How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China?
Abstract
:1. Introduction
2. Materials and methods
2.1. Study Area
2.2. Data Sources
2.3. ET0 Calculation Procedure
2.4. Sensitivity Coefficient
2.5. Contributions of Meteorological Factors to ET0
2.6. Trend Analysis
3. Results
3.1. Spatiotemporal Variations of ET0
3.1.1. Temporal Scale
3.1.2. Spatial Scale
3.2. Spatiotemporal Variations of Meteorological Factors
3.3. Sensitivity of Meteorological Factors to ET0
3.3.1. Temporal Variation Characteristics
3.3.2. Spatial Variation Characteristics
3.4. Contribution of Meteorological Factors to ET0
3.4.1. Validation of Differential Method
3.4.2. Contribution of Meteorological Factors to ET0
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Chu, R.; Shen, S.; Islam, A.R.M.T. Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China. Water 2018, 10, 144. [Google Scholar] [CrossRef]
- Chu, R.; Li, M.; Shen, S.; Islam, A.R.M.T.; Cao, W.; Tao, S.; Gao, P. Changes in Reference Evapotranspiration and Its Contributing Factors in Jiangsu, a Major Economic and Agricultural Province of Eastern China. Water 2017, 9, 486. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Shen, S.; Islam, A.R.M.T. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China. Sci. Total Environ. 2018, 625, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements. In FAO Irrigation and Drainage; FAO: Rome, Italy, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration-a review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Allen, R.; Smith, M.; Pereira, L.; Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–94. [Google Scholar]
- Nijsse, F.; Cox, P.M.; Huntingford, C.; Williamson, M.S. Decadal global temperature variability increases strongly with climate sensitivity. Nat. Clim. Chang. 2019, 9, 598–601. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Shen, S.; Yang, S.; Hu, Z.; Chu, R. Assessing recent impacts of climate change on design water requirement of Boro rice season in Bangladesh. Theor. Appl. Climatol. 2019, 138, 97–113. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea? Agric. Water Manag. 2015, 150, 129–138. [Google Scholar] [CrossRef]
- Yassen, A.N.; Nam, W.-H.; Hong, E.-M. Impact of climate change on reference evapotranspiration in Egypt. Catena 2020, 194, 104711. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, A.; Wang, L.; Liu, K.; Cheng, L. Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979–2015. Agric. Water Manag. 2019, 213, 1096–1108. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Ismail, Z.B. Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
- Maček, U.; Bezak, N.; Šraj, M. Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 2018, 260–261, 183–192. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, P.; Lai, C.; Chen, X.; Wu, X.; Zeng, Z.; Li, J. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol. 2017, 544. [Google Scholar] [CrossRef]
- Gao, Z.; He, J.; Dong, K.; Li, X. Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China. Agric. For. Meteorol. 2017, 232, 106–117. [Google Scholar] [CrossRef]
