Innovations in Upper Limb Rehabilitation Robots: A Review of Mechanisms, Optimization, and Clinical Applications
Abstract
:1. Introduction
2. Upper Limb Rehabilitation Training Requirements
2.1. Components of the Upper Limb
2.2. Principles of Neuroplasticity
3. Classification of Upper Limb Rehabilitation Robots
3.1. End-Effector Type
3.2. Exoskeleton Type
3.2.1. Motor-Driven
3.2.2. Pneumatic-Driven
3.2.3. Elastic Actuator-Driven
Robot | Type of Actuators | Number of Degrees of Freedom | Features | Supported Movements | References |
---|---|---|---|---|---|
SPM | DC motor | 4 | High acceleration, Sensitive activities | Shoulder, elbow, wrist | [30] |
ARMin | DC motor | 6 | High commercial value | Shoulder, elbow, wrist | [31] |
Harmony | DC motor | 5 | Good flexibility, easy to use | Shoulder, elbow, wrist, | [35] |
/ | DC motor | 4 | Safe and convenient | elbow, wrist | [36] |
/ | DC motor | 8 | Adapted to different body parameters | Shoulder, elbow, wrist | [37] |
LIMPACT | DC motor | 5 | Lightweight, safe | Shoulder, elbow, wrist | [38] |
Pneu-WREX | Pneumatic actuator | 5 | Flexible exoskeleton, safe | Shoulder, elbow, wrist | [40] |
BONES | Pneumatic actuator | 4 | Shoulders are fully directional, light | Shoulder, elbow, wrist, fingers | [42,43] |
RUPERT | Pneumatic actuator | 5 | Hand grip training was performed using electrical stimulation | Shoulder, elbow, wrist, fingers | [44] |
ANYexo | Elastic actuator | 7 | Strong shock absorption and flexibility | Shoulder, elbow, wrist | [50,51] |
NESM | Elastic actuator | 7 | Force control precision is higher | Shoulder, elbow, wrist | [52,53] |
CURER | Elastic actuator | 7 | Precise power control and position regulation capabilities | Shoulder, elbow, wrist | [55] |
4. Rehabilitation Modes of Upper Limb Rehabilitation Robots
4.1. Assistive Mode
4.1.1. Passive Assistive Mode
4.1.2. Partial Assistive Mode
- (a)
- Perception and Control Strategies Based on Human Bioelectric Signals
- (b)
- Perception and Control Strategies Based on Human Force Signals
4.2. Correction Mode
4.3. Resistance Mode
5. Path Planning for Upper Limb Rehabilitation Robots
6. Future Development Directions
- (1)
- Artificial Intelligence and Compliant Control
- (2)
- Multisensory Feedback and Interactive Training
- (3)
- Ergonomics and New Drive Technologies
- (4)
- Modular and Customizable Design
- (5)
- Multimodal Brain Stimulation Technology
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Langhorne, P.; Coupar, F.; Pollock, A.J.T.L.N. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Wu, S.; Wu, B.; Liu, M.; Chen, Z.; Wang, W.; Anderson, C.S.; Sandercock, P.; Wang, Y.; Huang, Y.; Cui, L.; et al. Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019, 18, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ushiba, J. Brain–machine Interface (BMI)-based neurorehabilitation for post-stroke upper limb paralysis. Keio J. Med. 2022, 71, 82–92. [Google Scholar] [CrossRef]
- Pan, G.-X.; Fu, H.-Q.; Zhang, X.-F.; Ma, F.-L. Research on bionic mechanism of shoulder joint rehabilitation movement. In Wearable Sensors and Robots, Proceedings of International Conference on Wearable Sensors and Robots 2015, Hangzhou, China, 16–18 October 2015; Springer: Berlin/Heidelberg, Germany, 2017; pp. 181–194. [Google Scholar]
- Gull, M.A.; Bai, S.; Bak, T.J.R. A review on design of upper limb exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Ödemiş, E.; Baysal, C.V.; İnci, M. Patient performance assessment methods for upper extremity rehabilitation in assist-as-needed therapy strategies: A comprehensive review. Med. Biol. Eng. Comput. 2025. [Google Scholar] [CrossRef] [PubMed]
- Horgusluoglu, E.; Nudelman, K.; Nho, K.; Saykin, A.J. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2017, 174, 93–112. [Google Scholar] [CrossRef]
- Pollock, A.; Baer, G.; Pomeroy, V.M.; Langhorne, P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst. Rev. 2007. [Google Scholar]
- Bach-y-Rita, P.; Hughes, B. Tactile Vision Substitution: Some Instrumentation and Perceptual Considerations. In Electronic Spatial Sensing for the Blind: Contributions from Perception, Rehabilitation, and Computer Vision; Warren, D.H., Strelow, E.R., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 171–186. [Google Scholar]
