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Abstract: The Three-River Source Region (TRSR) is vital to the ecological security of China. However,
the impact of global warming on the dynamics of vegetation along the elevation gradient in the
TRSR remains unclear. Accordingly, we used multi-source remote sensing vegetation indices (VIs)
(GIMMS (Global Inventory Modeling and Mapping Studies) LAI (Leaf Area Index), GIMMS NDVI
(Normalized Difference Vegetation Index), GLOBMAP (Global Mapping) LAI, MODIS (Moderate
Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index), MODIS NDVI, and MODIS
NIRv (near-infrared reflectance of vegetation)) and digital elevation model data to study the changes
of VGEG (Vegetation Greenness along the Elevation Gradient) in the TRSR from 2001 to 2016. Results
showed that the areas with a positive correlation of vegetation greenness and elevation accounted for
36.34 ± 5.82% of the study areas. The interannual variations of VGEG showed that the significantly
changed regions were mainly observed in the elevation gradient of 4–5 km. The VGEG was strongest
in the elevation gradient of 4–5 km and weakest in the elevation gradient of >5 km. Correlation
analysis showed that the mean annual temperature was positively correlated with VIs, and the effect
of the mean annual precipitation on VIs was more obvious at low altitude than in high altitude. This
study contributes to our understanding of the VGEG variation in the TRSR under global climate
variation and also helps in the prediction of future carbon cycle patterns.

Keywords: vegetation greenness; elevation gradient; vegetation indices; global warming

1. Introduction

The accelerating global warming and CO2 concentration have exerted widespread
impacts on the terrestrial ecosystem since the 1980s [1–3]. The ecological consequences of
global warming are likely to be more pronounced in high-mountain regions [4,5]. Increasing
evidence shows that the rate of warming is amplified in mountain environments [6],
which will cause divergent vegetation greenness along the elevation gradient (from low to
high) [7]. Vegetation greenness along the elevation gradient (VGEG) can be defined as the
trend (expressed by slope) of vegetation greenness along the elevation gradient to a certain
extent. Generally, vegetation greenness decreases with the increased elevation due to the
limitation of low temperature at high altitudes [8], which indicates a negative vegetation
greenness along the elevation gradient. However, the elevation pattern of vegetation
greenness is probably altered under global warming [5,9–11] because the warming rate of
high-mountain regions is often greater than their low-elevation counterparts [4,12].

The Three River Source Region (TRSR) is located in the hinterland of the Qinghai-Tibet
Plateau and is composed of mountainous landforms higher than 2000 m above sea level.
The TRSR is also known as the “Water Tower of China” because it is the source of the
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Yellow River, the Yangtze River, and the Lantsang River. Approximately 40% of the world’s
population is influenced by these rivers [13]. Grassland is the dominant vegetation type in
the TRSR, playing essential roles in the carbon cycle [14–16], regional climate regulation [4],
and ecological security [17]. As one of the regions with a sensitive and fragile ecological
environment [18], the changes in climate and vegetation are critical to the ecological security
of China and the countries in Southeastern Asia [19,20].

To date, there are increasing vegetation-elevation related studies in the alpine ecosys-
tems of China. However, the existing studies drew diametrically opposing conclusions.
Some studies pointed out that the greening rate of vegetation decreased at increasing
elevation [8,21]. The opposite conclusions showed that vegetation greenness was increased
along with an increasing elevation [22]. These studies have not reached a consensus on
the dynamics of vegetation along the elevation gradient. One of the possible reasons is
that the study periods do not match each other, and the conclusions of short-term research
cannot be corroborated by long-term research. Another important reason may be the
differences in research methods. These studies involved field investigation and remote
sensing methods, the spatial scales of which are entirely different and probably led to
different research results. The third possible reason is that these studies only used a single
vegetation index (VI) for the study, which will inevitably introduce the uncertainty of the
VI itself into the results. This uncertainty is probably derived from the photographic ability
of the sensor, differences in noise processing methods, and so on. Therefore, it is urgent to
use multi-source remote sensing observation data to recognize and measure uncertainty,
which cannot be achieved by a single remote sensing data source.

The primary aims of this study are to test the hypothesis of whether the spatial pattern
of VGEG has altered in the TRSR under climate variation and to obtain the uncertainty
of VGEG. To achieve this goal, we first analyzed the spatial pattern of climate factors and
their changes from 2001 to 2016 to understand the basic climate background in the TRSR
better. After that, we used six remote sensing-based VIs and digital elevation model (DEM)
data to explore the spatiotemporal changes in vegetation, the spatial pattern of VGEG, and
its dynamics from 2001 to 2016. At last, we identified the main climate factors affecting
vegetation greenness dynamics and their elevational distribution. The results of this study
are expected to contribute to our understanding of the VGEG variation in the TRSR under
the influences of global climate variation and also may help for the prediction of future
carbon cycle patterns.

