci. 2021, 32, e12935. [Google Scholar] [CrossRef]
- Arnott, A.; Emmerson, M.; Caplat, P.; Reid, N. Aerial invertebrate functional groups respond to landscape composition with only detritivores and predators responding to agri-environment scheme management. Agric. Ecosyst. Environ. 2021, 322, 107664. [Google Scholar] [CrossRef]
- Tsianou, M.A.; Lazarina, M.; Michailidou, D.E.; Andrikou-Charitidou, A.; Sgardelis, S.P.; Kallimanis, A.S. The Effect of Climate and Human Pressures on Functional Diversity and Species Richness Patterns of Amphibians, Reptiles and Mammals in Europe. Diversity 2021, 13, 275. [Google Scholar] [CrossRef]
- Guo, W.W.; Wu, T.; Jiang, G.J.; Pu, L.J.; Zhang, J.Z.; Xu, F.; Yu, H.M.; Xie, X.F. Spatial Distribution, Environmental Risk and Safe Utilization Zoning of Soil Heavy Metals in Farmland, Subtropical China. Land 2021, 10, 569. [Google Scholar] [CrossRef]
- Lu, D.B.; Mao, W.L.; Xiao, W.; Zhang, L. Non-Linear Response of PM2.5 Pollution to Land Use Change in China. Remote Sens. 2021, 13, 1612. [Google Scholar] [CrossRef]
- Nussbaum, M.; Walthert, L.; Fraefel, M.; Greiner, L.; Papritz, A. Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models. Soil 2017, 3, 191–210. [Google Scholar] [CrossRef] [Green Version]
- Taddeo, S.; Dronova, I.; Harris, K. Greenness, texture, and spatial relationships predict floristic diversity across wetlands of the conterminous United States. ISPRS J. Photogramm. Remote Sens. 2021, 175, 236–246. [Google Scholar] [CrossRef]
- Vermeulen, D.; Van Niekerk, A. Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma 2017, 299, 1–12. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.Q.; Chi, G.Q.; Wang, D.H.; Zhang, Z.X.; Zuo, D.Y. Differentiation and progress of urban regionalization in China: Perspectives of land use and geography. Appl. Geogr. 2021, 137, 102600. [Google Scholar] [CrossRef]
- Li, W.Y.; Dong, F.G.; Ji, Z.S. Research on coordination level and influencing factors spatial heterogeneity of China’s urban CO2 emissions. Sustain. Cities Soc. 2021, 75, 103323. [Google Scholar] [CrossRef]
- Li, Y.M.; Song, J.W. A comparative study of carbon tax and fuel tax based on panel spatial econometric model. Environ. Sci. Pollut. Res. 2022, 29, 15931–15945. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, C.; Huang, C.Y.; Zhang, H.W.; Zhou, Y.Y.; Zhou, Y.Q.; Wu, J.; Zhou, Z.B.; Yang, S.G.; Li, L.J. Epidemiological features and spatial-temporal distribution of visceral leishmaniasis in mainland China: A population-based surveillance study from 2004 to 2019. Parasites Vectors 2021, 14, 517. [Google Scholar] [CrossRef]
- Peng, C.C.; Li, B.; Nan, B. An analysis framework for the ecological security of urban agglomeration: A case study of the Beijing-Tianjin-Hebei urban agglomeration. J. Clean. Prod. 2021, 315, 128111. [Google Scholar] [CrossRef]
- Zhang, D.; Geng, X.L.; Chen, W.X.; Fang, L.; Yao, R.; Wang, X.R.; Zhou, X. Inconsistency of Global Vegetation Dynamics Driven by Climate Change: Evidences from Spatial Regression. Remote Sens. 2021, 13, 3442. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, Y.M.; Zhang, S.Q.; Wang, J.M. Applying the Super-EBM model and spatial Durbin model to examining total-factor ecological efficiency from a multi-dimensional perspective: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 2183–2202. [Google Scholar] [CrossRef]
- Lu, B.B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2017, 31, 982–998. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.B.; Yang, W.B.; Ge, Y.; Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 2018, 71, 41–57. [Google Scholar] [CrossRef]
- Lu, X.Y.; Chen, X.; Zhao, X.L.; Lv, D.J.; Zhang, Y. Assessing the impact of land surface temperature on urban net primary productivity increment based on geographically weighted regression model. Sci. Rep. 2021, 11, 22282. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.Q.; Sun, F.H. Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China’s province. Ecol. Model. 2021, 462, 109794. [Google Scholar] [CrossRef]
- Adamack, A.T.; Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 2014, 5, 384–387. [Google Scholar] [CrossRef]
- Vekemans, X.; Hardy, O.J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 2004, 13, 921–935. [Google Scholar] [CrossRef]