- Jäger, R.; Sawan, S.A.; Orrú, M.; Tinsley, G.M.; Purpura, M.; Wells, S.D.; Liao, K.; Godavarthi, A. Paraxanthine enhances memory and neuroplasticity more than caffeine in rats. Exp. Brain Res. 2025, 8, 243. [Google Scholar]
- de Almeida, A.; Arida, R. Correspondence to “Exploring the impact of exercise induced BDNF on neuroplasticity in neurodegenerative and neuropsychiatric conditions”. Mol. Biol. Rep. 2025, 52, 398. [Google Scholar] [CrossRef]
- Yan, W.; Lin, Y.; Chen, Y.-F.; Wang, Y.; Wang, J.; Zhang, M. Enhancing Neuroplasticity for Post-Stroke Motor Recovery: Mechanisms, Models, and Neurotechnology. IEEE Trans. Neural Syst. Rehabil. Eng. 2025, 33, 1156–1168. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; Van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef]
- Krebs, H.I.; Hogan, N.; Aisen, M.L.; Volpe, B.T. Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 1998, 6, 75–87. [Google Scholar] [CrossRef]
- Carpinella, I.; Lencioni, T.; Bowman, T.; Bertoni, R.; Turolla, A.; Ferrarin, M.; Jonsdottir, J. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: A pilot randomized controlled trial. J. Neuroeng. Rehabil. 2020, 17, 10. [Google Scholar] [CrossRef]
- Krebs, H.I.; Ferraro, M.; Buerger, S.P.; Newbery, M.J.; Makiyama, A.; Sandmann, M.; Lynch, D.; Volpe, B.T.; Hogan, N. Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus. J. Neuroeng. Rehabil. 2004, 1, 5. [Google Scholar] [CrossRef]
- Burgar, C.G.; Lum, P.S.; Shor, P.C.; Van der Loos, H.M. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 2000, 37, 663–674. [Google Scholar]
- Perry, J.C.; Zabaleta, H.; Belloso, A.; Keller, T. ARMassist: A low-cost device for telerehabiltation of post-stroke arm deficits. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Volume 25/9, pp. 64–67. [Google Scholar]
- Hesse, S.; Werner, C.; Pohl, M.; Rueckriem, S.; Mehrholz, J.; Lingnau, M.J.S. Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers. Stroke 2005, 36, 1960–1966. [Google Scholar] [CrossRef]
- Bovolenta, F.; Goldoni, M.; Clerici, P.; Agosti, M.; Franceschini, M. Robot therapy for functional recovery of the upper limbs: A pilot study on patients after stroke. J. Rehabil. Med. 2009, 41, 971–975. [Google Scholar] [CrossRef]
- Takebayashi, T.; Takahashi, K.; Okita, Y.; Kubo, H.; Hachisuka, K.; Domen, K. Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: Sub-analysis of a randomized clinical trial. J. Neuroeng. Rehabil. 2022, 19, 25. [Google Scholar] [CrossRef]
- Takebayashi, T.; Takahashi, K.; Amano, S.; Gosho, M.; Sakai, M.; Hashimoto, K.; Hachisuka, K.; Uchiyama, Y.; Domen, K.J.S. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: A randomized controlled trial. Stroke 2022, 53, 2182–2191. [Google Scholar] [CrossRef]
- Yubo, Z.; Zixi, W.; Linhong, J.; Sheng, B. The clinical application of the upper extremity compound movements rehabilitation training robot. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 91–94. [Google Scholar]
- Jackson, A.E.; Levesley, M.; Makower, S.; Cozens, J.; Bhakta, B. Development of the iPAM MkII system and description of a randomized control trial with acute stroke patients. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Zhang, Y.; Zhao, P.; Gong, L.; Deng, X. Trajectory Synthesis and Sensitivity Analysis of Six-Bar Mechanism for Gait Implementation. In Proceedings of the IFToMM World Congress on Mechanism and Machine Science, Tokyo, Japan, 5–10 November 2023; pp. 396–408. [Google Scholar]
- Rosati, G.; Gallina, P.; Masiero, S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 560–569. [Google Scholar] [CrossRef]
- Amirabdollahian, F.; Loureiro, R.; Gradwell, E.; Collin, C.; Harwin, W.; Johnson, G. Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J. Neuroeng. Rehabil. 2007, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Plooij, M.; Apte, S.; Keller, U.; Baines, P.; Sterke, B.; Asboth, L.; Courtine, G.; von Zitzewitz, J.; Vallery, H.J.S.R. Neglected physical human-robot interaction may explain variable outcomes in gait neurorehabilitation research. Sci. Robot. 2021, 6, eabf1888. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; He, M.; Tong, X.; Zhang, M.; Huang, L.J.S. Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm. Sensors 2024, 24, 6014. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.; Lee, H. Development of a low inertia parallel actuated shoulder exoskeleton robot for the characterization of neuromuscular property during static posture and dynamic movement. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 556–562. [Google Scholar]