2. Materials and Methods
2.1. Study Area

The TRSR is located in western China (89.22–102.34◦ E, 31.01–37.13◦ N), covers more
than 350,000 km2 in area, and includes altitudes ranging from 2583 m to 6621 m (Figure 1).
The TRSR is known as the “Water Tower of China”, which is essentially the headstream
of the Yangtze River, the Yellow River, and the Lantsang River and supplies the water
resource to approximately 40% of the world’s population [13]. Grassland is the primary
ecosystem, covering approximately 80% of the total area, and the non-grassland land
classification types were masked as gray. Alpine meadows (57%) and steppes (23%) are
the dominant vegetation types in the TRSR [23]. The mean annual temperature (MAT) in
the TRSR is generally from −5.6 ◦C to 7.8 ◦C, and the mean annual precipitation (MAP) is
from 262.2 mm to 772.8 mm [24].
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Figure 1. Location of the Three-River Source Region (TRSR) in China (a). The main map presents the
digital elevation model (DEM) of the TRSR. The black circle denotes the meteorological station. The
grassland type of the TRSR is shown in (b), and the light and dark green regions denote the alpine
steppe and meadow, respectively. The non-grassland types are masked by gray color.

2.2. Remote Sensing Data
2.2.1. GIMMS NDVI

The third-generation Global Inventory Modeling and Mapping Studies (GIMMS)
Normalized Difference Vegetation Index (NDVI), named the third generation NDVI dataset
version 1 (GIMMS NDVI3g v1, hereinafter referred to as GIMMS NDVI), was adopted
for vegetation trend analysis in many studies [25,26]. This dataset has a spatial resolution
of 1/12◦ (≈9.2 km) and 15-day temporal frequency and improved the data quality in the
high latitude compared with the previous version [27]. GIMMS NDVI was also used as the
input data to generate GIMMS leaf area index (LAI) by the Feedforward Neural Network
algorithm. Therefore, GIMMS NDVI shares the same temporal and spatial resolution with
GIMMS LAI.

2.2.2. GIMMS LAI

The third-generation GIMMS LAI (LAI3g) (hereinafter referred to as GIMMS LAI) was
generated by the Feedforward Neural Network (FFNN) algorithm, which was developed
between the GIMMS NDVI and the best-quality Moderate Resolution Imaging Spectrora-
diometer (MODIS) LAI. On the spatial scale, GIMMS LAI data shares the same temporal
and spatial resolution with GIMMS NDVI. We then resampled the GIMMS LAI data to
the spatial resolution of 0.01◦ (≈1.1 km) by a cubic method consistent with the resolution
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of MODIS VI data. On the time scale, the maximum value composite method [28] was
employed to merge the original 15-day data into annual data for analysis.

The FFNN is one of the widely used and rapidly developed artificial neural net-
works [29], and the neurons are arranged in layers. Each neuron is only connected to the
neuron in the preceding layer. The network receives the output of the previous layer and
outputs it to the next layer. No feedback occurred between the layers. In Zhu’s study,
the FFNN models consisted of four neurons in the input layer (four input parameters
corresponding to the land cover class, pixel-center latitude, pixel-center longitude, and
NDVI3g), 11 neurons in the hidden layer, and 1 neuron in the output layer (LAI3g). MODIS
LAI products for the overlapping period 2000–2009 were used in Zhu’s study [27]. The
trained neural network algorithm was then used to generate the corresponding LAI.

The maximum value composite method is widely used to minimize negatively biased
noise by selecting the highest VI value to represent a certain period (15 days in this study).
Thus, the pixel with the highest VI value in the two 15-day VI represents the vegetation
growth condition, and the average VI of 12-month was used to represent yearly data.

2.2.3. GLOBMAP LAI

Global Mapping (GLOBMAP) LAI version 3 dataset (1981–2016) at 8 km resolution
was generated by the quantitative fusion of MODIS and historical Advanced Very High-
Resolution Radiometer (AVHRR) data. MODIS LAI was generated from MODIS land
surface reflectance data (MOD09A1) on the basis of the GLOBCARBON LAI algorithm [30].
The relationships between the AVHRR simple ratio and the MODIS LAI were established
pixel by pixel by using two data series during the overlapped period (2000–2006). Then, the
pixel-based relationship was used to estimate historical AVHRR LAI (1981–2000). Detailed
descriptions and evaluation of the algorithm can be found in Liu’s article [31].

2.2.4. MODIS NDVI and EVI

We used the monthly VI product (MOD13A3, Collection 6) with a spatial resolution of
1 km to analyze the vegetation dynamics. The products include two primary VIs: the first
one is the NDVI, and the second vegetation layer is the Enhanced VI (EVI).

NDVI, one of the widely used VIs, was constructed based on the spectral signature of
vegetation, which has high reflectance in the near-infrared band and strong absorption in
the red band. The EVI was developed to enhance the vegetation signal by reducing the
influences of the canopy background signal and atmosphere [32]. MODIS EVI incorporates
not only the red and near-infrared band but also the blue band to correct for aerosol influ-
ences in the red band and a soil adjustment factor to reduce the effect of canopy background.
The EVI efficiently performed in heavy aerosol and biomass burning conditions. NDVI is
likely to asymptotically saturate in high biomass regions, such as in the Amazon region;
however, the EVI remained sensitive to canopy variations [32].

2.2.5. MODIS NIRv

The recently proposed near-infrared reflectance of vegetation (NIRv) is the product
of total scene NIR reflectance and NDVI. NIRv is found to be strongly correlated with
chlorophyll fluorescence and site-level gross primary productivity [33]. The temporal and
spatial resolutions of NIRv are consistent with MODIS NDVI data.

