Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic Configuration Associated with POI
Abstract
:1. Introduction
2. Materials and Methods
2.1. YOLOv3 Network Structure for Machine Recognition of Map Point Symbols
2.2. Method to Improve the Accuracy of Map Point Symbols Recognition
2.3. Machine Automatic Positioning Configuration of Map Point Symbols
Algorithm 1: DFA-based keyword matching rules. |
Input: Candidate Keywords A = , POI to Be Matched T |
Step 1: Initialize the result set R; |
Step 2: Construct NFA; |
Step 3: NFA traverses the item T to be matched, and activates the active state set; |
Step 4: Read the characters in T and jump, match all keywords in A, and check whether the status is accepted; |
Step 5: If the match is successful, the result is stored in R1, and the next text match is performed; |
Step 6: All matches are completed, and the set R is returned. |
Output: Result Set R |
3. Experiments
3.1. Experimental Data
3.1.1. Point Symbols Sample Dataset
3.1.2. POI Dataset
3.2. Map Point Symbols Machine Recognition
3.2.1. Evaluation Criteria
3.2.2. Model Comparison and Experimental Analysis
3.2.3. Visualization Results
3.3. Map Point Symbols Machine Automatic Localization Configuration
3.3.1. Matching of Point Symbols to POI
3.3.2. Point Symbols Machine Automatic Positioning Configuration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Chen, Y.; Zhou, D. Symbolic representation on geographic concepts and their mutual relationships. In Geoinformatics 2006: Geospatial Information Science; SPIE: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- Ahmed, M.; Ward, R. An expert system for general symbol recognition. Pattern Recognit. 2000, 33, 1975–1988. [Google Scholar] [CrossRef]
- Zaidi, S.; Ansari, M.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Chen, G.; Tan, X.; Guo, B.; Zhu, K.; Liao, P.; Wang, T.; Wang, Q.; Zhang, X. SDFCNv2: An Improved FCN Framework for Remote Sensing Images Semantic Segmentation. Remote Sens. 2021, 13, 4902. [Google Scholar] [CrossRef]
- Song, S.; Yu, H.; Miao, Z.; Zhang, Q.; Lin, Y.; Wang, S. Domain Adaptation for Convolutional Neural Networks-Based Remote Sensing Scene Classification. Geosci. Remote Sens. Lett. IEEE 2019, 16, 1324–1328. [Google Scholar] [CrossRef]
- Simistira, F.; Papavassiliou, V.; Katsouros, V.; Carayannis, G. A System for Recognition of On-Line Handwritten Mathematical Expressions. In Proceedings of the International Conference on Frontiers in Handwriting Recognition, Bari, Italy, 18–20 September 2012; pp. 193–198. [Google Scholar] [CrossRef]
- Cao, C.; Zheng, J.; Huang, Y. A Special Symbol Recognition and Location Algorithm Based on Muti-Template Matching. Comput. Appl. Softw. 2021, 38, 175–180. [Google Scholar] [CrossRef]
- Sadahiro, Y. A Statistical Method for Determining the Size of Map Labels. Theory Appl. GIS 2009, 3, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Aly, W.; Uchida, S.; Fujiyoshi, A.; Suzuki, M. Statistical Classification of Spatial Relationships among Mathematical Symbols. In Proceedings of the International Conference on Document Analysis & Recognition, Bari, Italy, 18–20 September 2012; pp. 1350–1354. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Tian, L.; Zhang, G. Intelligent Recognition of Map Point Symbols Based on Cognitive Theory. Hydrogr. Surv. Charting 2016, 36, 65–67. [Google Scholar] [CrossRef]
- Sun, C.; Shi, K.L.; Yong, J.H. Algorithm for Recognizing Symbols from Vector Engineering Drawings Based on a Two-Layer Structure. J. Comput. Aided Des. Comput. Graph. 2017, 29, 2171–2179. [Google Scholar] [CrossRef]
- Datta, R.; Mandal, P.; Chanda, B. Detection and identification of logic gates from document images using mathematical morphology. In Proceedings of the Computer Vision, Pattern Recognition, Image Processing & Graphics, Patna, India, 16–19 December 2015. [Google Scholar] [CrossRef]
- Ullah, I.; Lee, H.J. An Approach of Locating Korean Vehicle License Plate Based on Mathematical Morphology and Geometrical Features. In Proceedings of the International Conference on Computational Science & Computational Intelligence, Las Vegas, NV, USA, 15–17 December 2016; pp. 836–840. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Zheng, Z. Application of Mathematical Morphology in Airfield Target Recognition. J. Proj. Rocket. Missiles Guid. 2005, 25, 66–68. [Google Scholar] [CrossRef]