- Mihelj, M.; Nef, T.; Riener, R. ARMin II-7 DoF rehabilitation robot: Mechanics and kinematics. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 4120–4125. [Google Scholar]
- Lu, L.; Tan, Y.; Klaic, M.; Galea, M.P.; Khan, F.; Oliver, A.; Mareels, I.; Oetomo, D.; Zhao, E. Evaluating rehabilitation progress using motion features identified by machine learning. IEEE Trans. Biomed. Eng. 2020, 68, 1417–1428. [Google Scholar] [CrossRef]
- Rudhe, C.; Albisser, U.; Starkey, M.L.; Curt, A.; Bolliger, M. Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 37. [Google Scholar] [CrossRef]
- Sehle, A.; Stuerner, J.; Hassa, T.; Spiteri, S.; Schoenfeld, M.A.; Liepert, J. Behavioral and neurophysiological effects of an intensified robot-assisted therapy in subacute stroke: A case control study. J. Neuroeng. Rehabil. 2021, 18, 6. [Google Scholar] [CrossRef]
- Kim, B.; Deshpande, A.D. An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 2017, 36, 414–435. [Google Scholar] [CrossRef]
- Cheng, Y.; Pan, S. Virtual decomposition control of multi-degree-of-freedom rehabilitation exoskeleton robotic arm. J. Mech. Eng. 2022, 58, 21–30. [Google Scholar]
- Noronha, B.; Ng, C.Y.; Little, K.; Xiloyannis, M.; Kuah, C.W.K.; Wee, S.K.; Kulkarni, S.R.; Masia, L.; Chua, K.S.G.; Accoto, D.; et al. Soft, lightweight wearable robots to support the upper limb in activities of daily living: A feasibility study on chronic stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1401–1411. [Google Scholar] [CrossRef]
- Otten, A.; Voort, C.; Stienen, A.; Aarts, R.; van Asseldonk, E.; van der Kooij, H. LIMPACT: A hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Trans. Mechatron. 2015, 20, 2285–2298. [Google Scholar] [CrossRef]
- Pan, M.; Yuan, C.; Liang, X.; Dong, T.; Liu, T.; Zhang, J.; Zou, J.; Yang, H.; Bowen, C. Soft actuators and robotic devices for rehabilitation and assistance. Adv. Intell. Syst. 2022, 4, 2100140. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.J.; Wolbrecht, E.T.; Chan, V.; Chou, C.; Cramer, S.C.; Bobrow, J.E. Rehabilitation. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am. J. Phys. Med. Rehabil. 2012, 91, S232–S241. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.; Wolbrecht, E.; Smith, R.; Liu, J.; Rao, S.; Cramer, S.; Rahman, T.; Bobrow, J.E.; Reinkensmeyer, D.J. A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 500–504. [Google Scholar]
- Klein, J.; Spencer, S.; Allington, J.; Minakata, K.; Wolbrecht, E.; Smith, R.; Bobrow, J.; Reinkensmeyer, D.J. Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES). In Proceedings of the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19–22 October 2008; pp. 535–541. [Google Scholar]
- Klein, J.; Spencer, S.; Allington, J.; Bobrow, J.E.; Reinkensmeyer, D.J. Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans. Robot. 2010, 26, 710–715. [Google Scholar] [CrossRef]
- Tu, X.; Han, H.; Huang, J.; Li, J.; Su, C.; Jiang, X.; He, J. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings. J. Healthc. Eng. 2017, 1, 1282934. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Lien, W.Y.; Chen, C.T.; Wu, Y.C. Implementationof an upper-limb exoskeleton robot driven by pneumatic muscle actuators for rehabilitation. Actuators 2020, 9, 106. [Google Scholar] [CrossRef]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S.J.R.; Systems, A. The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robot. Auton. Syst. 2018, 99, 63–74. [Google Scholar] [CrossRef]
- Chen, C.; Song, Y.; Chen, D.; Zhu, J.; Ning, H.; Xiao, R. Design and application of pneumatic rehabilitation glove system based on brain-computer interface. Rev. Sci. Instrum. 2024, 95, 095108. [Google Scholar] [CrossRef]
- Das, S.; Kishishita, Y.; Tsuji, T.; Lowell, C.; Ogawa, K.; Kurita, Y. ForceHand glove: A wearable force-feedback glove with pneumatic artificial muscles (PAMs). IEEE Robot. Autom. Lett. 2018, 3, 2416–2423. [Google Scholar] [CrossRef]
- Farag, M.; Azlan, N.Z.; Alsibai, M.H.; Ghafar, A.N.A. Slippage detection for grasping force control of robotic hand using force sensing resistors. In Proceedings of the 2019 5th International Conference on Computer and Technology Applications, Istanbul, Turkey, 16–17 April 2019; pp. 98–102. [Google Scholar]