In summary, the spatial resolution of all VI datasets was set to 0.01◦ (approximately
equal to the original resolution of MODIS VI data). The study period of this work was set
from 2001 to 2016 to maintain the consistency of the data on the time scale and facilitate the
comparative research because MODIS VI data started in 2001, and GIMMS VI data only
updated to 2016.

2.3. Meteorological Dataset

The raster meteorological datasets were derived from the National Tibetan Plateau
Data Center (https://data.tpdc.ac.cn/en/ (accessed on 1 January 2021)). The original me-

https://data.tpdc.ac.cn/en/
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teorological data of China, including the monthly temperature and precipitation data with
a spatial resolution of 0.1◦ × 0.1◦, covers the period 1979–2018 [34]. We further resampled
the datasets to a spatial resolution of 0.01◦ × 0.01◦ by a cubic interpolation method and
composite the monthly data to mean annual temperature (MAT) and precipitation (MAP)
raster data, and then extracted the raster data of the TRSR from 2001 to 2016.

The site climatic data included average monthly temperature and precipitation data
from 13 meteorological stations (numbered 1 to 13 in Figure 1) from 2001 to 2013, which
were collected from the China Meteorological Data Sharing Service System (http://data.
cma.cn/ (accessed on 1 January 2021)), as far as we could obtain. All of these stations are
higher than 3300 m above sea level. The MAT of these stations ranged from −4.5 ◦C to
5.3 ◦C, and the MAP was from 342 mm to 728 mm. Eight out of 13 meteorological stations
are located in alpine meadows, and five are located in alpine grasslands. The monthly
climatic data of meteorological stations were composited to MAT and MAP to validate
the raster MAT and MAP data from 2001 to 2013. The detailed characteristics of these
meteorological stations are shown in Table 1.

Table 1. The characteristics of the meteorological stations in the Three-River Source Region (TRSR).

No. Latitude (◦) Longitude (◦) Elevation (m) MAT (◦C/y) MAP (mm/y) Vegetation Types

1 32.20000 96.48333 3629 5.3 573 Alpine meadow
2 32.90000 95.30000 4172 1.7 546 Alpine meadow
3 32.93333 100.75000 3663 3.5 643 Alpine meadow
4 33.01667 97.01667 3975 4.3 484 Alpine meadow
5 33.43333 101.48333 3626 1.6 728 Alpine meadow
6 33.75000 99.65000 3982 0.1 589 Alpine meadow
7 33.80000 97.13333 4426 −3.6 551 Alpine meadow
8 34.13333 95.78333 4194 −1.0 469 Alpine steppe
9 34.21667 92.43333 4536 −2.9 348 Alpine steppe

10 34.73333 101.60000 3519 0.4 605 Alpine meadow
11 34.91667 98.21667 4271 −2.6 359 Alpine steppe
12 35.21667 93.08333 4616 −4.5 342 Alpine steppe
13 35.58333 99.98333 3302 2.0 408 Alpine steppe

2.4. Calculation of the VGEG

VGEG can be defined as the trend (expressed by slope) of vegetation greenness along
the elevation gradient to a certain extent (9 × 9 pixels in this study). The DEM data were
obtained from the Shuttle Radar Topographic Mission with a spatial resolution of 30 m. The
DEM data were resampled to a spatial resolution of 0.01◦ before any analysis. The linear
regression slope analysis between the DEM and the VIs was performed in 9 × 9 moving
windows (Figure 2). We obtained two groups of datasets, each containing 81 data values.
The slope of the linear regression was signed to the center pixel of each 9 × 9 moving
window. The significance of linear regression was tested by the T-test. The calculation
process was executed by using Python 3.6.

Figure 2. Diagrammatic sketch of the calculation of vegetation greenness along the elevation gradient (VGEG). Here, we
take a 3 × 3 window as an example.

http://data.cma.cn/
http://data.cma.cn/
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2.5. Trend Analysis

We used the ordinary least-square regression method to determine the dynamics of
the climate, VI, and VGEG over time series. The formula is described as follows:

Slope =
n×∑n

i=1 i × (VAR)i − (∑n
i=1 i)(∑n

i=1(VAR)i)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where VAR refers to MAT, MAP, each of the six VIs, and VGEG; i is the sequence number
of the year (from 2001 to 2016), and n represents the total number of years. The significance
of variables determined by the T-test represents the confidence level of variation.

2.6. Correlation Analysis

The correlation between VI and meteorological data (MAT and MAP) was analyzed
using a partial correlation method from 2001 to 2016. The first step was to calculate the
correlation coefficient (r) of the two variables in three variables (VI, MAT, and MAP) as
Equation (2).

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

, (2)

Three correlations were obtained, which were r12, r13, and r23. Take the correlation
coefficient between VI and temperature as an example. Variables xi and yi denote the VI
and MAT in year i, respectively; x and y are the mean values of VI and MAT from 2001 to
2016, respectively. The partial correlations are calculated as follows:

r12, 3 =
r12−r13r23√

(1 − r 2
13)(r–r 2

23

) (3)

r13, 2 =
r13−r12r23√

(1 − r 2
12)(r − r 2

23

) (4)

r23, 1 =
r12−r13r23√

(1 − r 2
12)(r − r 2

13

) (5)

We supposed that 1, 2, and 3 denote MAT, MAP, and VI, respectively. r12, r13, and
r23 indicate the correlation coefficients of MAT and MAP, MAT and VI, and MAP and VI,
respectively. r12,3 is the partial correlation coefficient of MAT and MAP, which removed the
effect of VI. r13, 2, and r23, 1 are the partial correlation coefficients of MAT and VI, MAP and
VI, which removed the effect of MAP and MAT, respectively.