- Xu, C.Y.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Peng, S.; Xing, W.; Yang, T.; Luo, Y.; Yong, B.; Xu, J. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resour. Res. 2012, 48, 1–27. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Xu, Z.; Zhou, X. Temporal variations of reference evapotranspiration in Heihe River basin of China. Hydrol. Res. 2013, 44, 904–916. [Google Scholar] [CrossRef]
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 2013, 492, 24–34. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M. Quantitative trend, sensitivity and contribution analyses of reference evapotranspiration in some arid environments under climate change. Water Resour. Manag. 2017, 31, 2207–2224. [Google Scholar] [CrossRef]
- Roderick, M.L.; Rotstayn, L.D.; Farquhar, G.D.; Hobbins, M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, 251–270. [Google Scholar] [CrossRef]
- Rotstayn, L.D.; Roderick, M.L.; Farquhar, G.D. A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett. 2006, 33, L17715. [Google Scholar] [CrossRef]
- Shan, N.; Shi, Z.; Yang, X.; Gao, J.; Cai, D. Spatiotemporal trends of reference evapotranspiration and its driving factors in the Beijing-Tianjin Sand source control project region, China. Agric. For. Meteorol. 2015, 200, 322–333. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Z.; Wang, Y.; Zhang, S.; Chu, X.; Yu, P.; Xiong, W.; Zuo, H.; Wang, Y. Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin, northwest China. Hydrol. Process. 2015, 29, 4846–4862. [Google Scholar] [CrossRef]
- Tang, B.; Tong, L.; Kang, S.; Zhang, L. Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China. Agric. Water Manag. 2011, 97, 1506–1516. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.T.; Li, X.L.; Zhou, T.W.; Sun, S.K.; Wang, Y.B.; Luan, X.B.; Yu, X. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhao, Y.; Li, H.; Zhai, J.; Yu, Z.; Zhang, S. Reference evapotranspiration trends from 1980 to 2012 and their attribution to meteorological drivers in the three-river source region, China. Int. J. Climatol. 2016, 36, 3759–3769. [Google Scholar] [CrossRef]
- She, D.; Xia, J.; Zhang, Y. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Sci. Total Environ. 2017, 607–608, 1151–1162. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; Moran-Tejeda, E.; Lopez-Moreno, J.I.; Espejo, F. Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resour. Res. 2014, 50, 8458–8480. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Jerin, J.N.; Islam, H.M.T.; Islam, A.R.M.T.; Shahid, S.; Hu, Z.; Badhan, M.A.; Chu, R.; Elbeltagi, A. Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theor. Appl. Climatol. 2021, 144, 793–808. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Zhao, Y.; Wang, Q.; Zhang, B.; Li, H.; Zhai, J. Spatio-temporal variation of potential evapotranspiration and climatic drivers in the Jing-Jin-Ji region, North China. Agric. For. Meteorol. 2018, 256–257, 75–83. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Thomas, A. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960–2011. J. Hydrol. 2018, 560, 461–470. [Google Scholar] [CrossRef]