- Streiff, R.; Labbe, T.; Bacilieri, R.; Steinkellner, H.; Glössl, J.; Kremer, A. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol. 1998, 7, 317–328. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Anselin, L. Under the hood—Issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Griffith, D.A. A spatial filtering specification for the autologistic model. Environ. Plan. a-Econ. Space 2004, 36, 1791–1811. [Google Scholar] [CrossRef] [Green Version]
- Leenders, R. Modeling social influence through network autocorrelation: Constructing the weight matrix. Soc. Netw. 2002, 24, 21–47. [Google Scholar] [CrossRef]
- Segurado, P.; Araujo, M.B. An evaluation of methods for modelling species distributions. J. Biogeogr. 2004, 31, 1555–1568. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Telford, R.J.; Birks, H.J.B. The secret assumption of transfer functions: Problems with spatial autocorrelation in evaluating model performance. Quat. Sci. Rev. 2005, 24, 2173–2179. [Google Scholar] [CrossRef]
- Lichstein, J.W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 2007, 188, 117–131. [Google Scholar] [CrossRef]
- Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 2008, 17, 59–71. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J.G. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2005, 38, 5–22. [Google Scholar] [CrossRef]
- Bivand, R. Implementing spatial data analysis software tools in R. Geogr. Anal. 2006, 38, 23–40. [Google Scholar] [CrossRef]
- Bivand, R.; Piras, G. Comparing Implementations of Estimation Methods for Spatial Econometrics. J. Stat. Softw. 2015, 63, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Sokal, R.R.; Jacquez, G.M.; Wooten, M.C. Spatial autocorrelation analysis of migration and selection. Genetics 1989, 121, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Jacquez, G.M. Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis. Evolution 1991, 45, 152–168. [Google Scholar] [CrossRef]
- Epperson, B.K.; Chung, M.G. Spatial genetic structure of allozyme polymorphisms within populations of Pinus Strobus (Pinaceae). Am. J. Bot. 2001, 88, 1006–1010. [Google Scholar] [CrossRef]
- Hawkins, B.A.; Porter, E.E. Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography 2003, 12, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Lennon, J.J. Red-shifts and red herrings in geographical ecology. Ecography 2000, 23, 101–113. [Google Scholar] [CrossRef]
- Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 2003, 18, 189–197. [Google Scholar] [CrossRef]
- Diniz, J.A.F.; Telles, M.P.D. Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv. Biol. 2002, 16, 924–935. [Google Scholar] [CrossRef]
- Yin, L.R.; Wang, L.; Huang, W.Z.; Liu, S.; Yang, B.; Zheng, W.F. Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model. Atmosphere 2021, 12, 1408. [Google Scholar] [CrossRef]
- Wei, G.E.; Zhang, Z.K.; Ouyang, X.; Shen, Y.; Jiang, S.N.; Liu, B.L.; He, B.J. Delineating the spatial-temporal variation of air pollution with urbanization in the Belt and Road Initiative area. Environ. Impact Assess. Rev. 2021, 91, 106646. [Google Scholar] [CrossRef]
- Peng, D.; Ma, Y.; Liu, Y.Q.; Lv, Q.; Yin, F. Epidemiological and aetiological characteristics of hand, foot, and mouth disease in Sichuan Province, China, 2011-2017. Sci. Rep. 2020, 10, 6117. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Chun, Y.W.; Griffith, D.A.; Lee, M.; Sinha, P. Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. J. Geogr. Syst. 2016, 18, 67–85. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef]
- Kang, D.; Choi, H.; Kim, J.-H.; Choi, J. Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 2020, 94, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Pan, H.Y.; Peng, L.; Chen, T.T.; Xu, J. Temporal and spatial variation characteristics of disaster resilience in Southwest China’s mountainous regions against the background of urbanization. Nat. Hazards 2020, 103, 3783–3802. [Google Scholar] [CrossRef]
- Grekousis, G. Local fuzzy geographically weighted clustering: A new method for geodemographic segmentation. Int. J. Geogr. Inf. Sci. 2021, 35, 152–174. [Google Scholar] [CrossRef]
Topic | Timespan | Indexes | Refined by |
---|---|---|---|
“Spatial Autocorrelation” * | 1 January 1991 to 31 December 2021 | SCI-E, SSCI | Document types: articles, proceedings articles Language: English |
