GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Mangrove Forest of the Cananéia-Iguape Estuarine-Lagoon System
2.3. Field Methodology
2.4. Vulnerability Parameters and Maps
2.5. Global Vulnerability Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstei, P.; Gao, X.; Gutowski, T.; Johns, T.; Krinner, G.; et al. Longterm climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, MA, USA, 2013; pp. 1029–1136. [Google Scholar] [CrossRef]
- Poloczanska, E.; Mintenbeck, K.; Portner, H.O.; Roberts, D.; Levin, L.A. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; 765p, Available online: https://www.ipcc.ch/srocc/download/ (accessed on 3 February 2021).
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7117. [Google Scholar] [CrossRef] [PubMed]
- Filho, P.W.M.S.; do Martins, E.S.F.; Costa, F.R. Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat, Brazilian Amazon: A remote sensing data approach. Ocean Coast. Manag. 2006, 49, 462–475. [Google Scholar] [CrossRef]
- Ahmed, N.; Howlader, N.; Hoque, M.A.-A.; Pradhan, B. Coastal erosion vulnerability assessment along the eastern coast of Bangladesh using geospatial techniques. Ocean. Coast. Manag. 2021, 199, 105408. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Spivak, A.C.; Nestlerode, J.A.; Almario, A.E.; Cormier, N.; From, A.S.; Krauss, K.W.; Russell, M.J.; Alvarez, F.; et al. Rapid peat development beneath created, maturing mangrove forests: Ecosystem changes across a 25-yr chronosequence. Ecol. Appl. 2020, 30, e02085. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Regina, C.; Souza, D.G. A Erosão costeira e os desafios da gestão costeira no Brasil. Rev. Gestão Costeira Integr. 2009, 9, 17–37. [Google Scholar]
- Pennings, S.C.; Glazner, R.M.; Hughes, Z.J.; Kominoski, J.S.; Armitage, A.R. Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA. Ecology 2021, 102, e03309. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Beck, M.W.; Torres-Ortega, S.; Espejo, A.; Narayan, S.; Díaz-Simal, P.; Lange, G.-M. Valuing the protection services of mangroves at national scale: The Philippines. Ecosyst. Serv. 2018, 34, 24–36. [Google Scholar] [CrossRef]
- Cummings, A.R.; Shah, M. Mangroves in the global climate and environmental mix. Geogr. Compass. 2018, 12, e12353. [Google Scholar] [CrossRef]
- Jin-eong, O. The ecology of mangrove conservation and management. Hydrobiologia 1995, 295, 343–351. [Google Scholar] [CrossRef]
- Rog, S.M.; Clarke, R.H.; Cook, C.N. More than marine: Revealing the critical importance of mangrove ecosystems for terrestrial vertebrates. Divers. Distrib 2017, 23, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar Coast. Shelf Sci. 2008, 76, 331–349. [Google Scholar] [CrossRef]
- Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr Clim Chang. Rep 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [Green Version]
- Macintosh, D.; Ashton, E. Principles for a Code of Conduct for the Management and Sustainable Use of Mangrove Ecosystems; The World Bank: Washington, DC, USA, 2004. [Google Scholar]
- Lignon, M.; Coelho, C.; Almeida, R.; Menghini, R.; Novelli, Y. Characterisation of mangrove forest types in view of conservation and management: A review of mangals at the Cananéia region, São Paulo State, Brazil. J. Coast. Res. 2011, 64, 349–353. [Google Scholar]
- Walters, B.; Ronnback, P.; Kvacs, J.; Crona, B.; Hussain, S.; Badola, R.; Primavera, J.; Barbier, E.; Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Polidoro, B.; Carpenter, K.; Collins, L.; Duke, N.; Ellison, A.; Ellison, J.; Yong, J. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Shi, X.; Wang, S. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 2008, 28, 336. [Google Scholar] [CrossRef]
- Barbieri, E.B. The values of wetlands: Landscape and institutional valuing the environment as input: Review of applications to mangrove-fishery linkages. Ecol. Econ. 2000, 35, 47–61. [Google Scholar] [CrossRef]
- Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.; Misman, M.A.; Musa, S. GIS and Remote Sensing for Mangroves Mapping and Monitoring, Geographic Information Systems and Science, Jorge Rocha and Patrícia Abrantes. In Geographic Information Systems and Science; 2019; Available online: https://www.intechopen.com/books/geographic-information-systems-and-science/gis-and-remote-sensing-for-mangroves-mapping-and-monitoring (accessed on 14 March 2021). [CrossRef] [Green Version]
- Mondal, B.; Saha, A.K.; Roy, A. Mapping mangroves using LISS-IV and Hyperion data in part of the Indian Sundarban. Int. J. Remote Sens. 2019, 40, 9380–9400. [Google Scholar] [CrossRef]
- Dumas, P.; Prontemps, J.; Mangeas, M.; Luneau, G. Developing erosion models for integrated coastal zone management: A case study of The New Caledonia west coast. Mar. Pollut. Bull. 2010, 61, 519–529. [Google Scholar] [CrossRef]
- Lewis, L.; Nyamulinda, V. The critical role of human activities in land degradation in Rwanda. Land Degrad. Dev. 1996, 7, 47–55. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 2017, 32, 874–885. [Google Scholar] [CrossRef]
- Krause, G.; Bock, M.; Weiers, S.; Braun, G. Mapping land-cover and mangrove structures with remote sensing techniques: A contribution to a synoptic GIS in support of coastal management in North Brazil. Environ. Manag. 2004, 34, 429–440. [Google Scholar] [CrossRef]
- Semeniuk, V. Mangrove zonation along an eroding coastline in King Sound. Br. Ecol. Soc. 1980, 68, 789–812. [Google Scholar]
- Area, N.P.; Collins, F.; Leuven, K.U. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar]
- Cai, Q.G.; Wang, H.; Curtin, D.; Zhu, Y. Evaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Areas, China. CATENA 2005, 59, 19–33. [Google Scholar] [CrossRef]
- Amorim, S.S.; Silva, D.D.; Pruski, F.F.; Matos, A.T. Avaliação do desempenho dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil. Eng. Agrícola 2010, 30, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. World Heritage Nomination—IUCN Technical Evaluation Atlantic forests (Southeast) Brazil. 1999; Available online: https://whc.unesco.org/document/154531 (accessed on 12 February 2021).
- Lignon, M.C.; Kampel, M. Análise multitemporal de imagens Landsat para monitoramento de áreas de manguezal: Subsídio à gestão costeira do litoral sul do Estado de São Paulo. In Simpósio Brasileiro de Sensoriamento Remoto; ReBentos: Curitiba, Brazil, 2009; pp. 5032–5038. [Google Scholar]
- SEMASP. Macrozoneamento do Complexo Estuarino Lagunar de Iguape Cananéia: Plano de Gerenciamento Costeiro; Secretaria do Meio Ambiente: São Paulo, Brazil, 1990. [Google Scholar]
- Naohiro, M.; Putth, S.; Keiyo, M. Mangrove rehabilitation on highly eroded coastal shorelines at Samut Sakhon, Thailand. Int. J. Ecol. 2012, 1, 171876. [Google Scholar] [CrossRef] [Green Version]
- Harvey, N.; Clouston, B.; Carvalho, P. Improving coastal vulnerability assessment methodologies for integrated coastal zone management: An approach from South Australia. Aust. Geogr. Stud. 1999, 37, 50–69. [Google Scholar] [CrossRef]
- Besnard, W. Considerações gerais em tôrno da região lagunar de Cananéia-Iguape: I. Bol. Inst. Paul. Oceanogr. 1950, 1, 09–26. [Google Scholar] [CrossRef] [Green Version]
- Miyao, S.M.; Harari, J. IEstudo preliminar da maré e das correntes de maré da região estuarina de Cananéia (25°5–48°W). Bol. Inst. Oceanográfico 1989, 37, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Filho, J.B.; Miranda, L.B. Estimativa da descarga de água doce no sistema estuarino-lagunar de cananéia-iguape. Rev. Bras. Oceanográfica 1997, 45, 89–94. [Google Scholar] [CrossRef]
- Mesquita, A.R.; Harari, J. Tides and tide gauges of Cananéia and Ubatuba—Brazil (Lat. 24°), 1983, São Paulo. Available online: https://repositorio.usp.br/item/001428244 (accessed on 12 February 2021).