- Zhang, L.; Traore, S.; Cui, Y.; Luo, Y.; Zhu, G.; Liu, B.; Fipps, G.; Karthikeyan, R.; Singh, V. Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques. Agric. Water Manag. 2019, 213, 499–511. [Google Scholar] [CrossRef]
- Zhou, L.; Turvey, C.G. Climate change, adaptation and China’s grain production. China Econ. Rev. 2014, 28, 72–89. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 14915–14932. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Chen, R.; Kang, E.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in China. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Allen, R.G. Self-Calibrating Method for Estimating Solar Radiation from Air Temperature. J. Hydrol. 1997, 2, 56–67. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- McCuen, R.H. A sensitivity and error analysis of procedures used for estimating evaporation. J. Am. Water Resour. Assoc. 1974, 10, 486–497. [Google Scholar] [CrossRef]
- Praveen, B.; Talukdar, S.; Shahfahad; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.T.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef] [PubMed]
- Salam, R.; Islam, A.R.M.T.; Pham, Q.B.; Dehghani, M.; Al-Ansari, N.; Linh, N.T.T. The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Sci. Rep. 2020, 10, 20171. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Karim, M.R.; Mondol, M.A.H. Appraising trends and forecasting of hydroclimatic variables in the north and northeast regions of Bangladesh. Theor. Appl. Climatol. 2020, 143, 33–50. [Google Scholar] [CrossRef]
- Theil, H. A Rank Invariant Method of Linear and Polynomial Regression Analysis. In Advanced Studies in Theoretical and Applied Econometrics; Nederlandse Akademie van Wetenschappen: Amsterdam, The Netherlands, 1950; Volume 23, pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall′s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, G.; Shi, G.; Gong, P.; Zheng, X.; Zhai, P.; Zhang, D.e.; Zhao, Z.; Wang, S.; Wang, H.; et al. National Assessment Report of Climate Change (I): Climate change in China and its future trend. Adv. Clim. Chang. Res. 2006, 2, 3–8. [Google Scholar]
- Li, M.; Chu, R.; Islam, A.R.M.T.; Jiang, Y.; Shen, S. Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China. Sustainability 2020, 12, 1743. [Google Scholar] [CrossRef]
- Matsoukas, C.; Benas, N.; Hatzianastassiou, N.; Pavlakis, K.G.; Kanakidou, M.; Vardavas, I. Potential evaporation trends over land between 1983–2008: Driven by radiative fluxes or vapour-pressure deficit? Atmos. Chem. Phys. 2011, 11, 7601–7616. [Google Scholar] [CrossRef]
- Ren, G.; Guo, J.; Xu, M.; Chu, Z.; Zhang, L.; Zou, X.; Li, Q.; Liu, X. Climate changes of China′s mainland over the past half century. J. Meteorol. Res. 2005, 63, 942–956. [Google Scholar]
- Tao, Y.; Huang, Y.; Yang, Y.; Wang, K.; Cheng, X.; Wang, M.; WU, R. Impact of urbanization on wind speed in Anhui province. Clim. Chang. Res. 2016, 12, 519–526. [Google Scholar]
- Lin, C.; Yang, K.; Huang, J.; Tang, W.; Qin, J.; Niu, X.; Chen, Y.; Chen, D.; Lu, N.; Fu, R. Impacts of wind stilling on solar radiation variability in China. Sci. Rep. 2015, 5, 15135. [Google Scholar] [CrossRef]