- Yun, D.Y.; Seo, S.K.; Zahid, U.; Lee, C.J. Deep Neural Network for Automatic Image Recognition of Engineering Diagrams. Appl. Sci. 2020, 10, 4005. [Google Scholar] [CrossRef]
- Quan, Y.; Shi, Y.; Miao, Q.; Qi, Y. A Combinatorial Solution to Point Symbol Recognition. Sensors 2018, 18, 3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Bei, W.; Huang, Y.; Chen, Z.; Zhao, X. Deep learning framework for geological symbol detection on geological maps. Comput. Geosci. 2021, 157, 104943. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Cai, H. CNN-Based Symbol Recognition in Piping Drawings. In Construction Research Congress 2020; American Society of Civil Engineers: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Hou, X. A Sketch Recognition Algorithm Based on Bayesian Network and Convolution Neural Network. J. Jilin Univ. Inf. Sci. Ed. 2019, 23, 261–267. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Zhao, Q.; Pan, J.; Yan, Y. Improved End-to-End Speech Recognition Using Adaptive Per-Dimensional Learning Rate Methods. IEICE Trans. Inf. Syst. 2016, 99, 2550–2553. [Google Scholar] [CrossRef]
- Riba, P.; Dutta, A.; Llados, J.; Fornes, A. Graph-based deep learning for graphics classification. In Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017), Kyoto, Japan, 9–15 November 2017; Volume 2, pp. 29–30. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, D.; Xue; Wang, Y.; Shao, Z. GeoAI Framework of Intelligent Recognition for Ubiquitous Map Imagery:Current State and Prospect. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Huang, S. YOLOv3 Based Object Tracking Method. Electron. Opt. Control 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Lin, F.; Zheng, X.; Wu, Q. Small object detection in aerial view based on improved YoloV3 neural network. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 522–525. [Google Scholar] [CrossRef]
- Luo, J.; Huang, J.; Bai, X. Road Small Target Detection Method Based on Improved YOLOv3. J. Chin. Comput. Syst. 2022, 43, 449–455. [Google Scholar] [CrossRef]
- Yan, R.; Ren, F.; Yang, Y.; Tao, T.T. Automatic Configuration Method of Map Symbol from ArcGIS to CorelDRAW. J. Geomat. 2017, 42, 69–73. [Google Scholar] [CrossRef]
- Yang, Q. Map symbolization of basic geographic information database under ArcGIS software platform. Sci. Tech. Inf. Gansu 2016, 45, 22–24+50. [Google Scholar] [CrossRef]
- Bartonek, D.; Andelova, P. Method for Cartographic Symbols Creation in Connection with Map Series Digitization. ISPRS Int. J. Geo Inf. 2022, 11, 105. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, S.; Yao, Z.; Chen, W. Automatic Military One-point Located Symbols Placement Based on the Genetic Algorithm. In Proceedings of the 2010 International Conference on Computational Intelligence and Vehicular System (CIVS2010), Shanghai, China, 24–26 April 2015; pp. 160–164. [Google Scholar] [CrossRef]
- Ware, J.; Jones, C.; Thomas, N. Automated map generalization with multiple operators: A simulated annealing approach. Int. J. Geogr. Inf. Sci. 2003, 17, 743–769. [Google Scholar] [CrossRef]
- Yang, T. PSO-SA based annotation configuration for highly dense targets. Electron. Des. Eng. 2020, 28, 182–187. [Google Scholar] [CrossRef]
- Huang, H.; Guo, Q.; Sun, Y.; Liu, Y. Reducing Building Conflicts in Map Generalization with an Improved PSO Algorithm. ISPRS Int. J. Geo Inf. 2017, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, Z.H.; Zhu, H.H.; Kuai, X. Handling Graphic Conflicts between Cartographic Features:Exemplifying Geolinear Features(Road, River and Boundary). Acta Geod. Cartogr. Sin. 2015, 44, 563–569. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, C.; Ding, R.; Chen, Z. VCG: Exploiting visual contents and geographical influence for Point-of-Interest recommendation. Neurocomputing 2019, 357, 53–65. [Google Scholar] [CrossRef]
