Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches
Abstract
:1. Introduction
2. Methods
2.1. The ESF-SVC Model
2.2. The RE-ESF-SVC Model
3. Study Area and Data
3.1. Study Area and Rental Housing Data
3.2. Variables
4. Results of RE-ESF-SVC
4.1. Summary of Estimates
4.2. Distributions of Coefficients
5. Model Comparison
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, J.Y.; Cocco, J.F. How do house prices affect consumption? Evidence from micro data. J. Monet. Econ. 2007, 54, 591–621. [Google Scholar] [CrossRef] [Green Version]
- Kishor, N.K.; Marfatia, H.A. The dynamic relationship between housing prices and the macroeconomy: Evidence from OECD countries. J. Real Estate Financ. Econ. 2017, 54, 237–268. [Google Scholar] [CrossRef]
- Agnello, L.; Castro, V.; Sousa, R.M. Economic activity, credit market conditions, and the housing market. Macroecon. Dyn. 2018, 22, 1769–1789. [Google Scholar] [CrossRef] [Green Version]
- Kuethe, T.H.; Pede, V.O. Regional housing price cycles: A spatio-temporal analysis using US state-level data. Reg. Stud. 2011, 45, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Czembrowski, P.; Kronenberg, J. Hedonic pricing and different urban green space types and sizes: Insights into the discussion on valuing ecosystem services. Landsc. Urban Plan. 2016, 146, 11–19. [Google Scholar] [CrossRef]
- Belke, A.; Keil, J. Fundamental determinants of real estate prices: A panel study of German regions. Int. Adv. Econ. Res. 2018, 24, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Wei, Y.D.; Wu, J. Amenity effects of urban facilities on housing prices in China: Accessibility, scarcity, and urban spaces. Cities 2020, 96, 102433. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Anselin, L. What Is Special about Spatial Data? Alternative Perspectives on Spatial Data Analysis; Technical Report 89-4; UC Santa Barbara: National Center for Geographic Information and Analysis: Santa Barbara, CA, USA, 1989. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Sheppard, S. Hedonic analysis of housing markets. In Handbook of Regional and Urban Economics, 1st ed.; Cheshire, P.C., Mills, E.S., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, Chapter 41; pp. 1595–1635. [Google Scholar] [CrossRef]
- McMillen, D.P.; Redfearn, C.L. Estimation and hypothesis testing for nonparametric hedonic house price functions. J. Reg. Sci. 2010, 50, 712–733. [Google Scholar] [CrossRef]
- Pan, Y.; Roth, A.; Yu, Z.; Doluschitz, R. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Comput. Environ. Urban Syst. 2010, 34, 400–408. [Google Scholar] [CrossRef]
- Jang, M.; Kang, C.D. Retail accessibility and proximity effects on housing prices in Seoul, Korea: A retail type and housing submarket approach. Habitat Int. 2015, 49, 516–528. [Google Scholar] [CrossRef]
- Murakami, D.; Lu, B.; Harris, P.; Brunsdon, C.; Charlton, M.; Nakaya, T.; Griffith, D.A. The importance of scale in spatially varying coefficient modeling. Ann. Am. Assoc. Geogr. 2019, 109, 50–70. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wu, C.; Ren, F.; Hu, W.; Du, Q. Multiscale geographically and temporally weighted regression: Exploring the spatiotemporal determinants of housing prices. Int. J. Geogr. Inf. Sci. 2019, 33, 489–511. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yue, H.; Li, Z. Examining the influences of air quality in China’s cities using multi-scale geographically weighted regression. Trans. GIS 2019, 23, 1444–1464. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef]
- Gelfand, A.E.; Kim, H.J.; Sirmans, C.; Banerjee, S. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 2003, 98, 387–396. [Google Scholar] [CrossRef]
- Finley, A.O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evol. 2011, 2, 143–154. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ. Plan. A 2008, 40, 2751–2769. [Google Scholar] [CrossRef]
- Patuelli, R.; Schanne, N.; Griffith, D.A.; Nijkamp, P. Persistence of regional unemployment: Application of a spatial filtering approach to local labor markets in Germany. J. Reg. Sci. 2012, 52, 300–323. [Google Scholar] [CrossRef]
- Helbich, M.; Griffith, D.A. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. Comput. Environ. Urban Syst. 2016, 57, 1–11. [Google Scholar] [CrossRef]
- McCord, M.J.; McCord, J.; Davis, P.T.; Haran, M.; Bidanset, P. House price estimation using an eigenvector spatial filtering approach. Int. J. Hous. Mark. Anal. 2019, 13, 845–867. [Google Scholar] [CrossRef]
- Murakami, D.; Yoshida, T.; Seya, H.; Griffith, D.A.; Yamagata, Y. A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spat. Stat. 2017, 19, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Griffith, D.A. Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spat. Stat. 2019, 30, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Murakami, D.; Zhang, Y.; Wu, X.; Li, D.; Wang, X.; Li, G. Investigating high-speed rail construction’s support to county level regional development in China: An eigenvector based spatial filtering panel data analysis. Transp. Res. Part B Methodol. 2020, 133, 21–37. [Google Scholar] [CrossRef]
- Yang, F.; Li, K.; Jin, M.; Shi, W. Does financial deepening drive spatial heterogeneity of PM2. 5 concentrations in China? New evidence from an eigenvector spatial filtering approach. J. Clean. Prod. 2021, 291, 125945. [Google Scholar] [CrossRef]
- Helbich, M.; Brunauer, W.; Vaz, E.; Nijkamp, P. Spatial heterogeneity in hedonic house price models: The case of Austria. Urban Stud. 2014, 51, 390–411. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, accessibility and housing values in metropolitan USA: A study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Wen, H.; Jin, Y.; Zhang, L. Spatial heterogeneity in implicit housing prices: Evidence from Hangzhou, China. Int. J. Strateg. Prop. Manag. 2017, 21, 15–28. [Google Scholar] [CrossRef]
- Inoue, R.; Ishiyama, R.; Sugiura, A. Identifying local differences with fused-MCP: An apartment rental market case study on geographical segmentation detection. Jpn. J. Stat. Data Sci. 2020, 3, 183–214. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Ishiyama, R.; Sugiura, A. Identification of Geographical Segmentation of the Rental Housing Market in the Tokyo Metropolitan Area by Generalized Fused Lasso. J. Jpn. Soc. Civ. Eng. Ser. D3 (Infrastruct. Plan. Manag.) 2020, 76, 251–263. [Google Scholar] [CrossRef]
- Peng, Z.; Inoue, R. Specifying multi-scale spatial heterogeneity in the rental housing market: The case of the Tokyo metropolitan area. In Proceedings of the GIScience 2021 Short Paper Proceedings, Poznań, Poland, 27–30 September 2021. [Google Scholar]
- Griffith, D.A. Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data. Can. Geogr./Le Géogr. Can. 1996, 40, 351–367. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering. Gaining Understanding through Theory and Visualization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Griffith, D.A.; Chun, Y. Spatial autocorrelation and eigenvector spatial filtering. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1477–1507. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Murakami, D. Spmoran: Moran’s Eigenvector-Based Spatial Regression Models; R Package Version 0.2.2.2. 2022. Available online: https://CRAN.R-project.org/package=spmoran (accessed on 18 March 2022).
