Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area and Landslide Inventory
2.2. Mapping Unit
2.3. Conditioning Factors
2.3.1. Triggering Factors
2.3.2. The Topographical Factors
2.3.3. Geological Factors
3. Methodology
3.1. LR Model
3.2. FCM Clustering
3.3. FA Model
- Constructions of comprehensive factors
- b.
- The factor scores calculation
3.4. Comparison of the Methods
3.5. Model Performance
4. Results and Validation
4.1. LR Model
4.2. FCM Coupled with LR Model
4.3. FA Coupled with LR Model
4.4. FCM, FA Coupled with LR Model
4.5. Validation and Comparison
5. Discussion
5.1. Comparison of TMLM and NMLM
5.2. The Necessity of Model Integration
6. Conclusions
- The models could be compared to the new machine learning algorithms;
- More diverse methods and combinations need to be discussed further.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LSP | Landslide susceptibility prediction LR Logistic regression |
FCM | Fuzzy c-means clustering FA Factor analysis |
ROC | Receiver Operating Characteristic AUC Area under the cure |
SPSS | Statistical Product and Service Solutions DEM Digital elevation model |
SRTM | DEM Shuttle radar topography mission digital elevation model |
TMLM | Traditional machine learning methods NMLM New machine learning methods |
TP | True positives CSR2 Cox and Snell R square |
TN | True negatives NR2 Nagelkerke R square |
FP | False positives Walds Wald statistic |
FN | False negatives S.E Standard error of estimation |
KMO | Kaiser–Meyer–Olkin LSI Landslide susceptibility index |
References
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. CATENA 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.; Zheng, W.; Li, Z.; Ba, R. Recent catastrophic debris flows in Luding county, SW China: Geological hazards, rainfall analysis and dynamic characteristics. Nat. Hazards 2010, 55, 523–542. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Liu, Y. Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China. Symmetry 2020, 12, 1954. [Google Scholar] [CrossRef]
- Blais-Stevens, A.; Behnia, P. Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada. Nat. Hazards Earth Syst. Sci. 2016, 16, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Schilirò, L.; Cevasco, A.; Esposito, C.; Mugnozza, G.S. Shallow landslide initiation on terraced slopes: Inferences from a physically based approach. Geomat. Nat. Hazards Risk 2018, 9, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Shi, M.; Chen, J.; Song, Y.; Zhang, W.; Song, S.; Zhang, X. Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C-means algorithm. Bull. Int. Assoc. Eng. Geol. 2015, 75, 909–922. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.; Han, S.; Khan, K.U.J.; Liu, Y. Classification and susceptibility assessment of debris flow based on a semi-quantitative method combination of the fuzzy C-means algorithm, factor analysis and efficacy coefficient. Nat. Hazards Earth Syst. Sci. 2020, 20, 1287–1304. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.-X.; Pei, X.; Duan, Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total Environ. 2018, 626, 1121–1135. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Liu, J.; Zhu, A.-X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Gao, R.; Wang, C.; Liang, Z.; Han, S.; Li, B. A Research on Susceptibility Mapping of Multiple Geological Hazards in Yanzi River Basin, China. ISPRS Int. J. Geo-Inf. 2021, 10, 218. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.; Duan, Z.; Liu, H.; Liu, X.; Khan, K.U.J. A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping. Remote Sens. 2021, 13, 1464. [Google Scholar] [CrossRef]
- Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Armaș, I.; Gheorghe, M.; Silvaș, G. Shallow Landslides Physically Based Susceptibility Assessment Improvement Using InSAR. Case Study: Carpathian and Subcarpathian Prahova Valley, Romania. Remote Sens. 2021, 13, 2385. [Google Scholar] [CrossRef]