- GEOBRÁS- Geobrás S/A Engenharia e Fundações. Complexo Valo Grande, Mar Pequeno e Rio Ribeira de Iguape; Report; DAEE: São Paulo, Brazil, 1966; Volume 2. [Google Scholar]
- Mishima, M.; Tangi, S. Fecundidade e incubação dos bagres marinhos (Osteichthyes, Ariidae) do complexo estuarino-lagunar de Cananéia (25°S, 48°W). Bol. Inst. Pesca 1985, 12, 77–85. [Google Scholar]
- Novelli, Y.S.; de Mesquita, H.S.L.; Molero, G.C. The Cananéia Lagoon estuarine system, São Paulo, Brazil. Estuaries 1990, 13, 193–203. [Google Scholar] [CrossRef]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- Rao, K.; Subraelu, P.; Rao, T.; Malini, B.; Ratheesh, R.; Bhattacharya, S.; Rajawat, A. Sea-level rise and coastal vulnerability: An assessment of Andhra Pradesh coast, India through remote sensing and GIS. J. Coast. Conserv. 2009, 12, 195–207. [Google Scholar]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Gornitz, V.; Daniels, R.; White, T.; Birdwell, K. The Development of a coastal risk assessment database: Vulnerability to sea-level rise in the U.S. Southeast. J. Coast. Res. 1994, 12, 327–338. [Google Scholar]
- Edet, A.E. Vulnerability evaluation of a coastal plain sand aquifer with a case example from Calabar, southeastern Nigeria. Environ. Geol. 2004, 45, 1062–1070. [Google Scholar] [CrossRef]
- Coelho, C.; Veloso, R.S.F.; Pinto, F.T. Modelos de previsão da evolução da configuração costeira Risk evaluation. predictive models of coastal configuration evolution. In 1as Jornadas de Hidráulica, Recursos Hídricos e Ambiente; FEUP: Porto, Portugal, 2006; pp. 17–25. [Google Scholar]
- Water Resources Fund of Sao Paulo. Sistema de Informações Geográficas da Bacia do Ribeira de Iguape e Litoral Sul. 2013. Available online: https://www.sigrb.com.br/index.php (accessed on 4 February 2021).
- Diez, P.G.; Perillo, G.M.E.; Piccolo, M.C. Vulnerability to sea-level rise on the coast of the Buenos Aires Province. J. Coast. Res. 2007, 231, 119–126. [Google Scholar] [CrossRef]
- Rajkaran, A.; Adams, J.B.; Preez, D.R. A method for monitoring mangrove harvesting at the Mngazana estuary, South Africa. Afr. J. Aquat. Sci. 2004, 29, 57–65. [Google Scholar] [CrossRef]
- Bryan, B.; Harvey, N.; Belperio, T.; Bourman, B. Distributed process modelling for regional assessment of coastal vulnerability to sea-level rise. Environ. Modeling Assess. 2001, 6, 57–65. [Google Scholar] [CrossRef]
- Domínguez, L.; Anfuso, G.; Gracia, F.J. Vulnerability assessment of a retreating coast in SW Spain. Environ. Geol. 2005, 47, 1037–1044. [Google Scholar] [CrossRef]
- Makota, V.; Sallema, R.; Mahika, C. Monitoring Shoreline Change using Remote Sensing and GIS: A Case Study of Kunduchi Area, Tanzania. West Indian Ocean J. Mar. Sci. 2004, 3, 1–10. [Google Scholar]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef]
- Kairo, J.G.; Kivyatu, B.; Koedam, N. Application of remote sensing and GIS in the management of mangrove forests within and adjacent to Kiuga marine protected area. Environ. Dev. Sustain. 2002, 4, 153–166. [Google Scholar] [CrossRef]
- Gulizar, O. Vulnerability of Coastal Areas to Sea Level Rise: A Case Study on Goksu Delta. Master’s Thesis, Middle East Technical University, Ankara, Ankara, 2007. Available online: https://open.metu.edu.tr/handle/11511/16656 (accessed on 15 March 2021).