- Peng, Z.; Inoue, R. Tokyo Metropolitan Area Rent Data. Mendeley Data; V1. 2022. Available online: https://data.mendeley.com/datasets/fjtbpb628j/1 (accessed on 18 March 2022).
Variable | Mean | Min | Max | Standard Deviation |
---|---|---|---|---|
Rent per square meter (JPY/m) | 2956.79 | 504.59 | 35,888.50 | 747.7 |
Time to the nearest station (min) | 7.09 | 1 | 30 | 4.20 |
Accessibility to major stations 1 (min) | 28.33 | 9.64 | 57.36 | 8.33 |
Apartment age (year) | 20.29 | 1 | 35 | 9.10 |
Apartment size (m) | 35.95 | 10 | 296 | 20.27 |
Floor number | 3.03 | 1 | 14 | 1.99 |
Variable | Min | LQ | Median | UQ | Max | ||
---|---|---|---|---|---|---|---|
Intercept | 8.577 | 9.389 | 9.568 | 9.768 | 10.400 | 0.021 | 1.996 |
Time to the nearest station | −0.164 | −0.051 | −0.035 | −0.024 | 0.021 | 0.002 | 0.424 |
Accessibility to major stations 1 | −0.269 | −0.157 | −0.115 | −0.072 | 0.019 | 0.004 | 1.542 |
Apartment size | −0.476 | −0.356 | −0.277 | −0.219 | 0.093 | 0.005 | 1.557 |
Apartment age | −0.150 | −0.107 | −0.098 | −0.090 | −0.070 | 0.001 | 1.309 |
Floor number | 0.064 | 0.064 | 0.064 | 0.064 | 0.064 | 0 | NA |
Residual standard error | 0.109 | ||||||
Residual Moran coefficient | 0.005 | ||||||
Adjusted | 0.817 | ||||||
BIC | −112,732.2 |
The Full ESF-SVC | The Selected ESF-SVC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Min | LQ | Median | UQ | Max | Min | LQ | Median | UQ | Max |
Intercept | 5.563 | 9.197 | 9.508 | 9.974 | 22.832 | 8.613 | 9.315 | 9.613 | 10.440 | 11.044 |
Time to the nearest station | −0.241 | −0.052 | −0.034 | −0.018 | 0.063 | −0.082 | −0.062 | −0.041 | −0.030 | 0.002 |
Accessibility to major stations 1 | −3.646 | −0.222 | −0.101 | 0.015 | 1.037 | −0.530 | −0.339 | −0.194 | −0.123 | 0.016 |
Apartment age | −0.213 | −0.110 | −0.099 | −0.089 | −0.020 | −0.091 | −0.079 | −0.070 | −0.066 | −0.057 |
Apartment size | −0.519 | −0.357 | −0.281 | −0.220 | 0.124 | −0.447 | −0.358 | −0.292 | −0.191 | −0.006 |
Floor number | −0.010 | 0.053 | 0.063 | 0.075 | 0.150 | 0.043 | 0.059 | 0.064 | 0.068 | 0.077 |
Residual standard error | 0.109 | 0.115 | ||||||||
Residual Moran coefficient | 0.009 | 0.089 | ||||||||
Adjusted | 0.817 | 0.794 | ||||||||
BIC | −103,574.1 | −106,355.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Inoue, R. Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 283. https://doi.org/10.3390/ijgi11050283
Peng Z, Inoue R. Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches. ISPRS International Journal of Geo-Information. 2022; 11(5):283. https://doi.org/10.3390/ijgi11050283
Chicago/Turabian StylePeng, Zhan, and Ryo Inoue. 2022. "Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches" ISPRS International Journal of Geo-Information 11, no. 5: 283. https://doi.org/10.3390/ijgi11050283
APA StylePeng, Z., & Inoue, R. (2022). Identifying Multiple Scales of Spatial Heterogeneity in Housing Prices Based on Eigenvector Spatial Filtering Approaches. ISPRS International Journal of Geo-Information, 11(5), 283. https://doi.org/10.3390/ijgi11050283