- Qian, Y.; Kaiser, D.P.; Leung, L.R.; Xu, M. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett. 2006, 33, L01812. [Google Scholar] [CrossRef]
- Ma, J.; Luo, Y.; Shen, Y.; Liang, H.; Li, S. Regional long-term trend of ground solar radiation in China over the past 50 years. Sci. China Earth Sci. 2012, 42, 1597–1608. [Google Scholar] [CrossRef]
- Qi, Y.; Fang, S.; Zhou, W. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecolog. Sin. 2014, 34, 7444–7453. [Google Scholar]
- Tao, S.; Qi, Y.; Shen, S.; Li, Y.; Zhou, Y. The spatial and temporal variation of solar radiation over China from 1981 to 2014. J. Arid Land Res. Environ. 2016, 30, 143–147. [Google Scholar]
- Shan, N.; Shi, Z.; Yang, X.; Zhang, X.; Guo, H.; Zhang, B.; Zhang, Z. Trends in potential evapotranspiration from 1960 to 2013 for a desertification-prone region of China. Int. J. Climatol. 2016, 36, 3434–3445. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, W.; Shao, Q.; Xing, W.; Ding, Y.; Fu, J. The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. Int. J. Climatol. 2020, 40, 235–254. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Xiang, Y.; Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Q.; Li, T. Does recent climate warming drive spatiotemporal shifts in functioning of high-elevation hydrological systems? Sci. Total Environ. 2020, 719, 137507. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Li, C.; Si, J.; Wen, X.; Yin, Z. Detecting climate variability impacts on reference and actual evapotranspiration in the Taohe River Basin, NW China. Hydrol. Res. 2016, 48, 596–612. [Google Scholar] [CrossRef]
- Chu, R.; Li, M.; Islam, A.R.M.T.; Fei, D.; Shen, S. Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China. Int. J. Climatol. 2019, 39, 4072–4090. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Y.; Zhai, J.; Zhao, J.; Han, J.; Wang, Q.; He, G.; Chang, H. Changes in reference evapotranspiration over the non-monsoon region of China during 1961–2017: Relationships with atmospheric circulation and attributions. Int. J. Climatol. 2021, 41, E734–E751. [Google Scholar] [CrossRef]
Time | Region | Annual | Growing Season | Spring | Summer | Autumn | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | β | Z | β | Z | β | Z | Β | Z | β | Z | β | ||
1961–1990 | Whole | −3.53 | −3.953 *** | −2.96 | −2.861 ** | −1.07 | −0.474 | −2.85 | −2.242 ** | −1.61 | −0.494 | −1.64 | −0.390 |
I | −3.93 | −5.254 *** | −3.75 | −4.148 *** | −2.14 | −1.256 * | −3.78 | −3.066 *** | −1.57 | −0.450 | −1.50 | −0.548 | |
II | −3.25 | −3.567 ** | −2.78 | −2.672 ** | −0.82 | −0.362 | −2.93 | −2.233 ** | −1.68 | −0.499 | −1.53 | −0.343 | |
III | −2.96 | −3.188 ** | −2.32 | −2.363 * | −1.03 | −0.258 | −1.96 | −1.748 * | −1.93 | −0.554 | −1.89 | −0.326 | |
1991–2019 | Whole | 0.62 | 0.552 | 0.54 | 0.364 | 1.26 | 0.809 | 0.88 | 0.594 | −1.44 | −0.478 | −0.58 | −0.096 |
I | −0.02 | −0.059 | −0.21 | −0.286 | 0.73 | 0.364 | 0.06 | 0.046 | −1.22 | −0.555 | −0.66 | −0.198 | |
II | 0.21 | 0.199 | 0.13 | 0.075 | 1.26 | 0.850 | 0.96 | 0.619 | −1.67 | −0.541 | −0.88 | −0.155 | |