- Zimmermann, Y.; Forino, A.; Riener, R.; Hutter, M.J.I.R.; Letters, A. ANYexo: A versatile and dynamic upper-limb rehabilitation robot. IEEE Robot. Autom. Lett. 2019, 4, 3649–3656. [Google Scholar] [CrossRef]
- Zimmermann, Y.; Sommerhalder, M.; Wolf, P.; Riener, R.; Hutter, M. ANYexo 2.0: A fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation. IEEE Trans. Robot. 2023, 39, 2131–2150. [Google Scholar] [CrossRef]
- Crea, S.; Cempini, M.; Moise, M.; Baldoni, A.; Trigili, E.; Marconi, D.; Cortese, M.; Giovacchini, F.; Posteraro, F.; Vitiello, N. A novel shoulder-elbow exoskeleton with series elastic actuators. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1248–1253. [Google Scholar]
- Trigili, E.; Crea, S.; Moisè, M.; Baldoni, A.; Cempini, M.; Ercolini, G.; Marconi, D.; Posteraro, F.; Carrozza, M.C.; Vitiello, N.J.I.A.T.o.M. Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 2019, 24, 1485–1496. [Google Scholar] [CrossRef]
- Pan, J.; Astarita, D.; Baldoni, A.; Dell′Agnello, F.; Crea, S.; Vitiello, N.; Trigili, E.J.I.R.; Letters, A. NESM-γ: An upper-limb exoskeleton with compliant actuators for clinical deployment. IEEE Robot. Autom. Lett. 2022, 7, 7708–7715. [Google Scholar] [CrossRef]
- Qian, W.; Liao, J.; Lu, L.; Ai, L.; Li, M.; Xiao, X. CURER: A lightweight cable-driven compliant upper limb rehabilitation exoskeleton robot. IEEE/ASME Trans. Mechatron. 2022, 28, 1730–1741. [Google Scholar] [CrossRef]
- Richardson, M.C.; Tears, C.; Morris, A.; Alexanders, J. The effects of unilateral versus bilateral motor training on upper limb function in adults with chronic stroke: A systematic review. J. Stroke Cerebrovasc. Dis. 2021, 30, 105617. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Chun, M.H. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 2014, 95, 431–438. [Google Scholar] [CrossRef]
- Ahmed, T.; Islam, M.R.; Brahmi, B.; Rahman, M.H. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Sensors 2022, 22, 3747. [Google Scholar] [CrossRef]
- Wang, H.; Lu, J. Research on Fractional Order Fuzzy PID Control of the Pneumatic-hydraulic Upper Limb Rehabilitation Training System Based on PSO. Int. J. Control Autom. Syst. 2022, 20, 310–320. [Google Scholar] [CrossRef]
- Hu, B.; Mao, B.; Lu, S.; Yu, H. Design and torque control base on neural network PID of a variable stiffness joint for rehabilitation robot. Front. Neurorobot. 2022, 16, 1007324. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; K-Ouimet, T.; Saad, M.; Kenné, J.P.; Archambault, P.S. Tele-operation of a robotic exoskeleton for rehabilitation and passive arm movement assistance. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 443–448. [Google Scholar]
- Yang, J.; Xie, H.; Shi, J.J.M.; Theory, M. A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation. Mech. Mach. Theory 2016, 99, 83–102. [Google Scholar] [CrossRef]
- Chakraborty, D.; Rathi, A.; Singh, R.; Pathak, V.K.; Srivastava, A.K.; Sharma, A.; Saxena, K.K.; Kumar, G.; Kumar, S.J.R.; Systems, A. External six-bar mechanism rehabilitation device for index finger: Development and shape synthesis. Robot. Auton. Syst. 2023, 161, 104336. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, Y.; Guan, H.; Deng, X.; Chen, H. Design of a single-degree-of-freedom immersive rehabilitation device for clustered upper-limb motion. J. Mech. Robot. 2021, 13, 031006. [Google Scholar] [CrossRef]
- Akdoğan, E.; Aktan, M.E.; Koru, A.T.; Arslan, M.S.; Atlıhan, M.; Kuran, B.J.M. Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results. Mechatronics 2018, 49, 77–91. [Google Scholar] [CrossRef]
- Kumar, S.; Wöhrle, H.; Trampler, M.; Simnofske, M.; Peters, H.; Mallwitz, M.; Kirchner, E.A.; Kirchner, F.J.A.S. Modular design and decentralized control of the recupera exoskeleton for stroke rehabilitation. Appl. Sci. 2019, 9, 626. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, C.; Gu, Z.; Zheng, Y.; Wu, Q. A new design scheme for intelligent upper limb rehabilitation training robot. Int. J. Environ. Res. Public Health 2020, 17, 2948. [Google Scholar] [CrossRef]
- Wang, W.-W.; Fu, L.-C. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system. In Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 30–31 May 2011; pp. 370–375. [Google Scholar]
