Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. GIMMS NDVI
2.2.2. GIMMS LAI
2.2.3. GLOBMAP LAI
2.2.4. MODIS NDVI and EVI
2.2.5. MODIS NIRv
2.3. Meteorological Dataset
2.4. Calculation of the VGEG
2.5. Trend Analysis
2.6. Correlation Analysis
2.7. Data Processing and Analysis
3. Results
3.1. Validation and Trend of the Climate and Their Variation along Different Elevation
3.2. Spatial Patterns and Variations of the Climate and VIs
3.3. Spatial Patterns of the VGEG and Its Variations in Different Elevation
3.4. Correlation between VIs and Climatic Factors
4. Discussion
4.1. Merit and Limitation
4.2. Performances of the VGEGs
4.3. Implications for Alpine Grassland
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhu, Z.; Piao, S.; Yan, T.; Ciais, P.; Bastos, A.; Zhang, X.; Wang, Z. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming hiatus. Geophys. Res. Lett. 2018, 45, 1402–1409. [Google Scholar] [CrossRef]
- Liu, Y.; Piao, S.; Gasser, T.; Ciais, P.; Yang, H.; Wang, H.; Keenan, T.F.; Huang, M.; Wan, S.; Song, J.; et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 2019, 12, 809–814. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.-C.; Gégout, J.-C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.; Diaz, H.; Baraër, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Chen, B.; Li, Y.; Xu, Y.; Shen, W. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming. Environ. Monit. Assess. 2016, 188, 186. [Google Scholar] [CrossRef]
- Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.-C.; Marquet, P.; De Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Foggin, J.M. Depopulating the Tibetan Grasslands. Mt. Res. Dev. 2008, 28, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Li, J.; Zhang, C.; Chen, Y.; Wang, K.; Odeh, I.; Qi, J. Simulation of terrestrial carbon equilibrium state by using a detachable carbon cycle scheme. Ecol. Indic. 2017, 75, 82–94. [Google Scholar] [CrossRef]
- Wang, Z. Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state. Ecol. Model. 2019, 401, 94–110. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Peng, S.; Piao, S.; Ciais, P.; Betts, R. Changes in productivity and carbon storage of grasslands in China under future global warming scenarios of 1.5 °C and 2 °C. J. Plant Ecol. 2019, 12, 804–814. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H. Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Clim. Dyn. 2018, 52, 3471–3488. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Wang, X.; Chen, D. Interannual variability of GNDVI and it’s relationship with altitudinal in the Three-River Headwater Region. Ecol. Environ. Sci. 2018, 27, 1411–1416. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Vegetation of China and Its Geographic Pattern: Illustration of the Vegetation Map of the People’s Republic of China (1: 1,000,000); Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Shen, X.; An, R.; Feng, L.; Ye, N.; Zhu, L.; Li, M. Vegetation changes in the Three-River Headwaters Region of the Tibetan Plateau of China. Ecol. Indic. 2018, 93, 804–812. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.-X.; Cheng, W.-M.; Zhao, Z.-Q.; Guo, J.-Y.; Ding, H.; Wang, N. Interannual and seasonal vegetation changes and influencing factors in the extra-high mountainous areas of Southern Tibet. Remote Sens. 2019, 11, 1392. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Heermann, P.D.; Khazenie, N. Classification of Multispectral Remote Sensing Data Using a Backpropagation Neural Network. IEEE Trans. Geosci. Remote Sens. 1992, 30, 81–88. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, R.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 2012, 117, G04003. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, A.; Xiaolin, Z.; Miaogen, S.; Yafeng, W.; Ruyin, C.; Xuehong, C.; Wei, Y.; Jin, C.; Yanhong, T. Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau. Glob. Chang. Biol. 2018, 24, 5411–5425. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M.; Wang, X.; Yuan, W.; Song, Y.; Tan, J.; Huang, G. Seasonal variation of vegetation productivity over an alpine meadow in the Qinghai–Tibet Plateau in China: Modeling the interactions of vegetation productivity, phenology, and the soil freeze–thaw process. Ecol. Res. 2013, 28, 271–282. [Google Scholar] [CrossRef]