III | 1.59 | 1.339 | 1.26 | 1.120 | 2.04 | 1.029 * | 0.73 | 0.551 | −0.51 | −0.139 | −0.36 | −0.091 |
Meteorological | Time | Region | Annual | Growing Season | Spring | Summer | Autumn | Winter | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor | Z | β | Z | β | Z | β | Z | β | Z | β | Z | β | ||
Ta | 1961–1990 | Whole | −2.57 | −0.022 * | −1.64 | −0.011 | −0.86 | −0.007 | −1.82 | −0.035 | −0.54 | −0.007 | −0.75 | −0.010 |
I | −2.36 | −0.029 * | −1.86 | −0.017 | −0.75 | −0.009 | −2.25 | −0.039 * | −0.04 | −0.001 | −0.54 | −0.004 | ||
II | −2.71 | −0.021 ** | −1.57 | −0.012 | −0.57 | −0.007 | −2.00 | −0.036 * | −0.57 | −0.008 | −1.14 | −0.012 | ||
III | −2.50 | −0.020 * | −1.25 | −0.009 | −0.96 | −0.013 | −1.32 | −0.019 | −0.61 | −0.009 | −0.61 | −0.013 | ||
1991–2019 | Whole | 2.91 | 0.036 ** | 2.46 | 0.032 * | 3.28 | 0.059 ** | 2.12 | 0.030 * | 2.76 | 0.031 ** | 0.84 | 0.009 | |
I | 2.76 | 0.037 ** | 2.12 | 0.026 * | 3.06 | 0.053 ** | 1.52 | 0.026 | 2.31 | 0.026 * | 1.07 | 0.015 | ||
II | 2.87 | 0.035 ** | 2.27 | 0.028 * | 3.10 | 0.062 ** | 1.97 | 0.02 9 * | 2.08 | 0.026 * | 0.73 | 0.011 | ||
III | 3.21 | 0.038 ** | 2.79 | 0.035 ** | 3.17 | 0.054 ** | 1.78 | 0.030 | 2.98 | 0.042 ** | 0.69 | 0.011 | ||
RH | 1961–1990 | Whole | 1.78 | 0.0009 | 1.50 | 0.0008 | 0.14 | 0.0002 | 2.78 | 0.0012 ** | 0.36 | 0.0002 | 0.61 | 0.0008 |
I | 2.36 | 0.0016 * | 1.86 | 0.0014 | 0.89 | 0.0011 | 2.93 | 0.0021 ** | 0.43 | 0.0005 | 0.54 | 0.0012 | ||
II | 1.32 | 0.0006 | 1.21 | 0.0007 | −0.11 | −0.0001 | 2.46 | 0.0012 * | 0.21 | 0.0001 | 0.39 | 0.0004 | ||
III | 1.50 | 0.0005 | 1.00 | 0.0004 | −0.18 | −0.00004 | 1.46 | 0.0009 | 0.61 | 0.0004 | 0.89 | 0.0006 | ||
1991–2019 | Whole | −1.07 | −0.0008 | −1.37 | −0.0009 | −1.29 | −0.0016 | −1.29 | −0.0009 | 0.66 | 0.0007 | −0.06 | −0.0001 | |
I | −0.88 | −0.0005 | −0.84 | −0.0007 | −0.47 | −0.0009 | −0.99 | −0.0006 | 0.47 | 0.0007 | −0.09 | −0.0001 | ||
II | −1.18 | −0.0008 | −1.18 | −0.0007 | −1.48 | −0.0019 | −0.88 | −0.0007 | 1.03 | 0.0009 | −0.36 | −0.0003 | ||
III | −0.88 | −0.0005 | −1.41 | −0.0010 | −1.67 | −0.0016 | −1.22 | −0.0008 | 0.69 | 0.0006 | 0.43 | 0.0004 | ||
u2 | 1961–1990 | Whole | −5.67 | −0.021 *** | −5.28 | −0.019 *** | −5.32 | −0.024 *** | −4.78 | −0.014 *** | −5.32 | −0.023 *** | −5.03 | −0.023 *** |
I | −5.53 | −0.025 *** | −5.03 | −0.023 *** | −4.92 | −0.029 *** | −4.53 | −0.020 *** | −5.25 | −0.027 *** | −5.35 | −0.031 *** | ||
II | −5.46 | −0.019 *** | −4.78 | −0.017 *** | −5.00 | −0.023 *** | −4.32 | −0.012 *** | −4.89 | −0.023 *** | −4.82 | −0.021 *** | ||
III | −5.71 | −0.018 *** | −5.07 | −0.016 *** | −5.46 | −0.022 *** | −3.71 | −0.012 *** | −5.07 | −0.019 *** | −5.57 | −0.020 *** | ||
1991–2019 | Whole | −3.55 | −0.008 *** | −3.25 | −0.007 ** | −4.60 | −0.009 *** | −2.38 | −0.005 * | −1.97 | −0.005 * | −2.04 | −0.004 * | |
I | −3.43 | −0.011 *** | −3.28 | −0.010 ** | −4.15 | −0.014 *** | −2.91 | −0.010 ** | −2.91 | −0.009 ** | −1.82 | −0.006 | ||
II | −4.18 | −0.011 *** | −3.62 | −0.011 *** | −4.75 | −0.013 *** | −3.36 | −0.010 *** | −2.53 | −0.009 * | −2.68 | −0.007 ** | ||