ID | Recs | Journal | TLCS | Journal | TGCS | Journal |
---|---|---|---|---|---|---|
1 | 199 | PLoS ONE | 1556 | Ecology | 10,056 | Ecology |
2 | 150 | Molecular Ecology | 1242 | Global Ecology and Biogeography | 10,021 | Molecular Ecology Notes |
3 | 147 | Sustainability | 1240 | Ecography | 9105 | Molecular Ecology |
4 | 118 | Journal of Biogeography | 1016 | Heredity | 8955 | Global Ecology and Biogeography |
5 | 115 | Ecography | 1002 | Molecular Ecology | 7474 | Ecography |
6 | 115 | International Journal of Environmental Research and Public Health | 1002 | Geographical Analysis | 6483 | Bioinformatics |
7 | 107 | Global Ecology and Biogeography | 823 | Evolution | 5915 | Journal of Biogeography |
8 | 80 | Ecology | 498 | Ecological Modelling | 4937 | Geographical Analysis |
9 | 77 | ISPRS International Journal of Geo-Information | 449 | Journal of Biogeography | 3834 | Heredity |
10 | 75 | Science of the Total Environment | 372 | Ecological Monographs | 3683 | PLoS ONE |
ID | Recs | Country | TLCS | Country | TGCS | Country |
---|---|---|---|---|---|---|
1 | 2825 | USA | 9478 | USA | 118,762 | USA |
2 | 1604 | China | 2883 | Canada | 31,761 | Australia |
3 | 723 | UK | 2319 | Australia | 30,427 | UK |
4 | 599 | Canada | 1942 | UK | 24,079 | Canada |
5 | 511 | Australia | 1381 | Brazil | 22,674 | China |
6 | 469 | Germany | 1341 | France | 19,268 | France |
7 | 455 | France | 1334 | China | 16,927 | Germany |
8 | 424 | Spain | 1234 | Germany | 12,091 | Spain |
9 | 410 | Brazil | 697 | Spain | 10,947 | Brazil |
10 | 343 | Italy | 584 | Italy | 10,224 | Italy |
ID | Recs | Institution | TLCS | Institution | TGCS | Institution |
---|---|---|---|---|---|---|
1 | 367 | Chinese Acad Sci | 1424 | Australian Natl Univ | 19,481 | Australian Natl Univ |
2 | 118 | Univ Chinese Acad Sci | 1346 | Univ Montreal | 16,672 | Rutgers State Univ |
3 | 93 | US Geol Survey | 1204 | Univ Fed Goiás | 7317 | Chinese Acad Sci |
4 | 89 | Univ Fed Goias | 838 | Univ Calif Irvine | 5959 | Univ Montreal |
5 | 89 | Univ Wisconsin | 562 | San Diego Univ | 5678 | Univ Fed Goias |
6 | 81 | Wuhan Univ | 538 | Rutgers State Univ | 5592 | Univ Illinois |
7 | 77 | Michigan State Univ | 484 | Univ Toronto | 4449 | Univ Oxford |
8 | 76 | CSIC | 482 | Univ Illinois | 3835 | Univ Calif Davis |
9 | 73 | Univ Calif Davis | 475 | Univ Tennessee | 3689 | Univ Calif Irvine |
10 | 70 | Univ Florida | 460 | UFZ Helmholtz Ctr | 3649 | Univ Toronto |
Time Period | Label Titles of Co-Keyword Clusters Map | Label Titles of Co-Citation Clusters Map |
---|---|---|
1991–1996 | - | #13 paleolithic colonization (1 cluster) |
1997–2002 | - | #2 sexual reproduction; #7 terrestrial bird (2 clusters) |
2003–2008 | #1 gene flow; #2 population structure; #3 genetic structure; #4 genetic diversity (4 clusters) | #0 spatial genetic structure; #4 nutritional factor; #6 population structure (3 clusters) |
2009–2014 | #0 spatial autocorrelation; #5 species richness; #6 land use; #9 diversity; #11 dynamics (5 clusters) | #2 species richness; #3 species distribution; #5 dispersal constraint; #10 sister species; #11 avian species richness (5 clusters) |
2015–2020 | #7 air pollution; #8 china; #10 climate change (3 clusters) | #1 city level; #8 ecological niche model; #9 moran eigenvector; #14 mouth disease (4 clusters) |
2021 | - | - |
Num. of clusters | 12 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Hu, K.; Liu, W.; Wu, H. Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021. ISPRS Int. J. Geo-Inf. 2022, 11, 309. https://doi.org/10.3390/ijgi11050309
Luo Q, Hu K, Liu W, Wu H. Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021. ISPRS International Journal of Geo-Information. 2022; 11(5):309. https://doi.org/10.3390/ijgi11050309
Chicago/Turabian StyleLuo, Qing, Kai Hu, Wenxuan Liu, and Huayi Wu. 2022. "Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021" ISPRS International Journal of Geo-Information 11, no. 5: 309. https://doi.org/10.3390/ijgi11050309
APA StyleLuo, Q., Hu, K., Liu, W., & Wu, H. (2022). Scientometric Analysis for Spatial Autocorrelation-Related Research from 1991 to 2021. ISPRS International Journal of Geo-Information, 11(5), 309. https://doi.org/10.3390/ijgi11050309