2.7. Data Processing and Analysis

The procedure of data processing and analysis in this study is shown in Figure 3. At
first, we evaluated the credibility of raster climate data by using observed MAT and MAP
from the meteorological stations. We calculated the trend of MAT and MAP to understand
the dynamics of climate in the TRSR better. Then we investigated the spatial pattern of
VI trends. After that, we combined VIs and DEM data to calculate the spatial pattern
of VGEG. The changes in VGEG from 2001 to 2016 were also analyzed. In addition, we
analyzed the distribution of VGEG in different elevation gradients. At last, we calculated
the correlation coefficients between VIs and climate factors (MAT and MAP) and their
elevational distribution to identify which climate factor had the highest correlation with
the VIs at different altitude gradients.
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Figure 3. Flowchart of the data processing and analysis in this study. MAT: Mean Annual Temperature. MAP: Mean Annual Precipitation. DEM: Digital Elevation Model. VGEG:
Vegetation Greenness along the Elevation Gradient.
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3. Results
3.1. Validation and Trend of the Climate and Their Variation along Different Elevation

The MAT and MAP of the meteorological station (observed MAT and MAP) in 13
meteorological stations were used to validate the upscaled MAT and MAP raster data
(Modeled MAT and MAP). The R2 and slope of MAT were 0.68 and 0.69, respectively
(Figure A1a). By contrast, the validation result of MAP was much better than that of MAT,
and the R2 and slope were 0.98 and 0.99, respectively (Figure A1b); these results were
obtained maybe because the algorithm for precipitation is more complex than that for
temperature as precipitation has high spatial heterogeneity [34]. In addition, the high R2

and slope were mainly due to a large number of meteorological stations were used to
generate the dataset. The validation result reached a significance level of 0.05.

In summary, the MAT increased at a rate of 0.04 ◦C/y in the TRSR from 2001 to
2016, and the increasing rate reached a significance level of 0.05 (Figure 4a). Meanwhile,
precipitation was decreasing at a rate of 2.12 mm/y; however, the trend was not significant
during the study period. The changes in the MAT and MAP along different elevation
gradients are shown in (Figure 4b). The MAT increased in the elevation gradient (EG) of
2–3, 3–4, and 4–5 km, but it decreased in the EG of >5 km. The slope of 4–5 km reached a
significance level of 0.05. The MAP exhibited a decreasing trend along the EGs. The slopes
were positive in the EG of 2–3 and 3–4 km, whereas negative slopes were found in the EG
of 4–5 and >5 km. The slope even reached a significance level of 0.01 in the EG of 4–5 km.
In summary, the TRSR experienced significant warming from 2001 to 2016; however, the
precipitation did not show a significant trend during the same period. The warming trend
was significant in the EG of 4–5 km, whereas the precipitation was more pronounced in the
EG of 2–3 and 3–4 km.

Figure 4. Trend of the mean annual temperature (MAT) and mean annual precipitation (MAP)
anomaly (a) and their slope along the elevation gradient (b) in the TRSR from 2001 to 2016. * and **
denote that slope was statistically significant at the 0.05 and 0.01 level, respectively.

3.2. Spatial Patterns and Variations of the Climate and VIs

The spatial pattern of climate showed that the MAT was higher than −2 ◦C/y in the
east and south of the TRSR, which was warmer than its west and north parts (Figure 5a).
The MAP was over 400 mm/y in most parts of the TRSR and exhibited a decreasing trend
from southeast to northwest (Figure 5b). We found that 76.30% of the study areas showed
an increasing trend of MAT, and the MAT with a significant trend accounted for 40.71%
(Figure 5c). By contrast, the regions with a negative trend of MAT only occupied 3.04%
of the study areas, which were mainly found in the west of the TRSR. The areas with an
increasing trend (52.25%) were slightly higher than that those with a decreasing trend
(47.75%). However, the areas that reached a significant increasing trend only occupied
1.67%, which were mainly distributed in the eastern TRSR (Figure 5d). The regions with
a significant decreasing trend accounted for 11.57%, which were found in the west of the
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TRSR. The spatial patterns of changes in MAT along elevation gradients from 2001 to 2016
are shown in Figure 5e. The positive changes in MAT were mainly found in the eastern
TRSR and only accounted for 12.34% of the total study area; 4.64% reached a significant
level of 0.05. The negative changes in MAT along elevation gradients were up to 87.66%,
and 73.48% of the areas were statistically significant. The regions with positive changes in
MAP were scattered across the western and central TRSR (Figure 5f). The areas accounted
for 55.35% of the total study area, and 39.70% of the area reached a significant positive level.
Approximately 44.65% of the area exhibited negative changes in MAP along elevation
gradients, and the significant areas accounted for 30.04%.

The trend of VIs in the TRSR from 2001 to 2016 is shown in Figure 6. The VI exhibited
an increasing trend in the TRSR (accounting for 68.06 ± 8.90% of the study areas), and
13.67 ± 8.90% of them reached a significance level of 0.05. The largest and least significant
increasing areas were observed by GIMMS NDVI (28.72%) (Figure 6b) and MODIS NIRv
(10.03%) (Figure 6f), respectively. By contrast, the areas with decreases in VI accounted for
31.94 ± 8.90% of the study areas, and only 2.43 ± 1.23% were statistically significant. The
VIs did not significantly change in most study areas 83.90 ± 6.96%.