- Wang, X.; Lin, M.; Sang, L.; Wang, H.; Feng, Y.; Niu, J.; Yu, H.; Cheng, B. A Linear Rehabilitative Motion Planning Method with a Multi-Posture Lower-Limb Rehabilitation Robot. Sensors 2024, 24, 7506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wang, Y.; Zhang, Y.; Wang, Y. Trajectory Synthesis and Linkage Design of Single-Degree-of-Freedom Finger Rehabilitation Device. Actuators 2024, 13, 256. [Google Scholar]
- Mohamaddan, S.; Jamali, A.; Abidin, A.S.Z.; Jamaludin, M.S.; Abd Majid, N.A.; Ashari, M.F.; Hazmi, H.J.P.C.S. Development of upper limb rehabilitation robot device for home setting. Procedia Comput. Sci. 2015, 76, 376–380. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, M.; Wang, W.; Zhang, Y.; An, B. Trajectory tracking control of wearable upper limb rehabilitation robot based on Laguerre model predictive control. Robot. Auton. Syst. 2024, 179, 104745. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Lee, P.C.; Xie, D.; Ye, Z.; Li, Z.; Tong, R.K. An interactive soft robotic hand-task training system with wireless task boards and daily objects on post-stroke rehabilitation. Wearable Technol. 2025, 6, e4. [Google Scholar] [CrossRef]
- Jiang, N.; Englehart, K.B.; Parker, P.A. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Trans. Biomed. Eng. 2008, 56, 1070–1080. [Google Scholar] [CrossRef]
- Do, A.H.; Wang, P.T.; King, C.E.; Chun, S.N.; Nenadic, Z. Brain-computer interface controlled robotic gait orthosis. J. Neuroeng. Rehabil. 2013, 10, 111. [Google Scholar] [CrossRef]
- Novak, D.; Riener, R.J.R.; Systems, A. A survey of sensor fusion methods in wearable robotics. Robot. Auton. Syst. 2015, 73, 155–170. [Google Scholar] [CrossRef]
- Li, Q. Research on an Exoskeleton Robot Upper Limb Rehabilitation System Based on sEMG Signals. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2009. (In Chinese). [Google Scholar]
- Guo, Y.; Xu, W.; Pradhan, S.; Bravo, C.; Ben-Tzvi, P.J.M. Personalized voice activated grasping system for a robotic exoskeleton glove. Mechatronics 2022, 83, 102745. [Google Scholar] [CrossRef]
- He, B.; Li, M.; He, G. Hand rehabilitation modes combining exoskeleton-assisted training with tactile feedback for hemiplegia patients: A preliminary study. In Proceedings of the International Conference on Intelligent Robotics and Applications, Harbin, China, 1–3 August 2022; pp. 661–669. [Google Scholar]
- Arteaga, M.V.; Castiblanco, J.C.; Mondragon, I.F.; Colorado, J.D.; Alvarado-Rojas, C. EMG-based adaptive trajectory generation for an exoskeleton model during hand rehabilitation exercises. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 416–421. [Google Scholar]
- Khan, B.A.; Usmani, A.R.; Athar, S.; Hashmi, A.; Farooq, O.; Muzammil, M. EEG-based exoskeleton for rehabilitation therapy. In Ergonomics for Improved Productivity, Proceedings of the HWWE 2017, Aligarh, India, 8–10 December 2017; Springer: Berlin/Heidelberg, Germany, 2021; pp. 645–653. [Google Scholar]
- Makowski, N.S.; Knutson, J.S.; Chae, J.; Crago, P.E. Control of robotic assistance using poststroke residual voluntary effort. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 221–231. [Google Scholar] [CrossRef]
- Benabid, A.L.; Costecalde, T.; Eliseyev, A.; Charvet, G.; Verney, A.; Karakas, S.; Foerster, M.; Lambert, A.; Morinière, B.; Abroug, N. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: A proof-of-concept demonstration. Lancet Neurol. 2019, 18, 1112–1122. [Google Scholar] [CrossRef]
- Borton, D.; Micera, S.; Millán, J.d.R.; Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 2013, 5, 210rv2. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhou, Q.; Xu, J. Research on robotic impedance control. In Proceedings of the 37th Chinese Control Conference (D), Wuhan, China, 25–27 July 2018. (In Chinese). [Google Scholar]
- Hogan, N. Impedance control: An approach to manipulation. In Proceedings of the 1984 American Control Conference, San Diedo, CA, USA, 6–8 June 1984; pp. 304–313. [Google Scholar]
- Zhang, S.; Shan, Q.; Huang, J.; Chen, Y.; Zhou, Y. Passive compliance control of a hybrid arm-wrist upper limb rehabilitation robot. China J. Eng. Mach. 2024, 22, 468–473. (In Chinese) [Google Scholar]