III | 1.03 | 0.001 | 1.48 | 0.003 | 0.47 | 0.001 | 1.03 | 0.003 | 1.52 | 0.003 | 0.58 | 0.001 | ||
Rn | 1961–1990 | Whole | −3.00 | −0.017 ** | −2.36 | −0.020 * | −0.71 | −0.007 | −2.57 | −0.047 * | −1.14 | −0.006 | −2.53 | −0.010 * |
I | −3.03 | −0.016 ** | −2.50 | −0.021 * | −1.00 | −0.010 | −3.32 | −0.053 *** | −0.75 | −0.003 | −3.07 | −0.009 ** | ||
II | −2.71 | −0.018 ** | −2.28 | −0.021 * | −0.75 | −0.008 | −2.60 | −0.048 ** | −1.00 | −0.007 | −2.60 | −0.010 ** | ||
III | −2.78 | −0.016 ** | −2.32 | −0.019 * | −0.61 | −0.003 | −1.96 | −0.040 * | −1.75 | −0.012 | −2.28 | −0.008 * | ||
1991–2019 | Whole | −0.92 | −0.005 | −0.69 | −0.008 | 0.84 | 0.008 | −0.51 | −0.010 | −2.57 | −0.017 * | −2.46 | −0.008 * | |
I | −0.66 | −0.004 | −0.92 | −0.007 | 0.58 | 0.003 | −0.62 | −0.011 | −1.89 | −0.012 | −2.57 | −0.009 * | ||
II | −0.96 | −0.006 | −0.99 | −0.011 | 0.66 | 0.006 | −0.54 | −0.009 | −2.49 | −0.017 * | −2.31 | −0.008 * | ||
III | −0.32 | −0.003 | −0.06 | −0.001 | 1.63 | 0.013 | 0.28 | 0.005 | −2.49 | −0.016 * | −1.67 | −0.006 |
Region | Season | 1961–1990 | 1991–2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
S(Ta) | S(RH) | S(u2) | S(Rn) | S(Ta) | S(RH) | S(u2) | S(Rn) | ||
Whole | Annual | 0.489 | −1.033 | 0.074 | 0.709 | 0.492 | −0.886 | 0.082 | 0.731 |
Growing season | 0.660 | −0.824 | 0.049 | 0.778 | 0.641 | −0.683 | 0.060 | 0.791 | |
Spring | 0.499 | −0.971 | 0.049 | 0.724 | 0.507 | −0.753 | 0.066 | 0.740 | |
Summer | 0.728 | −0.691 | 0.037 | 0.817 | 0.692 | −0.628 | 0.044 | 0.830 | |
Autumn | 0.578 | −1.078 | 0.090 | 0.707 | 0.575 | −0.906 | 0.098 | 0.726 | |
Winter | 0.152 | −1.398 | 0.119 | 0.588 | 0.194 | −1.253 | 0.121 | 0.628 | |
I | Annual | 0.474 | −1.024 | 0.102 | 0.652 | 0.477 | −0.871 | 0.104 | 0.690 |
Growing season | 0.666 | −0.817 | 0.070 | 0.737 | 0.643 | −0.664 | 0.072 | 0.770 | |
Spring | 0.505 | −0.903 | 0.079 | 0.658 | 0.511 | −0.713 | 0.086 | 0.698 | |
Summer | 0.736 | −0.713 | 0.054 | 0.783 | 0.696 | −0.618 | 0.053 | 0.814 | |
Autumn | 0.565 | −1.095 | 0.115 | 0.660 | 0.559 | −0.904 | 0.119 | 0.692 | |
Winter | 0.090 | −1.393 | 0.159 | 0.507 | 0.144 | −1.243 | 0.160 | 0.556 | |
II | Annual | 0.499 | −1.080 | 0.075 | 0.701 | 0.501 | −0.920 | 0.086 | 0.720 |
Growing season | 0.669 | −0.861 | 0.051 | 0.771 | 0.650 | −0.713 | 0.064 | 0.780 | |
Spring | 0.507 | −1.019 | 0.048 | 0.718 | 0.516 | −0.777 | 0.071 | 0.728 | |
Summer | 0.737 | −0.720 | 0.038 | 0.813 | 0.701 | −0.657 | 0.046 | 0.823 | |
Autumn | 0.589 | −1.123 | 0.095 | 0.694 | 0.584 | −0.943 | 0.104 | 0.713 | |
Winter | 0.164 | −1.464 | 0.120 | 0.580 | 0.203 | −1.297 | 0.125 | 0.616 | |
III | Annual | 0.483 | −0.954 | 0.052 | 0.763 | 0.487 | −0.838 | 0.060 | 0.777 |
Growing season | 0.640 | −0.758 | 0.033 | 0.820 | 0.626 | −0.644 | 0.045 | 0.823 | |
Spring | 0.482 | −0.930 | 0.029 | 0.778 | 0.491 | −0.736 | 0.046 | 0.785 | |
Summer | 0.707 | −0.619 | 0.025 | 0.849 | 0.676 | −0.581 | 0.033 | 0.854 | |
Autumn | 0.568 | −0.979 | 0.065 | 0.763 | 0.570 | −0.846 | 0.074 | 0.773 | |
Winter | 0.176 | −1.288 | 0.090 | 0.660 | 0.211 | −1.185 | 0.088 | 0.696 |