Figure 5. Pattern: (a,b), trend: (c,d) of MAT (mean annual temperature) and MAP (mean annual
precipitation), and their changes along the EG (elevation gradient) (e,f) in the TRSR from 2001 to
2016. The regions with black dots indicate that the trend is statistically significant at the 0.05 level.
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Figure 6. Trend of vegetation indices (VIs) in the TRSR from 2001 to 2016. (a): Global Inventory
Modeling and Mapping Studies leaf area index (GIMMS LAI); (b): GIMMS Normalized Difference
Vegetation Index (NDVI); (c): Global Mapping (GLOBMAP) LAI; (d): Moderate Resolution Imag-
ing Spectroradiometer Enhanced VI (MODIS EVI); (e): MODIS NDVI; (f): MODIS near-infrared
reflectance of vegetation (NIRv). The value frequencies are shown in the bottom left inset for each
panel. The regions with black dots indicate that the trend is statistically significant at the 0.05 level.

3.3. Spatial Patterns of the VGEG and Its Variations in Different Elevation

The spatial patterns of mean VGEG calculated by six types of VI from 2001 to 2016
are shown in Figure 7. The spatial patterns of VGEG had large differences between the
GLOBMAP LAI and the other VIs (Figure 7c). The regions with negative VGEG were
consistent with our perception that VI was decreased with increased elevation because of
the lower temperature at higher altitudes. These regions were found in the center, southern,
and eastern TRSR (Figure 7a,b,d–f), and the statistically significant negative areas accounted
for 36.34 ± 5.82% of the study area. By contrast, the regions with positive VGEGs were
mainly found in the western TRSR, and the areas of which were up to 37.23 ± 2.77% of the
total study areas, thus indicating an increasing vegetation greenness along the elevation.
The positive VGEG was likely induced by the homogenization of vegetation greenness
from low attitude to its high-counterpart.

We calculated the VGEG of each year from 2001 to 2016, while the variations of VGEG
showed strong spatial heterogeneity during the period (Figure 8). The VGEGs showed
that the positive and negative trends accounted for 53.81% and 46.19% of the study areas,
respectively. The significant positive trends of the VGEG accounted for 22.96 ± 3.31%
of the study areas, which was greater than the regions with significant negative trends
(20.73 ± 2.39%).

The regions that exhibited positive variation of VGEG were slightly higher than those
with negative VGEG (53.45% vs. 46.56%), as observed by the six VIs from 2001 to 2016
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(Figure 9). The statistically significant VGEG indicated that the regions with significant
positive and negative VGEGs were mainly distributed in the elevation of 4–5 km and
accounted for 43.62 ± 2.53% and 35.49 ± 2.55% of the study areas, respectively. By contrast,
only less than 1% of the study areas that reached significant levels were distributed in the
elevation of 2–3 km. The significant areas were no more than 10% at the elevation of 3–4
and 5–6 km. From the perspective of VGEG trends, the result of GIMMS LAI indicated
that the VGEG trend was positive in four elevation gradients (2–3, 3–4, 4–5, and >5 km)
from 2001 to 2016 (Figure 9(a-1)). The VGEG trend of GIMMS NDVI was similar to that of
GLOBMAP LAI; that is, the trends were negative in 2–3, 3–4, and >5 km and positive in
4–5 km (Figure 9(b-1,c-1)). The VGEGs of MODIS EVI and MODIS NIRv had similar trends,
which were positive in the elevation of 2–3, 4–5, and >5 km and negative at the elevation of
3–4 km. However, the VGEG trend of MODIS NDVI was negative at the elevation of 4–5 km
(Figure 9(d-1,d-2,e-1,e-2,f-1,f-2)). The mean VGEG variations of GIMMS LAI, MODIS EVI,
MODIS NDVI, and MODIS NIRv were strongest in the elevation of 4–5 km, followed by
the elevations of 2–3, 3–4, and >5km (Figure 9(a-3,d-3,e-3,f-3)), which were completely
different from the results of GIMMS NDVI and GLOBMAP LAI (Figure 9(b-3,c-3)).