- Ge, S. Research on Tendon-Driven Dexterous Hand Adaptive Control Algorithms. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2019. (In Chinese). [Google Scholar]
- Xu, W.; Guo, Y.; Bravo, C.; Ben-Tzvi, P. Design, control, and experimental evaluation of a novel robotic glove system for patients with brachial plexus injuries. IEEE Trans. Robot. 2022, 39, 1637–1652. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Jeong, S.; Lyu, F.; Herrin, K.; Bhatia, S.; Elliott, D.; Kozin, S.; Desai, J.P. FLEXotendon glove-III: Voice-controlled soft robotic hand exoskeleton with novel fabrication method and admittance grasping control. IEEE/ASME Trans. Mechatron. 2022, 27, 3920–3931. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Haghjoo, M.R.; Taghizadeh, M. Model-free adaptive variable impedance control of gait rehabilitation exoskeleton. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 557. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, S.; Zhang, J.; Luo, S.; Zhang, B. Force/position hybrid control based on the stiffness of a rope-driven parallel robot system. Mech. Transm. 2023, 47, 130–134. (In Chinese) [Google Scholar]
- Just, F.; Özen, Ö.; Bösch, P.; Bobrovsky, H.; Klamroth-Marganska, V.; Riener, R.; Rauter, G. Exoskeleton transparency: Feed-forward compensation vs. disturbance observer. at-Automatisierungstechnik 2018, 66, 1014–1026. [Google Scholar] [CrossRef]
- Elgeneidy, K.; Lohse, N.; Jackson, M. Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors–a data-driven approach. Mechatronics 2018, 50, 234–247. [Google Scholar] [CrossRef]
- Xu, G.; Song, A. Fuzzy variable impedance control for upper-limb rehabilitation robot. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008; pp. 216–220. [Google Scholar]
- Sun, J.; Shen, Y.; Rosen, J. Sensor reduction, estimation, and control of an upper-limb exoskeleton. IEEE Robot. Autom. Lett. 2021, 6, 1012–1019. [Google Scholar] [CrossRef]
- Kamps, A.; Schüle, K. Cyclic movement training of the lower limb in stroke rehabilitation. Neurol. Rehabil. 2005, 11, S1–S12. [Google Scholar]
- Zhu, J.; Gienger, M.; Franzese, G.; Kober, J. Do you need a hand?—A bimanual robotic dressing assistance scheme. IEEE Trans. Robot. 2024, 40, 1906–1919. [Google Scholar]
- Mao, Y.; Jin, X.; Dutta, G.G.; Scholz, J.P.; Agrawal, S.K. Human movement training with a cable driven arm exoskeleton (CAREX). IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 84–92. [Google Scholar] [CrossRef]
- Atkinson, M.; Tully, A.; Maher, C.A.; Innes-Wong, C.; Russo, R.N.; Osborn, M.P. Safety, Feasibility and Efficacy of Lokomat® and Armeo® Spring Training in Deconditioned Paediatric, Adolescent and Young Adult Cancer Patients. Cancers 2023, 15, 1250. [Google Scholar] [CrossRef]
- Takebayashi, T.; Uchiyama, Y.; Domen, K. Automatic setting optimization for robotic upper-extremity rehabilitation in patients with stroke using ReoGo-J: A cross-sectional clinical trial. Sci. Rep. 2024, 14, 25710. [Google Scholar] [CrossRef]
- Krebs, H.I.; Palazzolo, J.J.; Dipietro, L.; Ferraro, M.; Krol, J.; Rannekleiv, K.; Volpe, B.T.; Hogan, N. Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Auton. Robot. 2003, 15, 7–20. [Google Scholar] [CrossRef]
- Grimaldi, G.; Manto, M. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: Multi-joint versus single-joint robotic training. J. Neuroeng. Rehabil. 2013, 10, 113. [Google Scholar] [CrossRef]
- Manna, S.K.; Dubey, V.N. A portable elbow exoskeleton for three stages of rehabilitation. J. Mech. Robot. 2019, 11, 065002. [Google Scholar] [CrossRef]
- Patle, B.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Reda, M.; Onsy, A.; Haikal, A.Y.; Ghanbari, A. Path planning algorithms in the autonomous driving system: A comprehensive review. Robot. Auton. Syst. 2024, 174, 104630. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, C.; Huang, R.; Tong, K.; He, Y.; Xu, L. Path planning for mobile robots in greenhouse orchards based on improved A* and fuzzy DWA algorithms. Comput. Electron. Agric. 2024, 227, 109598. [Google Scholar] [CrossRef]
- Suanpang, P.; Jamjuntr, P. Optimizing Autonomous UAV Navigation with D* Algorithm for Sustainable Development. Sustainability 2024, 16, 7867. [Google Scholar] [CrossRef]
- Islam, M.R.; Assad-Uz-Zaman, M.; Brahmi, B.; Bouteraa, Y.; Wang, I.; Rahman, M.H. Design and development of an upper limb rehabilitative robot with dual functionality. Micromachines 2021, 12, 870. [Google Scholar] [CrossRef]