- Mazda, Y.; Magi, M.; Nanao, H.; Kogo, M.; Miyagi, T.; Kanazawa, N.; Kobashi, D. Coastal erosion due to long-term human impact on mangrove forests. Wetl. Ecol. Manag. 2002, 10, 1091. [Google Scholar] [CrossRef]
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of Cape Hatteras National Seashore (CAHA) to Sea-Level Rise; U.S. Geological Survey Open-File Report 2004-1064; USGS: Liston, VA, USA, 2004. [Google Scholar] [CrossRef]
- Mazda, Y.; Kanazawa, N.; Wolanski, E. Tidal asymmetry in mangrove creeks. Hydrobiologia 1995, 295, 51–58. [Google Scholar] [CrossRef]
- Fitton, J.M.; Hansom, J.D.; Rennie, A.F. A method for modelling coastal erosion risk: The example of Scotland. Nat. Hazards 2018, 91, 931–961. [Google Scholar] [CrossRef] [Green Version]
Parameter/Vulnerability | 1-Very Low | 2-Low | 3-Medium | 4-High | 5-Very High |
---|---|---|---|---|---|
Elevation (m) | >30 | 20 to 30 | 10 to 20 | 5 to 10 | <5 |
Geomorphology | Mountains | Rocky cliffs | Saltwater marshes Mangroves Coral reefs Sheltered beaches | Floodplains Exposed beaches Estuaries | Dunes |
Geology | Magmatic rocks | Metamorphic rocks | Sedimentary rocks | Large unconsolidated sediments | Small unconsolidated sediments |
Land cover | Forest | Undergrowth, crops | Soil without covering | Rural urbanization | Urbanization |
Anthropogenic activities | Interventions with maintenance structures in the coastline | Interventions without structures, but without evidence sedimentary reduction | Interventions without structures, but with evidence of sedimentary reduction | Without interventions and with no evidence of sedimentary reduction | Without interventions, but with evidence of sedimentary reduction |
Distance to the coastline (m) | >1000 | 200 to 1000 | 50 to 200 | 20 to 50 | <20 |
Maximum tidal range (m) | <1 | 1 to 2 | 2 to 4 | 4 to 6 | >6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, L.R.; Vieira, J.G.; Silva, I.M.d.; Barbieri, E.; Morgado, F. GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area. ISPRS Int. J. Geo-Inf. 2021, 10, 598. https://doi.org/10.3390/ijgi10090598
Vieira LR, Vieira JG, Silva IMd, Barbieri E, Morgado F. GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area. ISPRS International Journal of Geo-Information. 2021; 10(9):598. https://doi.org/10.3390/ijgi10090598
Chicago/Turabian StyleVieira, Luís Russo, José Guilherme Vieira, Isabel Marques da Silva, Edison Barbieri, and Fernando Morgado. 2021. "GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area" ISPRS International Journal of Geo-Information 10, no. 9: 598. https://doi.org/10.3390/ijgi10090598
APA StyleVieira, L. R., Vieira, J. G., Silva, I. M. d., Barbieri, E., & Morgado, F. (2021). GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area. ISPRS International Journal of Geo-Information, 10(9), 598. https://doi.org/10.3390/ijgi10090598