Region | Season | 1961–1990 | 1991–2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
C(Ta) | C(RH) | C(u2) | C(Rn) | C(Ta) | C(RH) | C(u2) | C(Rn) | ||
Whole | Annual | −0.746 | −0.772 | −0.842 | −1.223 | 0.993 | 0.499 | −0.459 | −0.267 |
Growing season | −0.317 | −0.533 | −0.470 | −1.063 | 0.612 | 0.304 | −0.274 | −0.225 | |
Spring | −0.088 | −0.049 | −0.221 | −0.085 | 0.486 | 0.309 | −0.160 | 0.146 | |
Summer | −0.368 | −0.424 | −0.150 | −1.158 | 0.265 | 0.159 | −0.094 | −0.023 | |
Autumn | −0.041 | −0.094 | −0.268 | −0.136 | 0.201 | −0.133 | −0.105 | −0.300 | |
Winter | −0.047 | −0.077 | −0.196 | −0.106 | 0.047 | −0.018 | −0.061 | −0.095 | |
I | Annual | −0.959 | −1.560 | −1.277 | −1.204 | 0.910 | 0.454 | −0.785 | −0.181 |
Growing season | −0.438 | −1.101 | −0.738 | −1.118 | 0.483 | 0.122 | −0.490 | −0.068 | |
Spring | −0.115 | −0.311 | −0.355 | −0.119 | 0.455 | 0.111 | −0.272 | 0.087 | |
Summer | −0.471 | −0.693 | −0.257 | −1.290 | 0.215 | 0.140 | −0.180 | 0.062 | |
Autumn | 0.000 | −0.164 | −0.374 | −0.062 | 0.161 | −0.152 | −0.197 | −0.233 | |
Winter | −0.021 | −0.145 | −0.282 | −0.096 | 0.051 | −0.030 | −0.113 | −0.093 | |
II | Annual | −0.713 | −0.528 | −0.781 | −1.304 | 0.980 | 0.572 | −0.715 | −0.333 |
Growing season | −0.294 | −0.381 | −0.424 | −1.110 | 0.592 | 0.307 | −0.461 | −0.306 | |
Spring | −0.057 | 0.050 | −0.207 | −0.114 | 0.523 | 0.399 | −0.238 | 0.126 | |
Summer | −0.402 | −0.378 | −0.116 | −1.223 | 0.265 | 0.146 | −0.170 | −0.085 | |
Autumn | −0.044 | −0.048 | −0.268 | −0.118 | 0.170 | −0.170 | −0.179 | −0.304 | |
Winter | −0.055 | −0.034 | −0.187 | −0.117 | 0.042 | 0.015 | −0.094 | −0.103 | |
III | Annual | −0.611 | −0.387 | −0.505 | −1.161 | 1.043 | 0.212 | 0.009 | −0.098 |
Growing season | −0.216 | −0.244 | −0.273 | −0.981 | 0.676 | 0.260 | 0.052 | −0.095 | |
Spring | −0.093 | 0.037 | −0.123 | −0.052 | 0.442 | 0.277 | −0.017 | 0.260 | |
Summer | −0.227 | −0.240 | −0.093 | −0.977 | 0.264 | 0.116 | 0.035 | 0.094 | |
Autumn | −0.064 | −0.065 | −0.156 | −0.222 | 0.260 | −0.117 | 0.033 | −0.320 | |
Winter | −0.052 | −0.060 | −0.129 | −0.102 | 0.048 | −0.074 | 0.001 | −0.079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chu, R.; Sha, X.; Islam, A.R.M.T.; Jiang, Y.; Shen, S. How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China? ISPRS Int. J. Geo-Inf. 2022, 11, 300. https://doi.org/10.3390/ijgi11050300
Li M, Chu R, Sha X, Islam ARMT, Jiang Y, Shen S. How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China? ISPRS International Journal of Geo-Information. 2022; 11(5):300. https://doi.org/10.3390/ijgi11050300
Chicago/Turabian StyleLi, Meng, Ronghao Chu, Xiuzhu Sha, Abu Reza Md. Towfiqul Islam, Yuelin Jiang, and Shuanghe Shen. 2022. "How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China?" ISPRS International Journal of Geo-Information 11, no. 5: 300. https://doi.org/10.3390/ijgi11050300
APA StyleLi, M., Chu, R., Sha, X., Islam, A. R. M. T., Jiang, Y., & Shen, S. (2022). How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China? ISPRS International Journal of Geo-Information, 11(5), 300. https://doi.org/10.3390/ijgi11050300