Figure 7. Spatial pattern of the mean VGEG (Vegetation Greenness along the Elevation Gradient)
from 2001 to 2016. (a): Global Inventory Modeling and Mapping Studies leaf area index (GIMMS
LAI); (b): GIMMS Normalized Difference Vegetation Index (NDVI); (c): Global Mapping (GLOBMAP)
LAI; (d): Moderate Resolution Imaging Spectroradiometer Enhanced VI (MODIS EVI); (e): MODIS
NDVI; (f): MODIS near-infrared reflectance of vegetation (NIRv). The value frequencies are shown
in the bottom left inset for each panel. The regions marked with black dots (generated by 9 × 9
windows) indicate statistical significance at the 0.05 level.
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Figure 8. Spatial pattern of the VGEG (Vegetation Greenness along the Elevation Gradient) variation
from 2001 to 2016. (a): Global Inventory Modeling and Mapping Studies leaf area index (GIMMS
LAI); (b): GIMMS Normalized Difference Vegetation Index (NDVI); (c): Global Mapping (GLOBMAP)
LAI; (d): Moderate Resolution Imaging Spectroradiometer Enhanced VI (MODIS EVI); (e): MODIS
NDVI; (f): MODIS near-infrared reflectance of vegetation (NIRv). The value frequencies are shown
in the bottom left inset for each panel. The regions with black dots (generated by 9 × 9 windows)
indicate that the trend is statistically significant at the 0.05 level.
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Figure 9. Trend of VGEGs in different elevations from 2001 to 2016 ((a): Global Inventory Modeling and Mapping Studies leaf
area index (GIMMS LAI); (b): GIMMS Normalized Difference Vegetation Index (NDVI); (c): Global Mapping (GLOBMAP)
LAI; (d): Moderate Resolution Imaging Spectroradiometer Enhanced VI (MODIS EVI); (e): MODIS NDVI; (f): MODIS
near-infrared reflectance of vegetation (NIRv)). Take (a) as an example (the same meaning of panels b–f). a-1 is the slope
of VGEG. a-2 is the mean annual VGEG value represented by circles of various colors at different elevations from 2001 to
2016. a-3 denotes the statistical values of VGEG, which share the same unit with a-2. The asterisks indicate that the slope is
statistically significant (*: p < 0.05; **: p < 0.01).

3.4. Correlation between VIs and Climatic Factors

The spatial patterns of the correlation between VIs and MAT have strong spatial
heterogeneity (Figure A2). Most regions exhibited a positive correlation between VIs
and MAT, which accounted for 65.15 ± 4.94% of the study areas, and 9.47 ± 4.83% of
the areas reached a significance level of 0.05. The negative correlation between VIs and
MAT accounted for 30.92 ± 5.84%, and no more than 2% of the areas reached a significant
negative correlation.

We further analyzed the correlation between VIs and meteorological factors (MAT
and MAP) in the elevation of 2–3, 3–4, 4–5, and >5 km from 2001 to 2016 (Figure 10). Most
elevations exhibited a positive correlation of VIs and MAT (Figure 10a). The correlation of
GIMMS and GLOBMAP-based VIs was higher than that of MODIS-based VIs. Meanwhile,
the correlation of the elevation of 3–4 and 4–5 km was higher than that of 2–3 and >5 km. By
contrast, the correlation between VIs and MAP was more complicated along the elevation
gradient from 2001 to 2016 (Figure 10b). The positive correlations of MODIS-based VIs
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were higher than those of GIMMS and GLOBMAP-based VIs. The correlation between VIs
and MAP was negative in the elevation of >5 km, and the VIs were positively correlated
with MAP at low elevation. Furthermore, the correlation of VIs at low elevation was higher
than that of VIs at high elevation. In summary, precipitation was the limiting factor for
vegetation growth at the elevation of 2–3 km. However, the effect is likely to decrease with
increasing elevation. The effect of temperature was even at every altitude gradient, except
for the regions with an altitude > 5000 m above sea level.

In addition, we analyzed the dynamics of climate in the case of significant variations in
the VIs from 2001 to 2016 (Table 2). We used a linear regression method to represent clearly
how climate dynamics with significant increasing VIs behaved. We can read that MAT
increased with significant increases in VIs, and three of the six partial correlations of MAT
and VIs (GIMMS LAI, GIMMS NDVI, and GLOBMAP LAI) reached a significance level of
0.05. Meanwhile, MAP was negatively correlated with the significant increasing trend of
VIs; however, none of them passed the significance test. By contrast, MAT was likely to
increase on the condition that VI exhibited a significant decreasing trend, and the partial
correlation coefficients of MAT and VIs were negative. Meanwhile, MAP was positively
correlated with four VIs (GLOBMAP LAI, MODIS EVI, MODIS NDVI, and MODIS NIRv)
with significant negative trends and negatively correlated with the other two (GIMMS LAI
and GIMMS NDVI). The partial correlations with VIs of either MAT or MAP did not reach
a significant level.

In summary, the increases in VIs were positively correlated with MAT, and the partial
correlation coefficients of three VIs and MAT had statistical significance. Precipitation was
not the dominating climatic factor in the increases in VIs because precipitation decreased
when VI increases. The decreases in VI were likely due to the increasing MAT and decreas-
ing MAP (although two of the VIs were negatively correlated with MAP). However, we did
not have enough evidence to prove this aspect, and certain partial correlation coefficients
did not pass the significance test.

Figure 10. Correlation between vegetation indices (VIs) and climatic factors ((a) MAT (Mean Annual
Temperature) and (b) MAP (Mean Annual Precipitation)) at the elevations of 2–3, 3–4, 4–5, and >5 km
from 2001 to 2016.
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Table 2. Dynamics of climate with the significant changes in vegetation indices (VIs).

VI VI Trend 1
MAT MAP

Function Cor 2 Sig 3. Function Cor 2 Sig 3.