- Sujatha, E.R. An integrated landslide susceptibility model to assess landslides along linear infrastructure for environmental management. Environ. Earth Sci. 2021, 80, 447. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.-M.; Zhang, Z.-M.; Khan, K.-U. A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stoch. Environ. Res. Risk Assess. 2020, 34, 1887–1907. [Google Scholar] [CrossRef]
- Hu, X.; Huang, C.; Mei, H.; Zhang, H. Landslide susceptibility mapping using an ensemble model of Bagging scheme and random subspace–based naïve Bayes tree in Zigui County of the Three Gorges Reservoir Area, China. Bull. Int. Assoc. Eng. Geol. 2021, 80, 5315–5329. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA 2019, 187, 104396. [Google Scholar] [CrossRef]
- Li, W.; Fang, Z.; Wang, Y. Stacking ensemble of deep learning methods for landslide susceptibility mapping in the Three Gorges Reservoir area, China. Stoch. Environ. Res. Risk Assess. 2021. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Han, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2019, 17, 641–658. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.; Khan, K.U.J. Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping. Stoch. Environ. Res. Risk Assess. 2020, 35, 1243–1256. [Google Scholar] [CrossRef]
- Li, X.; Chen, P.; Han, W.; Shi, H.; Yu, H. Application of factor analysis to debris flow risk assessment. Chin. J. Geol. Hazard Control. 2016, 27, 55–61. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Wang, J. Geohazard susceptibility assessment based on CF model and Logistic regression models in Guangdong. Hydroge Eng. 2016, 43, 154–161. [Google Scholar] [CrossRef]
- Sezer, E.; Nefeslioglu, H.; Gokceoglu, C. An assessment on producing synthetic samples by fuzzy C-means for limited number of data in prediction models. Appl. Soft Comput. 2014, 24, 126–134. [Google Scholar] [CrossRef]
- Verde, R.; Irpino, A. Multiple factor analysis of distributional data. arXiv 2018, arXiv:1804.07192. [Google Scholar]
- Hussin, H.Y.; Zumpano, V.; Reichenbach, P.; Sterlacchini, S.; Micu, M.; van Westen, C.; Bălteanu, D. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology 2015, 253, 508–523. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Carrara, A.; Guzzetti, F.; Cardinali, M.; Reichenbach, P. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Nat. Hazards 1999, 20, 117–135. [Google Scholar] [CrossRef]
- Palamakumbure, D.; Flentje, P.; Stirling, D. Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia. Comput. Geosci. 2015, 82, 13–22. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Lombardo, L.; Tanyas, H.; Nicu, I.C. Spatial modeling of multi-hazard threat to cultural heritage sites. Eng. Geol. 2020, 277, 105776. [Google Scholar] [CrossRef]
- DI, B.; Chen, N.; Cui, P.; Li, Z.; He, Y.; Gao, Y. GIS-based risk analysis of debris flow: An application in Sichuan, southwest China. Int. J. Sediment Res. 2008, 23, 138–148. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Xu, Y.; Zhu, Z.; Chen, C.-W.; Sahana, M.; Khosravi, K.; Yang, Y.; Pham, B.T. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Nat. Hazards 2019, 97, 579–609. [Google Scholar] [CrossRef]
- Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. CATENA 2017, 152, 144–162. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Jiang, S.-H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2000; 375p, Available online: http://www.nesug.org/proceedings/nesug06/an/da26.pdf (accessed on 21 September 2021).
- Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA 2014, 118, 124–135. [Google Scholar] [CrossRef]