- Tian, J.P.; You, X.; Jia, F.L.; Xia, Q. Cognitive Semantic Analysis and Dynamic Generation of Cartographic Symbols. Acta Geod. Cartogr. Sin. 2017, 46, 928–938. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, N.; Zahng, Y.; Zhang, X. Constitution Variables and Generation Modes of Electronic Map Symbols. Acta Geod. Cartogr. Sin. 2012, 41, 784–790. [Google Scholar]
- Yuan, L.; Uttal, D. Analogy Lays the Foundation for Two Crucial Aspects of Symbolic Development: Intention and Correspondence. Topics in Cognitive Science 2017, 9, 738–757. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Y.; Liu, Y.L. Map Visual Art Oriented by Structuralism and Deconstruction of Symbol Philosophy. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 552–556. [Google Scholar] [CrossRef]
- Xia, X.; Ye, Y.; Pi, L. Study and Thinking of the Development of Chinese Modern City Maps. J. Geo Inf. Sci. 2016, 18, 77–87. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, X.; Ji, Y.; Zhang, Z.; Guo, Z. Improved High Precision Aircraft Target Detection Method of YOLT. J. Phys. Conf. Ser. 2021, 1955, 12027–12028. [Google Scholar] [CrossRef]
- Ye, K.; Fang, Z.; Huang, X.; Ma, X.; Ji, J.; Xie, Y. Research on small target detection algorithm based on improved yolov3. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 1467–1470. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Han, J.H.; Yong, W.K.; Moon, Y.S. A New Architecture of Feature Pyramid Network for Object Detection. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1224–1228. [Google Scholar] [CrossRef]
- Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fu, C.; Li, X.; Wang, Z. Improved Faster R-CNN for Multi-Scale Object Detection. J. Comput. Aided Des. Comput. Graph. 2019, 31, 1095–1101. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Lin, H.; Li, L.; Yang, Y.; Meng, C.; Gao, J. Survey of One-Stage Small Object Detection Methods in Deep Learning. J. Front. Comput. Sci. Technol. 2022, 16, 41–58. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A. SSD: Single Shot MultiBox Detector; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Sun, Y.; Tang, G.; Xu, X. Analyses of Time Efficiency and Speed-ups in Inference Process of Two-Stage Object Detection Algorithms. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 1498–1502. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv. Neural Inf. Process. Syst. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.; Zhang, S.; Martin, R.; Cheng, M.; Hu, S. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Peng, Z.; Yin, H.; Wang, J.; Wang, X.; Shen, Y.; Stechele, W.; Cremers, D. Trajectory prediction for intelligent vehicles using spatial-attention mechanism. IET Intell. Transp. Syst. 2020, 14, 1855–1863. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Y.; Cong, R.; Lin, Y. Neural Network Text Classification Algorithm Combining Self-Attention Mechanism. Comput. Appl. Softw. 2020, 37, 200–206. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J.; Durrani, T. NestFuse: An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models. IEEE Trans. Instrum. Meas. 2020, 69, 9645–9656. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11211, pp. 3–19. [Google Scholar] [CrossRef] [Green Version]
- Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018, 107, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; Yin, Y.; Qin, C.; Zhang, K. Research and Implementation Based on Transcendental Function Coprocessor Sigmoid Function. Microelectron. Comput. 2018, 35, 11–14. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, Y. A method based on graphic entity for visualizing complex map symbols on the web. Cartogr. Geogr. Inf. Sci. 2015, 42, 44–53. [Google Scholar] [CrossRef]
- Zuo, X.; Nie, J. Algorithm of symbol generation and configuration of land polygons in present land-use map. Rans. Nonferrous Met. Soc. China 2011, 21, 743–747. [Google Scholar] [CrossRef]
- Li, K.; Lan, J. Efficient Unfixed Keywords Matching Algorithm Based on TCAM. Comput. Eng. 2012, 38, 269–271. [Google Scholar] [CrossRef]
- Fu, Z.; Li, J. Survey on high performance regular expression matching algorithms. Comput. Eng. Appl. 2018, 54, 1–13. [Google Scholar] [CrossRef]
- Zu, Y.; Yang, M.; Xu, Z.; Wang, L.; Tian, X.; Peng, K.; Dong, Q. GPU-based NFA Implementation for Memory Efficient High Speed Regular Expression Matching. ACM Sigplan Not. 2012, 47, 129–139. [Google Scholar] [CrossRef]