GIMMS-LAI
+ VI = 2.374 * MAT − 5.424 0.73 0.001 VI = −29.16 * MAP + 526.9 −0.08 0.776
− VI = −0.8344 * MAT − 1.652 −0.31 0.246 VI = −65.04 * MAP + 641.2 −0.2 0.469

GIMMS-NDVI
+ VI = 13.91 * MAT − 8.338 0.54 0.03 VI = −974.6 * MAP + 714.8 −0.07 0.808
− VI = −1.533 * MAT − 2.764 −0.07 0.79 VI = −282.6 * MAP + 606.5 −0.08 0.782

GLOBMAP-
LAI

+ VI = 1.95 * MAT − 5.492 0.52 0.037 VI = −134.2 * MAP + 611.8 −0.16 0.058
− VI = −2.231 * MAT − 7.744 −0.42 0.105 VI = 148.3 * MAP + 251.6 0.15 0.57

MODIS-EVI
+ VI = 8.515 * MAT − 6.431 0.21 0.433 VI = −1155 * MAP + 617.4 −0.17 0.526
− VI = −7.001 * MAT − 0.5537 0.15 0.57 VI = 302.5 * MAP + 380.6 0.1 0.7

MODIS-NDVI
+ VI = 6.045 * MAT − 6.397 0.30 0.262 VI = −142.8 * MAP + 462.4 0.04 0.874
− VI = −6.771 * MAT + 0.326 −0.48 0.06 VI = 582.4 * MAP + 181.5 0.27 0.31

MODIS-NIRv
+ VI = 1.95 * MAT − 5.492 0.22 0.411 VI = −2452 * MAP + 613.4 −0.22 0.419
− VI = −11.11 * MAT − 1.136 −0.42 0.102 VI = 344.6 * MAP + 428.1 0.06 0.838

1 “+” and “−” denotes an increased and decreased trend of VI (vegetation index), respectively. 2 Cor denotes the partial correlation of
VI and climate (MAT: Mean Annual Temperature; MAP: Mean Annual Precipitation). 3 Sig. denotes the significance levels of the linear
regression function between VI and climate.

4. Discussion
4.1. Merit and Limitation

In this study, we used a moving window method to monitor the dynamics of vege-
tation greenness to climatic variation along elevation gradients. The size of the moving
window limited the dynamics of vegetation greenness in a certain region, making it com-
parable in a relatively uniform climate. The moving window method also confirmed a
theorem that the temperature decreases with the increase in altitude, which also proved
that the method could effectively monitor the changes in variables along the elevation
gradient. This method, combined with remote sensing data, can efficiently and rapidly
monitor the changes in variables on the altitude gradient at a large scale, especially the
regions that are difficult to reach by humans. This method has high application potential
owing to its low cost of monitoring.

In contrast with the traditional method of transect surveys, this method monitors the
change in vegetation greenness on the relative altitude gradient. Specifically, this change is
not on an altitude gradient transect but in elevation gradient within the size of the moving
window, which should be noted when using this method. Furthermore, the spatial resolu-
tions have a strong effect on the VGEG and its dynamics (Figure A3). The coarse spatial
resolution of the grid may limit our insights into the elevation gradients and vegetation
greenness [35]. Therefore, we should choose high-resolution data for analysis as much as
possible to reduce uncertainty caused by data resolution. The other influencing factors,
such as soil nutrient, soil microbe, and human activities (e.g., government policies), have
played important roles in determining VGEG and its dynamics. The utilization of resources
and acclimation of vegetation to climate change is also crucial in regulating the variation of
VGEG. However, how the VGEG will change in the future remains highly uncertain.

This study used a linear partial correlation method to identify the correlation between
VIs and climatic factors (MAT and MAP). Meanwhile, the correlation of nonlinear relation-
ships may disappear or become weak. Thus, we will not discuss the nonlinear relationship
in this study due to its complexity. We carefully avoid stating which climatic factor is the
main driven force in the VI dynamics because correlation is not equal to causation. The
conditions of causality are rigorous because they may change under different applicable
scenarios. Therefore, the reason for the increase or decrease in vegetation greenness cannot
be attributed solely to the changes in temperature or precipitation but may be the result of
a combination of multiple factors. In this study, we just conducted a linear correlation be-
tween vegetation greenness and temperature and precipitation. However, the mechanism
or nonlinear relationship remains to be further explored.
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4.2. Performances of the VGEGs

This study used six VIs to reveal the spatial patterns of VGEG and their variation
in the TRSR from 2001 to 2016. The results showed clear spatial patterns of VGEG that
filled the gaps in our understanding of vegetation greenness along with elevation in the
TRSR under climatic variation. However, the performances of the six VIs had discrepancies
in spatial pattern and temporal variation. Considering the photographing capability of
satellite sensors and the advancing algorithm of LAI production, the results of GIMMS
LAI and MODIS-based VI were more reliable than those of GIMMS NDVI and GLOBMAP
LAI; this finding is consistent with the previous study, which suggested that MODIS-NDVI
performed better than AVHRR-NDVI datasets [36].

Vegetation greenness was negative along the elevation gradient because the hydrother-
mal conditions were significantly changed with increasing elevation. The higher the alti-
tude, the more the limitation of low temperature [37]. The regions with negative VGEG
occupied more than 70% of the study area. One of the primary reasons is the implementa-
tion of a series of government policies, such as the Grain to Green Program and the Grazing
Withdrawal Program, which were implemented between 1999 and 2002 [20,38]. The vegeta-
tion greenness at low altitude was higher than that at high altitude owing to the completion
of these projects. Another reason is likely due to global climate change. The warmer
and wetter climate of the alpine region will promote the growth of alpine grasslands [18],
especially at the low altitude regions, which have ideal hydrothermal conditions.