- Pradhan, B.; Jebur, M.N. Spatial prediction of landslide-prone areas through K-nearest neighbor algorithm and logistic regression model using high resolution airborne laser scanning data. In Laser Scanning Applications in Landslide Assessment; Springer: Cham, Switzerland, 2017; pp. 151–165. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; IEEE Electrical Insulation Magazine; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Sun, X.-L.; Zhao, Y.-G.; Wang, H.-L.; Yang, L.; Qin, C.-Z.; Zhu, A.-X.; Zhang, G.-L.; Pei, T.; Li, B.-L. Sensitivity of digital soil maps based on FCM to the fuzzy exponent and the number of clusters. Geoderma 2011, 171–172, 24–34. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Yang, J. Application of distance discriminant analysis method in classification of surrounding rock mass in highway tunnel. J. Jilin Univ. Earth Sci. Ed. 2008, 38, 999–1004. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; Commission on Landslides of the IAEG, UNESCO Natural Hazards No. 3; UNESCO: Paris, France, 1984; p. 61. [Google Scholar]
- Chung, C.-J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; p. 441. [Google Scholar]
- Chen, J.; Pi, D. A Cluster Validity Index for Fuzzy Clustering Based on Non-distance. In Proceedings of the 2013 International Conference on Computational and Information Sciences, Shiyang, China, 21–23 June 2013; pp. 880–883. [Google Scholar]
- Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 2013, 64, 180–197. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, H.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Shirzadi, A.; Shahabi, H.; Geertsema, M.; Omidvar, E.; Clague, J.J.; Pham, B.T.; Dou, J.; Asl, D.T.; Bin Ahmad, B.; et al. New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests 2019, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. Stoch. Environ. Res. Risk Assess. 2014, 28, 1957–1972. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Lan, H.-X.; Li, L.-P.; Wu, Y.-M.; Chen, J.-H.; Tian, N.-M. Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China. J. Mt. Sci. 2020, 17, 340–357. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.-Y.; Kim, J. Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling. Sustainability 2019, 11, 5659. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Wang, L.-J.; Sawada, K.; Moriguchi, S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Zhu, L.; Niu, R.-Q.; Trinder, C.J.; Peng, L.; Lei, T. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J. Mt. Sci. 2020, 17, 670–685. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Song, Y.; Niu, R.; Xu, S.; Ye, R.; Peng, L.; Guo, T.; Li, S.; Chen, T. Landslide Susceptibility Mapping Based on Weighted Gradient Boosting Decision Tree in Wanzhou Section of the Three Gorges Reservoir Area (China). ISPRS Int. J. Geo-Inf. 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Kumar, L.; Jebur, M.N.; Shabani, F. Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomat. Nat. Hazards Risk 2018, 10, 79–101. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Chen, L.; Hu, H.; Pirasteh, S.; Li, H.; Xie, X. Unsupervised Feature Learning to Improve Transferability of Landslide Susceptibility Representations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3917–3930. [Google Scholar] [CrossRef]
Type | Earthquake | Collapse | Landslide | Statistics Time |
---|---|---|---|---|
Quantity | 90 | 168 | 114 | As of October 2016 |
Factor | B | S.E | Wals |
---|---|---|---|
Slope angle (F4) | 0.619 | 0.124 | 22.55 |
Roundness (F10) | 0.488 | 0.112 | 14.891 |
Constant | −1.322 | 0.126 | 13.594 |
CSR2 | NR2 | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
0.662 | 0.776 | 77.16 | 69.15 | 76.26 | 0.745 |
Category | 0 | 1 | Total |
---|---|---|---|
I | 88 | 31 | 119 |
II | 132 | 24 | 156 |
III | 55 | 21 | 76 |
IV | 114 | 38 | 152 |
Total | 389 | 114 | 503 |
Parameters/Coefficients | Model I | Model II | Model III | Model IV |
---|---|---|---|---|
Maximum 7 days rainfall (F1) | 0 | 0.852 | 0 | 0 |
Distance to road (F2) | 0 | 0 | 0 | 0 |
Elevation (F3) | 2.931 | 0 | 0 | 0 |
Slope angle (F4) | 0 | 0 | 0 | 0 |
Plan curvature (F5) | 0 | 0.588 | −0.477 | 0 |
Profile curvature (F6) | 0 | 0 | 0 | 0 |
Topographic wetness index (F7) | 0.966 | 0 | 0 | 0 |
Distance to fault (F8) | 0 | 0 | 0 | 0 |
Distance to stream (F9) | −1.757 | 0 | 0.322 | 0 |
Roundness (F10) | 0 | 0 | 0 | 0.354 |
Constant | −2.121 | −1.867 | −1.171 | −1.233 |
Model I | Model II | Model III | Model IV | Total (%) | |
---|---|---|---|---|---|
Sensitivity (%) | 74.88 | 71.28 | 74.18 | 72.30 | 73.81 |