- Ficara, D.; Giordano, S.; Procissi, G.; Vitucci, F.; Antichi, G.; Di Pietro, A. An Improved DFA for Fast Regular Expression Matching. Acm Sigcomm Comput. Commun. Rev. 2008, 38, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Everingham, M.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Bejani, M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Kim, H.C.; Jae, K.M. A comparison of methods to reduce overfitting in neural networks. Int. J. Adv. Smart Converg. 2020, 9, 173–178. [Google Scholar] [CrossRef]
- Lin, C.; Shan, C.; Zhao, G.; Yang, Z.; Peng, J.; Chen, S.; Huang, R.; Li, Z.; Yi, X.; Du, J. Review of Image Data Augmentation in Computer Vision. J. Front. Comput. Sci. Technol. 2021, 15, 583–611. [Google Scholar] [CrossRef]
- Li, G.; Yang, Y.; Qu, X.; Cao, D.; Li, K. A deep learning based image enhancement approach for autonomous driving at night. Knowl. Based Syst. 2020, 213, 106617. [Google Scholar] [CrossRef]
- Dvornik, N.; Mairal, J.; Schmid, C. On the Importance of Visual Context for Data Augmentation in Scene Understanding. IEEE Trans. Pattern Anal. 2021, 43, 2014–2028. [Google Scholar] [CrossRef] [Green Version]
- Katsumata, Y.; Taniguchi, A.; Hafi, L.E.; Hagiwara, Y.; Taniguchi, T. SpCoMapGAN: Spatial Concept Formation-based Semantic Mapping with Generative Adversarial Networks. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 7927–7934. [Google Scholar] [CrossRef]
- Huang, L.; Fang, W.; Cui, Z. Ontology mapping model with uncertainty in semantic integration. Comput. Eng. Appl. 2009, 45, 140–144. [Google Scholar] [CrossRef]
Type | Training Set | Validation Set | Test Set | Labeled Boxes |
---|---|---|---|---|
Number | 5406 | 601 | 668 | 15,484 |
Symbol Category | Type Description |
---|---|
bank | bank, 24 h self-service banking |
edifice | building, office building |
government sector | committee, service center, office |
hospital | clinic, pharmacy, hospital, health service station |
hotel | hotel, guesthouse, apartment |
market | shopping center, shopping mall |
post office | post office |
PSB | police office, police station, security kiosk, public security bureau |
Model | Precision (%) | Recall (%) | mAP (%) |
---|---|---|---|
YOLOv3 | 96.70 | 99.09 | 98.95 |
YOLOv3 (CBAM) | 97.06 | 99.72 | 99.50 |
Model | Backbone | Input | FPS | Precision (%) | Recall (%) | mAP (%) |
---|---|---|---|---|---|---|
YOLOv3 (CBAM) | Darknet53 | 416 × 416 | 7.92 | 97.06 | 99.72 | 99.50 |
Faster RCNN | VGG16 | 600 × 600 | 2.13 | 91.29 | 99.94 | 99.01 |
SSD | MobileNetV2 | 300 × 300 | 20.46 | 94.23 | 92.93 | 97.44 |
Point Symbols Name | Keywords | Styles |
---|---|---|
bank | bank, ATM | |
edifice | business office | |
government sector | relevant government agency, district/county/town/provincial municipal government and related unit | |
hospital | hospital, clinic, pharmacy | |
hotel | hotel, guesthouse, guest house | |
market | shopping mall | |
post office | post office | |
PSB | public security police, social security agency, fire department | |
school | institution of higher learning, secondary school, primary school |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, X.; Li, H.; Zhu, G.; Li, H. Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic Configuration Associated with POI. ISPRS Int. J. Geo-Inf. 2022, 11, 540. https://doi.org/10.3390/ijgi11110540
Zhang H, Zhou X, Li H, Zhu G, Li H. Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic Configuration Associated with POI. ISPRS International Journal of Geo-Information. 2022; 11(11):540. https://doi.org/10.3390/ijgi11110540
Chicago/Turabian StyleZhang, Huili, Xiaowen Zhou, Huan Li, Ge Zhu, and Hongwei Li. 2022. "Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic Configuration Associated with POI" ISPRS International Journal of Geo-Information 11, no. 11: 540. https://doi.org/10.3390/ijgi11110540
APA StyleZhang, H., Zhou, X., Li, H., Zhu, G., & Li, H. (2022). Machine Recognition of Map Point Symbols Based on YOLOv3 and Automatic Configuration Associated with POI. ISPRS International Journal of Geo-Information, 11(11), 540. https://doi.org/10.3390/ijgi11110540