- Wan, Y.-F.; Gao, Q.-Z.; Li, Y.; Qin, X.-B. Change of snow cover and its impact on alpine vegetation in the source regions of large rivers on the Qinghai-Tibetan Plateau, China. Arct. Antarct. Alp. Res. 2014, 46, 632–644. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.; Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 2015, 38, 546–555. [Google Scholar] [CrossRef]
- Mommer, L.; Cotton, T.E.A.; Raaijmakers, J.M.; Termorshuizen, A.J.; Van Ruijven, J.; Hendriks, M.; Van Rijssel, S.Q.; De Mortel, J.E.V.; Der Paauw, J.W.V.; Schijlen, E. Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 2018, 218, 542–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Gower, S.T.; Kucharik, C.J.; Norman, J.M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 1999, 70, 29–51. [Google Scholar] [CrossRef]
- Potter, C.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production—A process model-based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Zhou, D.-C.; Fan, J.-W.; Hu, Z.-M. Comparison of four light use efficiency models for estimating terrestrial gross primary production. Ecol. Model. 2015, 300, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
No. | Latitude (°) | Longitude (°) | Elevation (m) | MAT (°C/y) | MAP (mm/y) | Vegetation Types |
---|---|---|---|---|---|---|
1 | 32.20000 | 96.48333 | 3629 | 5.3 | 573 | Alpine meadow |
2 | 32.90000 | 95.30000 | 4172 | 1.7 | 546 | Alpine meadow |
3 | 32.93333 | 100.75000 | 3663 | 3.5 | 643 | Alpine meadow |
4 | 33.01667 | 97.01667 | 3975 | 4.3 | 484 | Alpine meadow |
5 | 33.43333 | 101.48333 | 3626 | 1.6 | 728 | Alpine meadow |
6 | 33.75000 | 99.65000 | 3982 | 0.1 | 589 | Alpine meadow |
7 | 33.80000 | 97.13333 | 4426 | −3.6 | 551 | Alpine meadow |
8 | 34.13333 | 95.78333 | 4194 | −1.0 | 469 | Alpine steppe |
9 | 34.21667 | 92.43333 | 4536 | −2.9 | 348 | Alpine steppe |
10 | 34.73333 | 101.60000 | 3519 | 0.4 | 605 | Alpine meadow |
11 | 34.91667 | 98.21667 | 4271 | −2.6 | 359 | Alpine steppe |
12 | 35.21667 | 93.08333 | 4616 | −4.5 | 342 | Alpine steppe |
13 | 35.58333 | 99.98333 | 3302 | 2.0 | 408 | Alpine steppe |
VI | VI Trend 1 | MAT | MAP | ||||
---|---|---|---|---|---|---|---|
Function | Cor 2 | Sig 3. | Function | Cor 2 | Sig 3. | ||
GIMMS-LAI | + | VI = 2.374 * MAT − 5.424 | 0.73 | 0.001 | VI = −29.16 * MAP + 526.9 | −0.08 | 0.776 |
− | VI = −0.8344 * MAT − 1.652 | −0.31 | 0.246 | VI = −65.04 * MAP + 641.2 | −0.2 | 0.469 | |
GIMMS-NDVI | + | VI = 13.91 * MAT − 8.338 | 0.54 | 0.03 | VI = −974.6 * MAP + 714.8 | −0.07 | 0.808 |
− | VI = −1.533 * MAT − 2.764 | −0.07 | 0.79 | VI = −282.6 * MAP + 606.5 | −0.08 | 0.782 | |
GLOBMAP-LAI | + | VI = 1.95 * MAT − 5.492 | 0.52 | 0.037 | VI = −134.2 * MAP + 611.8 | −0.16 | 0.058 |
− | VI = −2.231 * MAT − 7.744 | −0.42 | 0.105 | VI = 148.3 * MAP + 251.6 | 0.15 | 0.57 | |
MODIS-EVI | + | VI = 8.515 * MAT − 6.431 | 0.21 | 0.433 | VI = −1155 * MAP + 617.4 | −0.17 | 0.526 |
− | VI = −7.001 * MAT − 0.5537 | 0.15 | 0.57 | VI = 302.5 * MAP + 380.6 | 0.1 | 0.7 | |
MODIS-NDVI | + | VI = 6.045 * MAT − 6.397 | 0.30 | 0.262 | VI = −142.8 * MAP + 462.4 | 0.04 | 0.874 |
− | VI = −6.771 * MAT + 0.326 | −0.48 | 0.06 | VI = 582.4 * MAP + 181.5 | 0.27 | 0.31 | |
MODIS-NIRv | + | VI = 1.95 * MAT − 5.492 | 0.22 | 0.411 | VI = −2452 * MAP + 613.4 | −0.22 | 0.419 |
− | VI = −11.11 * MAT − 1.136 | −0.42 | 0.102 | VI = 344.6 * MAP + 428.1 | 0.06 | 0.838 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, X.; Wang, H.; Zheng, K.; Li, H.; Wang, G.; An, Z. Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China. ISPRS Int. J. Geo-Inf. 2021, 10, 193. https://doi.org/10.3390/ijgi10030193
Wang Z, Liu X, Wang H, Zheng K, Li H, Wang G, An Z. Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China. ISPRS International Journal of Geo-Information. 2021; 10(3):193. https://doi.org/10.3390/ijgi10030193
Chicago/Turabian StyleWang, Zhaoqi, Xiang Liu, Hao Wang, Kai Zheng, Honglin Li, Gaini Wang, and Zhifang An. 2021. "Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China" ISPRS International Journal of Geo-Information 10, no. 3: 193. https://doi.org/10.3390/ijgi10030193
APA StyleWang, Z., Liu, X., Wang, H., Zheng, K., Li, H., Wang, G., & An, Z. (2021). Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China. ISPRS International Journal of Geo-Information, 10(3), 193. https://doi.org/10.3390/ijgi10030193