Specificity (%) | 86.66 | 84.84 | 82.35 | 88.66 | 85.77 |
Accuracy (%) | 85.24 | 82.33 | 84.23 | 86.11 | 84.89 |
Factor | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Maximum 7 days rainfall (F1) | −0.469 | −0.657 | 0.155 | −0.066 | 0.059 |
Distance to road (F2) | −0.019 | 0.921 | 0.028 | −0.018 | 0.036 |
Elevation (F3) | 0.814 | 0.475 | 0.181 | −0.101 | 0.042 |
Slope angle (F4) | −0.020 | −0.029 | 0.125 | 0.974 | −0.004 |
Plan curvature (F5) | −0.128 | −0.003 | −0.949 | −0.139 | −0.049 |
Profile curvature (F6) | 0.915 | 0.190 | 0.038 | 0.106 | 0.116 |
Topographic wetness index (F7) | −0.846 | −0.076 | 0.067 | −0.060 | −0.044 |
Distance to fault (F8) | 0.783 | 0.016 | 0.330 | −0.210 | 0.063 |
Distance to stream (F9) | 0.555 | 0.650 | 0.817 | −0.116 | 0.083 |
Roundness (F10) | 0.120 | 0.029 | 0.050 | −0.004 | 0.988 |
Contribution rate (%) | 45.726 | 15.794 | 10.979 | 9.449 | 8.233 |
Accumulative contribution (%) | 45.726 | 61.52 | 72.499 | 81.998 | 90.231 |
Common Factors | B | S.E | Wals |
---|---|---|---|
C1 | 0.692 | 0.366 | 9.016 |
C5 | 0.61 | 0.323 | 8.241 |
Constant | −1.371 | 0.311 | 8.715 |
−2LL | CSR2 | NR2 | KMO | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
69.791 | 0.345 | 0.698 | 0.789 | 83.29 | 73.11 | 84.79 |
Models | Model I | Model II | Model III | Model IV | |
---|---|---|---|---|---|
Factors | |||||
C1 | 39.244 | 46.216 | 47.293 | 48.432 | |
C2 | 14.147 | 15.274 | 18.529 | 14.424 | |
C3 | 11.889 | 10.665 | 11.911 | 10.941 | |
C4 | 10.02 | 8.808 | 9.476 | 9.836 | |
C5 | 7.245 | 7.388 | 0 | 0 | |
Accumulative contribution (%) | 85.544 | 88.352 | 87.209 | 86.633 |
Models | Model I | Model II | Model III | Model IV | |
---|---|---|---|---|---|
Factors | |||||
C1 | 0 | 0 | 0.587 | 0 | |
C2 | 0.59 | 0 | 0 | 0 | |
C3 | 0 | 0 | 0 | 0 | |
C4 | 0 | 0.421 | 0 | 0.349 | |
C5 | 0 | 0 | 0 | 0 | |
Constant | −1.212 | −1.825 | −1.347 | −1.248 |
Statistical Indexes | Model I | Model II | Model III | Model IV |
---|---|---|---|---|
−2LL | 42.595 | 40.453 | 28.913 | 38.923 |
CSR2 | 0.709 | 0.645 | 0.682 | 0.693 |
NR2 | 0.617 | 0.723 | 0.754 | 0.776 |
KMO | 0.600 | 0.762 | 0.711 | 0.742 |
Sensitivity (%) | 76.74 | 88.07 | 78.62 | 78.26 |
Specificity (%) | 87.91 | 91.92 | 90.24 | 88.24 |
Accuracy (%) | 85.37 | 91.59 | 87.76 | 86.53 |
Training | Validation | ||||||
---|---|---|---|---|---|---|---|
Index | Accuracy | Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | |
Model | (%) | (%) | (%) | (%) | (%) | (%) | |
LR model | 77.66 | 67.45 | 78.2 | 77 | 65.52 | 72.55 | |
FCM coupled with LR model | 83.63 | 72.61 | 85.15 | 77.63 | 67.6 | 78.4 | |
FA coupled with LR model | 83.29 | 73.11 | 84.79 | 80.72 | 71.79 | 81.47 | |
FCM, FA coupled with LR model | 88.01 | 79.85 | 89.58 | 85.25 | 74.96 | 86.21 |
Model | AUC for Training | AUC for Validation |
---|---|---|
LR model | 0.755 | 0.736 |
FCM coupled with LR model | 0.788 | 0.744 |
FA coupled with LR model | 0.818 | 0.782 |
FCM, FA coupled with LR model | 0.862 | 0.827 |
Model | Standard Errors |
---|---|
LR model | 0.033 |
FCM coupled with LR model | 0.031 |
FA coupled with LR model | 0.021 |
FCM, FA coupled with LR model | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Wang, C.; Liang, Z.; Gao, R.; Li, B. Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inf. 2021, 10, 639. https://doi.org/10.3390/ijgi10100639
Hu H, Wang C, Liang Z, Gao R, Li B. Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping. ISPRS International Journal of Geo-Information. 2021; 10(10):639. https://doi.org/10.3390/ijgi10100639
Chicago/Turabian StyleHu, Han, Changming Wang, Zhu Liang, Ruiyuan Gao, and Bailong Li. 2021. "Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping" ISPRS International Journal of Geo-Information 10, no. 10: 639. https://doi.org/10.3390/ijgi10100639
APA StyleHu, H., Wang, C., Liang, Z., Gao, R., & Li, B. (2021). Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping. ISPRS International Journal of Geo-Information, 10(10), 639. https://doi.org/10.3390/ijgi10100639