- Wei, K.; Ren, B. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. Sensors 2018, 18, 571. [Google Scholar] [CrossRef]
- Jia, B.; Li, P. Path Planning Based on the Method of Integrating Adjacent Obstacles. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 6197–6202. [Google Scholar]
- Tong, S.; Liu, Q.; Ma, Q.; Qin, J. Integrating deep reinforcement learning and improved artificial potential field method for safe path planning for mobile robots. Robot. Intell. Autom. 2024, 44, 871–886. [Google Scholar] [CrossRef]
- Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.; Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; Guidali, M.; Kollmar, A. Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. Lancet Neurol. 2014, 13, 159–166. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, S.; Zhang, L. A path planning method of 6-DOF robot for mirror therapy based on A* algorithm. Technol. Health Care 2022, 30, 105–116. [Google Scholar] [CrossRef]
- Lauretti, C.; Cordella, F.; Ciancio, A.L.; Trigili, E.; Catalan, J.M.; Badesa, F.J.; Crea, S.; Pagliara, S.M.; Sterzi, S.; Vitiello, N. Learning by demonstration for motion planning of upper-limb exoskeletons. Front. Neurorobot. 2018, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Lauretti, C.; Cordella, F.; Guglielmelli, E.; Zollo, L. Learning by demonstration for planning activities of daily living in rehabilitation and assistive robotics. IEEE Robot. Autom. Lett. 2017, 2, 1375–1382. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, H.; Wei, J.; Zhang, F.; Shi, Z.; Li, X. Research on the Safety Design and Trajectory Planning for a New Dual Upper Limb Rehabilitation Robot. Actuators 2024, 13, 364. [Google Scholar]
- Hamaya, M.; Matsubara, T.; Teramae, T.; Noda, T.; Morimoto, J. Design of physical user–robot interactions for model identification of soft actuators on exoskeleton robots. Int. J. Robot. Res. 2021, 40, 397–410. [Google Scholar] [CrossRef]
- Ning, Y.; Sang, L.; Wang, H.; Wang, Q.; Vladareanu, L.; Niu, J. Upper limb exoskeleton rehabilitation robot inverse kinematics modeling and so-lution method based on multi-objective optimization. Sci. Rep. 2024, 14, 25476. [Google Scholar] [CrossRef]
- Meziani, Y.; Morère, Y.; Hadj-Abdelkader, A.; Benmansour, M.; Bourhis, G. Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton. Control. Eng. Pract. 2021, 111, 104804. [Google Scholar] [CrossRef]
- Lee, M.H.; Siewiorek, D.P.; Smailagic, A.; Bernardino, A.; Bermúdez i Badia, S. Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy: Iterative Design and Evaluation with Therapists and Post-stroke Survivors. Int. J. Soc. Robot. 2024, 16, 1–22. [Google Scholar] [CrossRef]
- Carey, L.; Macdonell, R.; Matyas, T.A. SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: A randomized controlled trial. Neurorehabilit. Neural Repair 2011, 25, 304–313. [Google Scholar] [CrossRef]
- Mani Bharathi, V.; Manimegalai, P.; George, S.T.; Pamela, D.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Damaševičius, R. A systematic review of techniques and clinical evidence to adopt virtual reality in post-stroke upper limb rehabilitation. Virtual Real. 2024, 28, 172. [Google Scholar] [CrossRef]
- Varghese, R.J.; Mukherjee, G.; King, R.; Keller, S.; Deshpande, A.D. Designing variable stiffness profiles to optimize the physical human robot interface of hand exoskeletons. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 1101–1108. [Google Scholar]
- Christensen, S.; Bai, S. Kinematic analysis and design of a novel shoulder exoskeleton using a double parallelogram linkage. J. Mech. Robot. 2018, 10, 041008. [Google Scholar] [CrossRef]
- Castro, M.N.; Rasmussen, J.; Andersen, M.S.; Bai, S. A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications. Mech. Mach. Theory 2019, 132, 264–278. [Google Scholar] [CrossRef]
- Khan, A.M.; Yun, D.-w.; Ali, M.A.; Zuhaib, K.M.; Yuan, C.; Iqbal, J.; Han, J.; Shin, K.; Han, C. Passivity based adaptive control for upper extremity assist exoskeleton. Int. J. Control. Autom. Syst. 2016, 14, 291–300. [Google Scholar] [CrossRef]