The negative VGEG was more pronounced at the elevation of 4–5 km, which was
mainly attributed to the high proportion of the regions in the study areas (Figure A4).
However, the areas with significant positive VGEG accounted for 36.34 ± 5.82% of the
total study areas, which implied that the vegetation tended to homogenization from low
elevation compared with their high elevation counterparts in the western TRSR. These
regions are mainly distributed in the source regions of the three rivers or depopulated zone,
that field investigations are difficult to conduct. Thus, we should pay sufficient attention
to the effects of climate variation on the alpine grassland ecosystem in the western TRSR.
In particular, the formulation of government policies should be inclined to the scientific
investigation and ecological environmental management in the western TRSR and provide
financial support.

On the altitude scale, precipitation and temperature determined the vegetation pattern
along elevational gradients. The possible reason is that warming makes the soil frozen
water available to vegetation [39], and the ice and snow melting supplies sufficient water
to the vegetation growth [40]. On the temporal scale, the variations of VGEG remained
unchanged in 56.31% of the study areas from 2001 to 2016. However, whether the alpine
grassland adapts to climate variation needs additional evidence to prove.

4.3. Implications for Alpine Grassland

The current distribution of grassland types was highly related to climatic conditions.
Alpine steppe is considered more sensitive to water limitations, whereas temperature is
the dominant climatic factor for alpine meadow [18]. Accordingly, the current distribution
of grassland types was formed by the long-term effects of temperature and water. We
found an increasing trend in temperature along the elevation gradient, except for the
elevations greater than 5000 m. Such variations in climate might alter the zonal distribution
of grassland types, especially the distribution of vertical zonality. Therefore, the dynamics
of grassland types in the vertical zone are worthy of further study, although the grassland
types are fixed in this study.

Global warming has been exerting an adverse effect on the alpine grassland along
elevation in the western TRSR. The positive VGEG-induced vegetation homogenization will
directly affect the net primary productivity (NPP), modify the hydrologic cycles, reduce the
functional diversity, and homogenize the biodiversity in high-mountain regions [9,41,42].
Remote sensing-based VI is highly related to NPP [43–45]. Therefore, a large number
of models have emerged to simulate NPP (e.g., the light use efficiency model) [46,47].
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However, elevation is not considered in the current NPP models. In addition to the
extremely sparse meteorological stations, this factor will introduce substantial uncertainty
to the NPP modeling in high-mountain regions. Overall, the vegetation productivity-
elevation-climate change interaction needs to be further investigated, which will highly
improve the ability to predict the future carbon cycle in high-mountain regions.

The vegetation homogenization induced by positive VGEG will reduce the resistance
of ecosystems to climate extremes [48]. In the TRSR, the alpine grassland ecosystem
function is vulnerable to climatic events [18]. The ecosystem resistance also exhibited
smaller proportional changes in productivity during climatic events [48]. On the one hand,
the high biodiversity generally provides strong resistance or less productivity loss. On the
other hand, biodiversity stabilizes ecosystem productivity and productivity-dependent
ecosystem services (e.g., carbon sequestration) [49]. On the contrary, positive VGEG-
induced vegetation homogenization will exert an adverse effect on the ecosystem. In
summary, we should take full consideration of the effect of the positive VGEG in the
vegetation diversity in the terrestrial ecosystem model, which will substantially reduce
the uncertainties of productivity prediction or the quantification of carbon sink (source) in
the future.

5. Conclusions

We analyzed the spatial patterns and variations of VGEG by using six VIs from 2001 to
2016. The results indicated that approximately 36.34 ± 5.82% of the study areas exhibited a
significantly negative VGEG in the TRSR. However, the significantly positive VGEG was
up to 37.23 ± 2.77%, which indicates that the homogenization of the vegetation greenness
has begun to emerge along the elevation in the west of TRSR. The variation of the VGEG
indicated that 56.31% of the study areas remained unchanged from 2001 to 2016. The trend
and spatial pattern of GIMMS LAI and MODIS-based VGEG were consistent, which were
different from GIMMS NDVI and GLOBMAP LAI-based VGEG. This notion implied that
the results of GIMMS LAI and MODIS-based VI were more reliable than those of the other
VIs. MAT was likely to be positive correlated with VIs, and the effect of MAP was more
pronounced at low altitude. To date, the carbon cycle model lacked elevation data for
the NPP simulation, especially in high-mountain regions. This situation might introduce
substantial uncertainty to the NPP prediction.
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Appendix A

Figure A1. Validation of modeled MAT (Mean Annual Temperature) (a) and MAP (Mean Annual
Precipitation) (b) by using meteorological station data. The shadow regions along the regression line
denote 95% confidence interval.

Figure A2. Spatial pattern of the correlations between VI (Vegetation Index) and MAT (Mean Annual Temperature) (a–f)
and MAP (Mean Annual Precipitation) (g–l) from 2001 to 2016. The regions with black dots indicate that the trend is
statistically significant at the 0.05 level.
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Figure A3. Effect of the spatial resolution on the VGEG (Vegetation Greenness along the Elevation
Gradient) and its dynamics. The shadow region denotes 1 standard deviation. The Min-Max
Normalization method is used to constrain the data between 0 to 1.

Figure A4. Distribution of the probability density of DEM (Digital Elevation Model) in TRSR. The
histogram indicates the probability of DEM pixel distribution. The dashed line denotes the probability
density function, assuming they are Gaussian distributed. The red line denotes the mean value
of DEM.
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