- Yun, Y.; Dancausse, S.; Esmatloo, P.; Serrato, A.; Merring, C.A.; Agarwal, P.; Deshpande, A.D. Maestro: An EMG-driven assistive hand exoskeleton for spinal cord injury patients. In Proceedings of the 2017 IEEE international conference on robotics and automation (ICRA), Singapore, 3 May–3 June 2017; pp. 2904–2910. [Google Scholar]
- Zhang, Y.; Zhao, P.; Li, X.; Zi, B. Design of MMSD Six-Bar Rehab Device Toward the Realization of Multiple Gait Trajectories With One Adjustable Parameter. IEEE/ASME Trans. Mechatron. 2024, 29, 4309–4319. [Google Scholar] [CrossRef]
- Chen, J.-M.; Li, X.-L.; Pan, Q.-H.; Yang, Y.; Xu, S.-M.; Xu, J.-W. Effects of non-invasive brain stimulation on motor function after spinal cord injury: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2023, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Lorach, H.; Galvez, A.; Spagnolo, V.; Martel, F.; Karakas, S.; Intering, N.; Vat, M.; Faivre, O.; Harte, C.; Komi, S. Walking naturally after spinal cord injury using a brain–spine interface. Nature 2023, 618, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.; Sariev, A.; Lee, S.; Dong, S.-Y.; Royer, S.; Kim, H. Deep cerebellar low-intensity focused ultrasound stimulation restores interhemispheric balance after ischemic stroke in mice. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2073–2079. [Google Scholar] [CrossRef]
- Ambrosini, E.; Zajc, J.; Ferrante, S.; Ferrigno, G.; Dalla Gasperina, S.; Bulgheroni, M.; Baccinelli, W.; Schauer, T.; Wiesener, C.; Russold, M. A hybrid robotic system for arm training of stroke survivors: Concept and first evaluation. IEEE Trans. Biomed. Eng. 2019, 66, 3290–3300. [Google Scholar] [CrossRef]
- Dole, M.; Auboiroux, V.; Langar, L.; Mitrofanis, J. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans. Rev. Neurosci. 2023, 34, 671–693. [Google Scholar] [CrossRef]
Robot | Type of Actuators | Number of Degrees of Freedom | Features | Supported Movements | References |
---|---|---|---|---|---|
MIT-MANUS | DC motor | 2 | Simple structure, good flexibility | Shoulder, elbow, wrist | [16] |
MIME | DC motor | >6 (based on the PUMA 560 robotic arm) | Large workspace | Shoulder, elbow, wrist | [17] |
ARMassist | DC motor | 5 | Portable, remote manipulation | Shoulder, elbow, wrist, fingers | [18] |
Bi-Manu-Track | DC motor | 2 | Flexible adjustment of assistance intensity, speed, and resistance | elbow, wrist | [19] |
ReoGo | DC motor | 3 | Easy to use, customizable | Shoulder, elbow, wrist | [20,21,22] |
UECM | DC motor | 2 | Dual-video feedback | Shoulder, elbow, wrist | [23] |
iPAM | DC motor | 6 | Good flexibility, easy to use | Shoulder, elbow, wrist | [24] |
NeReBot | DC motor | 3 | High safety factor, good flexibility | Shoulder, elbow, wrist | [26] |
GENTLE/S | DC motor | 3 | Suspension structure, plane motion | Shoulder, elbow, wrist | [27] |
Characteristics | Targeted Patient | Therapy Procedure | Therapy Procedure |
---|---|---|---|
Type of Treatment | |||
Passive assisted therapy | Subacute phase early hemiplegic patients | Assisting with impaired upper limb flexion and extension movements | Passive assisted therapy |
Active therapy | Patients in the recovery phase with some upper limb mobility | Providing upper limb assistive therapy based on the patient’s intentions | Active therapy |
Bilateral therapy | Patients with one functional limb | Enabling the impaired unilateral upper limb to replicate the movement trajectory of a functional upper limb | Bilateral therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, X.; Xin, B.; Zhao, P. Innovations in Upper Limb Rehabilitation Robots: A Review of Mechanisms, Optimization, and Clinical Applications. Robotics 2025, 14, 81. https://doi.org/10.3390/robotics14060081
Wang Y, Han X, Xin B, Zhao P. Innovations in Upper Limb Rehabilitation Robots: A Review of Mechanisms, Optimization, and Clinical Applications. Robotics. 2025; 14(6):81. https://doi.org/10.3390/robotics14060081
Chicago/Turabian StyleWang, Yang, Xu Han, Baiye Xin, and Ping Zhao. 2025. "Innovations in Upper Limb Rehabilitation Robots: A Review of Mechanisms, Optimization, and Clinical Applications" Robotics 14, no. 6: 81. https://doi.org/10.3390/robotics14060081
APA StyleWang, Y., Han, X., Xin, B., & Zhao, P. (2025). Innovations in Upper Limb Rehabilitation Robots: A Review of Mechanisms, Optimization, and Clinical Applications. Robotics, 14(6), 81. https://doi.org/10.3390/robotics14060081